• 左
  • 右

水热炭接枝紫脲酸铵对铀(Ⅵ)的吸附性能

赵永生, 谢勇丽, 李源

赵永生, 谢勇丽, 李源. 水热炭接枝紫脲酸铵对铀(Ⅵ)的吸附性能[J]. 核化学与放射化学, 2018, 40(1): 54-61. DOI: 10.7538/hhx.2017.YX.2016076
引用本文: 赵永生, 谢勇丽, 李源. 水热炭接枝紫脲酸铵对铀(Ⅵ)的吸附性能[J]. 核化学与放射化学, 2018, 40(1): 54-61. DOI: 10.7538/hhx.2017.YX.2016076
ZHAO Yong-sheng, XIE Yong-li, LI Yuan. New Adsorbent Using Hydrothermal Carbon Grafted With Murexide for Adsorption Performance of Uranium(Ⅵ)[J]. Journal of Nuclear and Radiochemistry, 2018, 40(1): 54-61. DOI: 10.7538/hhx.2017.YX.2016076
Citation: ZHAO Yong-sheng, XIE Yong-li, LI Yuan. New Adsorbent Using Hydrothermal Carbon Grafted With Murexide for Adsorption Performance of Uranium(Ⅵ)[J]. Journal of Nuclear and Radiochemistry, 2018, 40(1): 54-61. DOI: 10.7538/hhx.2017.YX.2016076

水热炭接枝紫脲酸铵对铀(Ⅵ)的吸附性能

New Adsorbent Using Hydrothermal Carbon Grafted With Murexide for Adsorption Performance of Uranium(Ⅵ)

  • 摘要: 选用葡萄糖为炭源,在180 ℃下反应36 h得到水热炭(HTC),后经热处理、胺化和接枝紫脲酸铵合成了一种新的水热炭基吸附剂(Mu-HTC)。通过Boehm滴定分析,热处理后的水热炭表面羧基含量增加近六倍;红外光谱分析证实紫脲酸铵被成功接枝在水热炭上;扫描电镜监测整个合成过程,水热炭球的形貌和粒径没有发生显著变化。根据Langmuir等温吸附方程,该吸附剂对铀(Ⅵ)理论吸附容量为102.05 mg/g。在模拟放射性废液的共存离子竞争吸附中,对铀(Ⅵ)的吸附容量占总吸附容量的72.8%,具有较好的选择性。该吸附剂可用于含铀废水的净化处理或从水体中回收铀资源。
    Abstract: The hydrothermal carbon(HTC) was obtained at 180 ℃ for 36 h with glucose solution. A novel Mu-HTC adsorbent was prepared by murexide(Mu) assisted graft of HTC via thermal treatment, amidation and grafting of Mu in sequence. The analysis of Boehm titration indicate that the new adsorbent has 6 times the amount of carboxyl groups than raw HTC. Fourier transform infrared spectroscopy indicate that Mu is successfully grafted to the surface of HTC. The morphologies and diameters of HTC do not change in the progress of functionalization by the SEM. The theoretical sorption capacity is 102.05 mg/g for uranium(Ⅵ) according to Langmuir adsorption isotherm equation at practical experiment conditions. The experiments of competitive ions indicate that the Mu-HTC selectively absorbs uranyl ions (accounting for about 72.8% of total adsorption capacity) in a simulated nuclear industrial waste water. The adsorbent can be used to purification of waste water and recovery of uranium.
  • [1] Prasada R T, Metilda P, Mary G J. Preconcentration techniques for uranium(Ⅵ) and thorium(Ⅳ) prior to analytical determination: an overview[J]. Talanta, 2006, 68(4): 1047-1064.
    [2] Someda H H, Sheha R R. Solid phase extractive preconcentration of some actinide elements using impregnated carbon[J]. Radiochemistry, 2008, 50(1): 56-63.
    [3] Starvin A M, Prasada R T. Solid phase extractive preconcentration of uranium(Ⅵ) onto diarylazobisphenol modified activated carbon[J]. Talanta, 2004, 63(2): 225-232.
    [4] Hu B, Yu S H, Wang K, et al. Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process[J]. Dalton Trans, 2008, 40(40): 5414-5423.
    [5] Titirici M M, Markus A. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization[J]. Chem Soc Rev, 2010, 39(1): 103-116.
    [6] Wang Q, Li H, Chen L Q, et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001, 39(14): 2211-2214.
    [7] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew Chem Int Ed, 2004, 43(5): 597-601.
    [8] Marta S, Fuertes A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chem Eur J, 2009, 15(16): 4195-4203.
    [9] Titirici M M, Thomas A, Antonietti M. Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?[J]. New J Chem, 2007, 31(6): 787-789.
    [10] Xu Y J, Weinberg G, Liu X, et al. Nanoarchitecturing of activated carbon: facile strategy for chemical functionalization of the surface of activated carbon[J]. Adv Funct Mater, 2008, 18(22): 3613-3619.
    [11] 韩军,侯京伟,胡胜.水热炭球的制备与表征[J].原子能科学技术,2013,47(12):2380-2383.
    [12] Titirici M M, Thomas A, Antonietti M. Replication and coating of silica templates by hydrothermal carbonization[J]. Adv Funct Mater, 2007, 17(6): 1010-1018.
    [13] Titirici M M, Thomas A, Antonietti M. Aminated hydrophilic ordered mesoporous carbons[J]. J Mater Chem, 2007, 17(32): 3412-3418.
    [14] Huang Y, Cai H Q, Feng D, et al. One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities[J]. Chem Commun, 2008, 23(23): 2641-2643.
    [15] Kubo S, Demir-Cakan R, Zhao Li, et al. Porous carbohydrate-based materials via hard templating[J]. Chemsus Chem, 2009, 3(2): 188-194.
    [16] Demir-Cakan R, Hu Y S, Antonietti M, et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties[J]. Chem Mater, 2008, 20(4): 1227-1229.
    [17] Qian H S, Antonietti M, Yu S H. Hybrid “Golden Fleece”: synthesis and catalytic performance of uniform carbon nanofibers and silica nanotubes embedded with a high population of noble-metal nanoparticles[J]. Adv Funct Mater, 2007, 17(4): 637-643.
    [18] Narayanan S, Krishna K. Structure activity relationship in Pd/hydrotalcite: effect of calcination of hydrotalcite on palladium dispersion and phenol hydrogenation[J]. Catalysis Today, 1999, 49(1): 57-63.
    [19] Demir-Cakan R, Baccile N, Antonietti M, et al. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid[J]. Chem Mater, 2009, 21(3): 484-490.
    [20] Chen Z, Ma L J, Li S Q, et al. Simple approach to carboxyl-rich materials through low-temperature heat treatment of hydrothermal carbon in air[J]. Appl Surf Sci, 2011, 257(20): 8686-8691.
    [21] Li B, Ma L J, Tian Y, et al. A catechol-like phenolic ligand-functionalized hydrothermal carbon: one-pot synthesis, characterization and sorption behavior toward uranium[J]. J Hazard Mater, 2014, 271(2): 41-49.
    [22] 何丽凯,王琳,张志宾,等.偕胺肟功能化水热碳微球对铀的吸附性能[J].核化学与放射化学,2016,38(2):116-122.
    [23] 罗明标,李伯平,杨枝,等.铀(Ⅵ)分析中的分离富集技术[J].铀矿地质,2008,24(1):57-62.
    [24] Praveen R S, Metilda P, Daniel S, et al. Solid phase extractive preconcentration of uranium(Ⅵ) using quinoline-8-ol anchored chloromethylated polymeric resin beads[J]. Talanta, 2005, 67(5): 960-967.
    [25] Sadeghi S, Sheikhzadeh E. Solid phase extraction using silica gel modified with murexide for preconcentration of uranium(Ⅵ) ions from water samples[J]. J Hazard Mater, 2009, 163(2-3): 861-868.
    [26] Kalin M, Wheeler W N, Meinrath G. The removal of uranium from mining waste water using algal/microbial biomass[J]. J Environ Radioact, 2005, 78: 151-177.
    [27] Anirudhan T S, Radhakrishnan P G. Improved performance of a biomaterialbased cation exchanger for the adsorption of uranium(Ⅵ) from water and nuclear industry wastewater[J]. J Environ Radioact, 2009, 100: 250-257.
计量
  • 文章访问数:  693
  • HTML全文浏览量:  0
  • PDF下载量:  3897
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-02-19

目录

    /

    返回文章
    返回