• 左
  • 右

18F-FDG为辅基的18F-氟标记方法研究进展

丁晖, 李阳, 李淼

丁晖, 李阳, 李淼. 以18F-FDG为辅基的18F-氟标记方法研究进展[J]. 核化学与放射化学, 2017, 39(3): 193-207. DOI: 10.7538/hhx.2017.39.03.0193
引用本文: 丁晖, 李阳, 李淼. 以18F-FDG为辅基的18F-氟标记方法研究进展[J]. 核化学与放射化学, 2017, 39(3): 193-207. DOI: 10.7538/hhx.2017.39.03.0193
DING Hui, LI Yang, LI Miao. Methodological Progress of 18F-Fluoro-Labeling Employing 18F-FDG as Prosthetic Group[J]. Journal of Nuclear and Radiochemistry, 2017, 39(3): 193-207. DOI: 10.7538/hhx.2017.39.03.0193
Citation: DING Hui, LI Yang, LI Miao. Methodological Progress of 18F-Fluoro-Labeling Employing 18F-FDG as Prosthetic Group[J]. Journal of Nuclear and Radiochemistry, 2017, 39(3): 193-207. DOI: 10.7538/hhx.2017.39.03.0193

18F-FDG为辅基的18F-氟标记方法研究进展

Methodological Progress of 18F-Fluoro-Labeling Employing 18F-FDG as Prosthetic Group

  • 摘要: 在核医学分子影像领域用于正电子示踪剂的18F-氟标记方法中,基于含18F-氟中间体分子(即辅基)的方法其反应条件温和、化学选择性好,产物易纯化,是进行18F-氟标记的经典策略之一。2-18F-氟代-2-脱氧-D-葡萄糖(2-18F-fluoro-2-deoxy-D-glucose, 18F-FDG)是目前临床最常用的正电子示踪剂,其分子结构简单、亲水性强、易获得,是用于间接18F-氟标记的理想辅基。通过比较其方法学参数,并分析标记产物性能可知,以18F-FDG为辅基的间接18F-氟标记方法有酶法、成肟法、巯基连接法、“点击化学”法等,在小分子、肽、酶和纳米粒的18F-氟标记研究中均有报道。此外,微流控芯片等新技术在上述方法中也有应用。与18F-FDG连接可方便地同时实现被标记分子糖基化和18F-氟标记,显著改善标记产物的体内分布和消除特性,虽存在反应步骤多、被标记分子需修饰等局限,但以18F-FDG为辅基进行18F-氟标记仍是一种具有较高可行性和应用价值的间接18F-氟标记策略。
    Abstract: In the field of nuclear medicine molecular imaging, 18F-fluoro-labeling methods based on intermediate molecule containing 18F-fluoro (i.e. prosthetic groups) has mild reaction condition, fine chemo-selectivity and simple purification for product. Therefore, the indirect 18F-fluoro-labeling via prosthetic group is a classical strategy in the development of tracers for positron emission tomography(PET). 2-18F-fluoro-2-deoxy-D-glucose (18F-FDG), which has simple scaffold, high hydrophilicity and easy accessibility, is the most popular tracer in PET practice and ideal prosthetic molecule for 18F-fluoro-labeling. In this paper, we review related methodological progress in literatures. The methodological parameters and product properties in these reports are compared and analyzed. Overall, several 18F-fluoro-labeling solutions employing 18F-FDG have emerged, including enzymic method, oxime formation, sulfydryl ligation and click chemistry. They were tried in the 18F-fluoro-labeling of small molecules, peptides, enzymes and nanoparticles. New technology such as microfluidic reactor was applied in some solutions aforementioned. Glycosylation and 18F-fluoro-labeling of precursor molecule can be achieved synchronically by the conjugation with 18F-FDG. Consequently, the in vivo bio-kinetics of labeling product are significantly improved. Although the 18F-fluoro-labeling employing 18F-FDG needs multi-step reaction and especial modification in precursor, it is generally a feasible and valuable indirect labeling strategy.
  • [1] Jiang L, Tu Y, Shi H, et al. PET probes beyond 18F-FDG[J]. J Biomed Res, 2014, 28(6): 435-446.
    [2] Ermert J. 18F-labelled intermediates for radiosynthesis by modular build-up reactions: newer devel opments[J]. Bio Med Res Int, 2014, 2014: 812973.
    [3] Richter S, Wuest M, Bergman C N, et al. Rerouting the metabolic pathway of 18F-labeled peptides: the influence of prosthetic groups[J]. Bioconjugate Chem, 2015, 26(2): 201-212.
    [4] Wangler C, Waser B, Alke A, et al. One-step 18F-labeling of carbohydrate-conjugated octreotate derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET)[J]. Bioconjugate Chem, 2010, 21(12): 2289-2296.
    [5] Hamacher K, Coenen H H, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopoly-ether supported nucleophilic substitution[J]. J Nucl Med, 1986, 27(2): 235-238.
    [6] Prante O, Hamacher K, Coenen H H. Chemoen zymatic n.c.a. synthesis of the coenzyme uridine diphospho-2-deoxy-2-[18F]fluoro-β-D-glucose[J]. J Labelled Compd Rad, 1999, 42(2): S111-S112.
    [7] Maschauer S, Prante O. Sweetening pharmaceutical radiochemistry by 18F-fluoroglycosylation: a short review[J]. Bio Med Res Int, 2014, 2014: 214748.
    [8] 李淼,李宏利,郭佑民,等. 18F-FDG-直接标记GKLVFFGK寡肽的方法探讨[J].功能与分子医学影像学(电子版),2014,3(4):528-532.
    [9] Prante O, Hamacher K, Coenen H H. Chemoenzymatic n.c.a. synthesis of the coenzyme UDP-2-deoxy-2-[18F]-fluoro-α-D-glucopyranose as substrate of glycosyltransferases[J]. J Labelled Compd Rad, 2007, 50(1): 55-63.
    [10] Bormans G, Verbruggen A. Enzymatic synthesis and biodistribution in mice of β-O-D-galactopyranosyl-(1,4′)-2′-[18F]fluoro-2′-deoxy-D-glucopyranose(2′-[18F]fluorodeoxylactose)[J]. J Labelled Compd Rad, 2001, 44(6): 417-423.
    [11] Phenix C P, Rempel B P, Colobong K, et al. Imaging of enzyme replacement therapy using PET[J]. P Natl Acad Sci USA, 2010, 107(24): 10842-10847.
    [12] Berndt M, Pietzsch J, Bergmann R, et al. A novel role for [18F]FDG: synthesis and application of a [18F]FDG-based prosthetic group for peptide and protein labeling[J]. J Nucl Med, 2006, 47(Suppl 1): 29.
    [13] Wuest F, Berndt M, Bergmann R, et al. Synthesis and application of [18F]FDG-maleimidehexyloxime ([18F]FDG-MHO): a [18F]FDG-based prosthetic group for the chemoselective 18F-labeling of peptides and proteins[J]. Bioconjugate Chem, 2008, 19(6): 1202-1210.
    [14] Namavari M, Cheng Z, Zhang R, et al. A novel method for direct site-specific radiolabeling of peptides using [18F]-FDG[J]. Bioconjugate Chem, 2009, 20(3): 432-436.
    [15] Hultsch C, Schottelius M, Auernheimer J, et al. (18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK)[J]. Eur J Nucl Med Mol I, 2009, 36(9): 1469-1474.
    [16] Wuest F, Hultsch C, Berndt M, et al. Direct labelling of peptides with 2-[18F]fluoro-2-deoxy-d-glucose  ([18F]FDG)[J]. Bioorg Med Chem Lett, 2009, 19(18): 5426-5428.
    [17] Simpson M, Trembleau L, Cheyne R W, et al. One-pot production of 18F-biotin by conjugation with 18F-FDG for pre-targeted imaging: synthesis and radio-labelling of a PEGylated precursor[J]. Appl Radiat Isot, 2011, 69(2): 418-422.
    [18] Jammaz I A, Al-Otaibi B, Amer S, et al. Novel synthesis and preclinical evaluation of folic acid derivatives labeled with (18)F-[FDG] for PET imaging of folate receptor-positive tumors[J]. Nucl Med Biol, 2012, 39(6): 864-870.
    [19] Frau S, Dall’Angelo S, Baillie G L, et al. Pyrazole-type cannabinoid ligands conjugated with fluoro-deoxy-carbohydrates as potential PET-imaging agents: synthesis and CB1/CB2 receptor affinity evalua- tion[J]. J Fluorine Chem, 2013, 152(SI): 166-172.
    [20] Prante O, Einsiedel J, Haubner R, et al. 3,4,6-tri-O-acetyl-2-deoxy-2-[18F]-fluoroglucopyranosyl phenylthiosulfonate: a thiol-reactive agent for the chemoselective 18F-glycosylation of peptides[J]. Bioconjugate Chem, 2007, 18(1): 254-262.
    [21] Boutureira O, Bernardes G J, D’Hooge F, et al. Direct radiolabelling of proteins at cysteine using [18F]-fluorosugars[J]. Chem Commun, 2011, 47(36): 10010-10012.
    [22] Unak G, Ozkaya F, Medine E I, et al. Gold nanoparticle probes: design and in vitro applications in cancer cell culture[J]. Colloid Surface B, 2012, 90: 217-226.
    [23] Ozkaya F, Unak P, Medine E I, et al. 18FDG conjugated magnetic nanoparticle probes: synthesis and in vitro investigations on MCF-7 breast cancer cells[J]. J Radioanal Nucl Chem, 2013, 295(3): 1789-1796.
    [24] Kolb H C, Finn M G, Sharpless K B. Click chemistry: diverse chemical function from a few good reactions[J]. Angew Chem Int Edit, 2001, 40(11): 2004-2021.
    [25] Rostovtsev V V, Green L G, Fokin V V, et al. A stepwise huisgen cycloaddition process: copper(Ⅰ)-catalyzed regioselective “ligation” of azides and terminal alkynes[J]. Angew Chem Int Edit, 2002, 41(14): 2596-2599.
    [26] Pretze M, Pietzsch D, Mamat C. Recent trends in bioorthogonal click-radiolabeling reactions using fluorine-18[J]. Molecules, 2013, 18(7): 8618-8665.
    [27] Leila M, Lachlan C, Rudi A D, et al. Application of click chemistry for PET[J]. Curr Org Chem, 2013, 17(19): 2108-2118.
    [28] Maschauer S, Prante O. A series of 2-O-trifluoromethylsulfonyl-D-mannopyranosides as precursors for concomitant 18F-labeling and glycosylation by click chemistry[J]. Carbohyd Res, 2009, 344(6): 753-761.
    [29] Maschauer S, Einsiedel J, Haubner R, et al. Labeling and glycosylation of peptides using click chemistry: a general approach to (18)F-glycopeptides as effective imaging probes for positron emission tomography[J]. Angew Chem Int Edit, 2010, 49(5): 976-979.
    [30] Boutureira O, D’Hooge F, Fernandez-Gonzalez M, et al. Fluoroglycoproteins: ready chemical site-selective incorporation of fluorosugars into proteins[J]. Chem Commun, 2010, 46(43): 8142-8144.
    [31] Fischer C R, Muller C, Reber J, et al. [18F]fluoro-deoxy-glucose folate: a novel PET radiotracer with improved in vivo properties for folate receptor targeting[J]. Bioconjugate Chem, 2012, 23(4): 805-813.
    [32] Fischer C R, Groehn V, Reber J, et al. Improved PET imaging of tumors in mice using a novel 18F-folate conjugate with an albumin-binding entity[J]. Mol Imaging Biol, 2013, 15(6): 649-654.
    [33] Hugenberg V, Breyholz H J, Riemann B, et al. A new class of highly potent matrix metalloproteinase inhibitors based on triazole-substituted hydroxamates: (radio)synthesis and in vitro and first in vivo evaluation[J]. J Med Chem, 2012, 55(10): 4714-4727.
    [34] Held C, Plomer M, Hubner H, et al. Development of a metabolically stable neurotensin receptor 2 (NTS2) ligand[J]. Chem Med Chem, 2013, 8(1): 75-81.
    [35] Banerjee A, Maschauer S, Hubner H, et al. Click chemistry based synthesis of dopamine D4 selective receptor ligands for the selection of potential PET tracers[J]. Bioorg Med Chem Lett, 2013, 23(22): 6079-6082.
    [36] Maschauer S, Michel K, Tripal P, et al. Synthesis and in vivo evaluation of an (18)F-labeled glycoconjugate of PD156707 for imaging ETA receptor expression in thyroid carcinoma by positron emission tomography[J]. Am J Nucl Med Mol Imaging, 2013, 3(5): 425-436.
    [37] Lang C, Maschauer S, Hubner H, et al. Synthesis and evaluation of a (18)F-labeled diarylpyrazole glycoconjugate for the imaging of NTS1-positive tumors[J]. J Med Chem, 2013, 56(22): 9361-9365.
    [38] Pisaneschi F, Slade R L, Iddon L, et al. Synthesis of a new fluorine-18 glycosylated “click” cyanoquinoline for the imaging of epidermal growth factor receptor[J]. J Labelled Compd Rad, 2014, 57(2): 92-96.
    [39] Patt M, Sorger D, Scheunemann M, et al. Adduct of 2-[18F]FDG and 2-nitroimidazole as a putative radiotracer for the detection of hypoxia with PET: synthesis, in vitro and in vivo characterization[J]. Appl Radiat Isot, 2002, 57(5): 705-712.
    [40] Maschauer S, Pischetsrieder M, Kuwert T, et al. Utility of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[18F]fluoro-glucopyranoside for no-carrier-added 18F-glycosylation of amino acids[J]. J Labelled Compd Rad, 2005, 48(10): 701-719.
    [41] Maschauer S, Kuwert T, Prante O. 18F-glycosylation using Koenigs–Knorr conditions: a comparative study[J]. J Labelled Compd Rad, 2006, 49(2): 101-108.
    [42] Bouvet V R, Wuest F. Application of [18F]FDG in radiolabeling reactions using microfluidic technology[J]. Lab Chip, 2013, 13(22): 4290-4294.
    [43] Rashidian M, Keliher E J, Dougan M, et al. Use of 18F-2-fluorodeoxyglucose to label antibody fragments for immuno-positron emission tomography of pancreatic cancer[J]. ACS Cent Sci, 2015, 1(3): 142-147.
计量
  • 文章访问数:  1073
  • HTML全文浏览量:  0
  • PDF下载量:  4165
  • 被引次数: 0
出版历程
  • 刊出日期:  2017-06-19

目录

    /

    返回文章
    返回