Abstract:
Multiple material symbolization methods were used to symbolize micro ceramic materials. Static and dynamic methods were used to study how different factors such as pH value, adsorption time, original uranyl concentration, dosage of adsorbent, flow velocity and particle size of adsorbent affect the adsorbability of micro ceramic materials. The processing capacity for simulative radioactive wastewater was also explored. Experimental results show that bottom of micro ceramic materials is stratified under SEM; micro-energy spectrum reveals that main components of the surface are Al and a small amount of Fe (percentage of quality is 6.00%); XRD result shows there is no detectable diffraction peak of Fe on the surface; FTIR shows ceramic materials does adsorb uranium. When pH is 5, adsorption time is 1 h, original mass concentration of uranium is 100 μg/L, and dosage of micro ceramic materials is 50 mg, the adsorption efficiency for uranium can reach 95% or even higher. In dynamic methods, flow velocity and particle size are proved to be less influential. The adsorption isotherm keeps good agreement with Freundlich isothermal adsorption model. Pseudo-second-order model was used to describe the process of adsorption, which is mainly chemical adsorption. Micro ceramic materials has an adsorption rate of more than 90% on uranium in simulated radioactive wastewater, it also adsorbs strontium and cesium.