熔盐反应堆——放射化学创新发展的新源泉

    Molten Salt Reactor: A New Source of Innovation Development for Radiochemistry

    • 摘要: 本文从放射化学视角简略介绍了熔盐堆及其在钍铀燃料循环应用中的优势,然后叙述了与熔盐堆相关的放射化学研究的三个方向:即燃料供给、辐照后燃料的再处理以及熔盐堆运行的工艺监测和核素诊断。在燃料的再处理中推荐了一种类似文献报道的AIROX流程的干法后处理的新技术路线,指出其在熔盐堆在线燃料处理中的优点和重要价值。由于熔盐堆的运行中存在大量的化学与放射化学问题,因此熔盐堆堪比“化学堆”,放射化学监测和诊断对于熔盐堆的运行有极其重要的意义。由此可见,熔盐堆研发促使形成了放射化学的一门新的分支学科——以监测和诊断为目标的熔盐反应堆化学。最后给出了放射化学工作者在熔盐堆发展过程中应该注意的若干建议。

       

      Abstract: From the version of radiochemistry, this paper introduced molten salt reactor (MSR) and its advantages in the application of thorium-uranium fuel cycle briefly. Then three radiochemical research fields related to MSR were stated: fuel supply, reprocessing for irradiated fuels, and monitoring and diagnosis during the reactor operation. In the fuel reprocessing, a novel pyroprocessing technical roadmap, similarly to AIROX flowsheet reported in references, was recommended, and its advantages and important value in on-line fuel processing of MSR were illustrated. Due to great amount of issues on the chemistry and radiochemistry occurred in MSR operation, MSR is just like a “chemical reactor”, thus radiochemical monitoring and diagnosis have a significant meaning to the operation of MSR. It is pointed out that a new discipline branch of radiochemistry, i.e. the molten salt reactor chemistry, aiming to the monitoring and diagnosis of MSR is formed. At the end of the paper, some suggestions that radiochemistry researchers should keep in mind during the development progress of MSR were advised.

       

    /

    返回文章
    返回