• 左
  • 右

P25半导体矿物光催化还原U(Ⅵ)

罗昭培, 董发勤, 何辉超, 刘明学, 代群威, 宗美荣, 王萍萍, 王岩, 李刚, 马杰

罗昭培, 董发勤, 何辉超, 刘明学, 代群威, 宗美荣, 王萍萍, 王岩, 李刚, 马杰. P25半导体矿物光催化还原U(Ⅵ)[J]. 核化学与放射化学, 2017, 39(1): 30-35. DOI: 10.7538/hhx.2017.39.01.0030
引用本文: 罗昭培, 董发勤, 何辉超, 刘明学, 代群威, 宗美荣, 王萍萍, 王岩, 李刚, 马杰. P25半导体矿物光催化还原U(Ⅵ)[J]. 核化学与放射化学, 2017, 39(1): 30-35. DOI: 10.7538/hhx.2017.39.01.0030
LUO Zhao-pei, DONG Fa-qin, HE Hui-chao, LIU Ming-xue, DAI Qun-wei, ZONG Mei-rong, WANG Ping-ping, WANG Yan, LI Gang, MA Jie. Photocatalytic Reduction of U(Ⅵ) by P25 Semiconductor Mineral[J]. Journal of Nuclear and Radiochemistry, 2017, 39(1): 30-35. DOI: 10.7538/hhx.2017.39.01.0030
Citation: LUO Zhao-pei, DONG Fa-qin, HE Hui-chao, LIU Ming-xue, DAI Qun-wei, ZONG Mei-rong, WANG Ping-ping, WANG Yan, LI Gang, MA Jie. Photocatalytic Reduction of U(Ⅵ) by P25 Semiconductor Mineral[J]. Journal of Nuclear and Radiochemistry, 2017, 39(1): 30-35. DOI: 10.7538/hhx.2017.39.01.0030

P25半导体矿物光催化还原U(Ⅵ)

Photocatalytic Reduction of U(Ⅵ) by P25 Semiconductor Mineral

  • 摘要: 采用直流电压法将P25型TiO2粉末负载于FTO导电玻璃制成半导体矿物电极,研究其在不同小分子有机物(甲酸、甲醇、乙酸、乙醇)、不同浓度(0、20、40、60、80、100 mmol/L)甲酸作为空穴捕获剂下对U(Ⅵ)的光催化还原。研究结果表明,由于电离能力的强弱不同,酸类小分子有机物对空穴的捕获能力强于醇类小分子有机物,添加的小分子有机物均能提高U(Ⅵ)的还原率且甲酸效果最好,添加60 mmol甲酸光催化反应4 h后,U(Ⅵ)的还原率能达到90.26%。扫描电镜(SEM)及能谱(EDS)分析表明,反应后电极表面有大颗粒方块状U(Ⅳ)的矿物生成,占据反应活性位点。电化学阻抗分析显示,反应后电极传递电子的阻力增大,电子传输能力减弱,催化活性降低。
    Abstract: The TiO2(P25) semiconductor mineral electrode was used to study the photocatalytic reduction of U(Ⅵ) with low-molecular-weight organics (formic acid, methanol, acetic acid, ethanol) and formic acid at different concentrations (0, 20, 40, 60, 80, 100 mmol/L) as hole scavengers, respectively. The results indicate that due to the higher ionizing ability, the hole scavenging capacity of low-molecular-weight organic acid is stronger than that of low-molecular-weight alcohol. In addition, all hole scavengers studied in this paper can improve the reduction rate of U(Ⅵ) and formic acid is best with the reduction rate as high as 90.26% at 60 mmol/L. SEM and EDS results show that some squares of uranium minerals were formed after photocatalytic reaction, which were adsorbed on the electrode surface and occupied active sites of TiO2. Electrochemical impedance spectroscopy (EIS) analysis indicates that mineral semiconductor electrode exhibits a higher electron transport resistance ability after photocatalytic reaction.
  • [1] Bai J, Yao H J, Fan F L, et al. Biosorption of uranium by chemically modified rhodotorula glutinis[J]. J Environ Radioact, 2010, 101(11): 969-973.
    [2] McMaster S A, Ram R, Pownceby M I, et al. Characterisation and leaching studies on the uranium mineral betafite (U,Ca)(2)(Nb,Ti,Ta)(2)O-7[J]. Minerals Engineering, 2015, 81: 58-70.
    [3] 肖益群,周彦同,夏良树,等.改性稻秆吸附 U(Ⅵ)的特性研究[J].核化学与放射化学,2015,37(1):51-57.
    [4] Wang L, Wen M, Wang W Y, et al. Photocatalytic degradation of organic pollutants using rGO supported TiO2-CdS composite under visible light irradiation[J]. J Alloys Compds, 2016, 683: 318-328.
    [5] Zhao J H. Research on UV/TiO2 photocatalytic oxidation of organic matter in drinking water and its influencing factors[J]. Appl Mechan Mater, 2014, 12(Part A): 2358-2362.
    [6] Zheng S, Jiang W, Rashid M, et al. Selective reduction of Cr(Ⅵ) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis[J]. Molecules, 2015, 20(2): 2622-2635.
    [7] Zhu X, Wang Y, Zhou D. TiO2 photocatalytic degradation of tetracycline as affected by a series of environmental factors[J]. Journal of Soils & Sediments, 2014, 14(8): 1350-1358.
    [8] Liu W, Zhao X, Wang T, et al. Adsorption of U(Ⅵ) by multilayer titanate nanotubes: effects of inorganic cations, carbonate and natural organic matter[J]. Chem Eng J(Amsterdam, Neth), 2016, 286: 427-435.
    [9] Yakout S M. Evaluation of mineral and organic acids on the selective separation of radioactive elements (U and Th) using modified carbon[J]. Desalin Water Treat, 2016, 57(7): 3292-3297.
    [10] Wang S T, Liu H L, Liu W, et al. Effect of low-molecular-weight organic acids on nano-hydroxyapatite adsorption of cadmium and lead[J]. J Biomater Tissue Eng, 2016, 6(6): 433-439.
    [11] Qamar M, Gondal M A, Yamani Z H. Laser-induced efficient reduction of Cr(Ⅵ) catalyzed by ZnO nanoparticles[J]. J Hazard Mater, 2011, 187(1-3): 258-263.
    [12] Chakrabarti S, Chaudhuri B, Bhattacharjee S, et al. Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst[J]. Chem Eng J(Amsterdam, Neth), 2009, 153(1): 86-93.
    [13] Shao D D, Fan Q H, Li J X, et al. Removal of Eu(Ⅲ) from aqueous solution using ZSM-5 zeolite[J]. Microporous Mesoporous Mater, 2009, 123(1): 1-9.
    [14] Dozzi M V, Saccomanni A, Selli E. Cr(Ⅵ) photocatalytic reduction: effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO2[J]. J Hazard Mater, 2012, s211-212(211-212): 188-195.
    [15] Belloni J, Treguer M, Remita&Amp H, et al. Enhanced yield of photoinduced electrons in doped silver halide crystals[J]. Nature, 1999, 402(6764): 865-867.
    [16] Guo Y, Li L, Li Y, et al. Adsorption and photocatalytic reduction activity of uranium(Ⅵ) on zinc oxide/rectorite composite enhanced with methanol as sacrificial organics[J]. J Radioanal Nucl Chem, 2016, 310(2): 883-890.
    [17] Wang G, Zhen J, Zhou L, et al. Adsorption and photocatalytic reduction of U(Ⅵ) in aqueous TiO2 suspensions enhanced with sodium formate[J]. J Radioanal Nucl Chem, 2015, 304(2): 579-585.
    [18] 孔海霞.电化学阻抗图谱法TiO2薄膜光电极能带结构和催化活性研究[D].太原:太原理工大学,2004.
    [19] Singh L K, Karlo T, Pandey A. Electrochemical impedance spectroscopic study of anatase TiO2 nanoparticle[J]. Materials Science Forum, 2014, 781: 127-133.
    [20] Wall J D, Krumholz L R. Uranium reduction[J]. Annu Rev Microbiol, 2006, 60(1): 149-166.
    [21] 宗美荣,何辉超,董发勤.钠盐溶液中U(Ⅵ)的电化学电子转移与晶化研究[J].高等学校化学学报,2016,37(9):1701-1709.
计量
  • 文章访问数:  1205
  • HTML全文浏览量:  0
  • PDF下载量:  4764
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-02-19

目录

    /

    返回文章
    返回