[1] |
罗嗣海,钱七虎,李金轩,等.高放废物深地质处置中的多场耦合与核素迁移[J].岩土力学,2005,26(增刊):264-270.
|
[2] |
Bugai D. Radionuclide migration at experimental polygon at Red Forest waste site in Chernobyl zone: part 2: hydrogeological characterization and groundwater transport modeling[J]. Appl Geochem, 2012, 27(7): 1359-1374.
|
[3] |
Kurikami H, Malins A, Takeishi M, et al. Coupling the advection-dispersion equation with fully kinetic reversible/irreversible sorption terms to model radiocesium soil profiles in Fukushima prefecture[J]. J Environ Radioact, 2017, 171: 99-109.
|
[4] |
Szenknect S, Ardois C, Dewière L, et al. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns[J]. J Contam Hydrol, 2008, 100(1): 47-57.
|
[5] |
Pontedeiro E M, van Genuchten M Th, Cotta R M, et al. The effects of preferential flow and soil texture on risk assessments of a NORM waste disposal site[J]. J Hazard Mater, 2010, 174: 648-655.
|
[6] |
刘东旭,司高华,李哲,等.非均质条件下锶迁移的反向随机模拟[J].原子能科学技术,2017,51(4):609-616.
|
[7] |
Li Y F, Tian S H, Qian T W. Transport and retention of strontium in surface-modified quartz sand with different wettability[J]. J Radioanal Nucl Chem, 2011, 289(2): 337-343.
|
[8] |
朱君,邓安嫦,石云峰,等.不同喷淋强度对核素Sr-90在土壤中迁移的影响[J].土壤学报,2017,54(3):785-793.
|
[9] |
朱君,邓安嫦,石云峰,等.不同质地土壤对核素Sr-90阻滞及迁移的影响[J].安全与环境学报,2018,18(1):330-334.
|
[10] |
杨森,王永利,黄艺,等.放射性核素锶在地质环境中的迁移研究[J].四川有色金属,2014(1):7-9.
|
[11] |
Snow M S, Clark S B, Morrison S S, et al. Mechanical environmental transport of actinides and 137Cs from an arid radioactive waste disposal site[J]. J Environ Radioact, 2015, 148: 42-49.
|
[12] |
Suchara I, Sucharová J, Holá M, et al. Long-term retention of 137Cs in three forest soil types with different soil properties[J]. J Environ Radioact, 2016, 158-159: 102-113.
|
[13] |
Yi S, Ma H, Zheng C, et al. Assessment of site conditions for disposal of low-and intermediate-level radioactive wastes: a case study in southern China[J]. Sci Total Environ, 2012, 414(1): 624-631.
|
[14] |
Garciasanchez L, Loffredo N, Mounier S, et al. Kinetics of selenate sorption in soil as influenced by biotic and abiotic conditions: a stirred flow-through reactor study[J]. J Environ Radioact, 2014, 138: 38-49.
|
[15] |
Koarashi J, Nishimura S, Nakanishi T, et al. Post-deposition early-phase migration and retention behavior of radiocesium in a litter-mineral soil system in a Japanese deciduous forest affected by the Fukushima nuclear accident[J]. Chemosphere, 2016, 165: 335-341.
|
[16] |
Merk R. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44[J]. J Environ Radioact, 2012, 105(2): 60-69.
|
[17] |
Matsuda N, Mikami S, Shimoura S, et al. Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant, Japan[J]. J Environ Radioact, 2015, 139: 427-434.
|
[18] |
Utsumoniya S, Kersting A B, Ewing R C. Groundwater nanoparticles in the far-field at the Nevada Test Site: mechanism for radionuclide transport[J]. Environ Sci Technol, 2009, 43: 1293-1298.
|
[19] |
Murota K, Saito T, Tanaka S. Desorption kinetics of cesium from Fukushima soils[J]. J Environ Radioact, 2015, 153: 134-140.
|
[20] |
Cho W J, Lee J O, Choi H J. Radionuclide migration through an unsaturated clay buffer under thermal and hydraulic gradients for a nuclear waste repository[J]. Ann Nucl Energy, 2012, 50(4): 71-81.
|
[21] |
王金生,李书绅,王志明,等.核素迁移的二维非平衡吸附数值模式研究[J].应用生态学报,1996,7(1):89-93.
|