新疆伊犁燃煤灰放射性核素水平与富集因子分析
Natural Radionuclides Concentration and Enrichment Factors in Burned-Coal Domestic Bottom Ash in Ili Valley of Xinjiang
-
摘要: 为了探明新疆伊犁家用燃煤灰放射性核素比活度本底值,分析了新疆伊犁河谷各矿区的48个有效燃煤炉灰样。分析结果表明:燃煤灰238U、232Th、226Ra和40K比活度范围分别为11.5~682.0、7.5~88.7、11.4~926.0、LLD~372.0 Bg/kg;比活度均值分别为104.4、37.6、126.7、101.7 Bq/kg。计算得到41对燃煤与燃煤炉底灰放射性核素238U、232Th、226Ra、40K的富集因子为0.1~26.6、3.3~309.2、0.4~284.0和1.7~225.5,238U、232Th、226Ra相对富集因子为0.01~19.97、0.06~77.9和0.02~54.5。研究表明,此次调查的家用燃煤灰放射性核素数据与其它地区和国家数据相比为最小,燃煤与家用燃煤灰的富集因子与文献报道的相似,根据联合国电离辐射效应委员会统计的全球煤及煤灰背景值资料,此次数据均在正常值范围内。Abstract: Due to measuring the background value of specific activity of radionuclides (238U, 232Th, 226Ra, 40K), 48 collected samples of bottom ash of coal in the coalfields were analyzed by Gamma-ray spectrometer at China Nuclear Radiation Protection Research Institute. The results show that the specific activity are 104.4 Bq/kg (238U), 37.6 Bq/kg (232Th), 126.7 Bq/kg (226Ra) and 101.7 Bq/kg (40K). The enrichment factors(EF) of the radionuclides in bottom ash relative to the input coal during the combustion process range from 0.1 to 26.6 for 238U, from 3.3 to 309.2 for 232Th, from 0.4 to 284.0 for 226Ra and from 1.7 to 225.5 for 40K, whereas the relative enrichment factors(REF) are 0.01 to 19.97 (238U), 0.06 to 77.9 (232Th) and 0.02 to 54.5 (226Ra). The specific activity of 238U, 226Ra, 232Th and 40K present the lowest in bottom ash in Ili Valley of Xinjiang compared with other areas and nations.
-
Keywords:
- 238U /
- 232Th /
- 226Ra /
- 40K /
- specific activity /
- bottom ash of burned-coal /
- enrichment factor /
- Ili Valley of Xinjiang, China
-
-
[1] 罗颖都,陈祢生,刘恩庆,等.煤质及化验基础知识[M].北京:煤炭工业出版社,1985. [2] 叶崇开,黎旺生,钱位成,等.煤对环境的放射性污染[J].环境科学,1982,3(1):49-53. [3] 杨俊诚,朱永懿,陈景坚,等.粉煤灰的农业利用及其环境放射性污染评价[J].核农学报,1999,13(5):299-304. [4] Flues M, Camargo I M C, Silva P S C, et al. Radio activity of coal and ashes from Figueira coal power plant in Brazil[J]. J Radioanal Nucl Chem, 2006, 270(3): 597-602. [5] 喻亦林.滇西临沧褐煤放射性水平及区域污染分析[J].地球与环境,2007,35(2):147-153. [6] 熊正为,喻亦林,游猛,等.云南省煤的放射性污染调查分析[J].煤炭学报,2007,32(7):762-766. [7] Jankovic M M, Todorovic D J, Nikolic J D. Analysis of natural radionuclides in coal, slag and ash in coal-fired power plants in Serbia[J]. Journal of Mining and Metallurgy, 2011, 47(2): 149-155. [8] 潘自强,罗国桢.环境本底辐射测量和剂量评价[M].北京:国家环保局,浙江环境保护监测站,中国原子能科学研究院环保研究室,1986. [9] 杨瑞瑛.山东煤矿样中微量因素的分布[J].现代仪器,2007(6):21-24. [10] 陈冰如,杨绍晋,钱琴芳,等.中国煤矿样中砷、硒、铬、铀、钍元素的含量分布[J].环境科学,1989,10(6):23-26. [11] 姜希文,刘秋生,李瑞香,等.我国煤中天然放射性核素水平[J].辐射防护,1989,9(3):181-188. [12] UNSCEAR. Sources and effects of ionizing radiation, report of the united nations scientific committee on the effects of atomic radiation to the general assembly[R]. New York, USA: United Nations, 2000. [13] Papastefanou C. Radioactivity of coals and fly ashes[J]. J Radioanal Nucl Chem, 2008, 275(1): 29-35. [14] Mora J C, Baeza A, Robles B, et al. Behaviour of natural radionuclides in coal combustion[J]. Radioprotection, 2009, 44(5): 577-580. [15] Lu X W, Li L Y, Wang F L, et al. Radiological hazards of coal and ash samples collected from Xi’an coal-fired plants of China[J]. Environ Earth Sci, 2012, 66: 1925-1932. [16] 陈竹舟,李学群,沙连茂.环境放射性监测与评价[M].北京:原子能出版社,1991. [17] 加尔肯居马肯•爱特.新疆伊犁煤中放射性核素铀、钍、镭、钾活度浓度[J].新疆环境保护,2012,34(4):33-36.
计量
- 文章访问数: 877
- HTML全文浏览量: 0
- PDF下载量: 4227