[1] |
Hill D J. Nuclear energy for the future[J]. Nature Materials, 2008, 7(9): 680-682.
|
[2] |
Sheppard S C, Sheppard M I, Gallerand M O, et al. Derivation of ecotoxicity thresholds for uranium[J]. J Environ Radioact, 2005, 79(1): 55-83.
|
[3] |
Singh S, Malhotra R, Bajwa B S. Uranium uptake studies in some plants[J]. Radiat Meas, 2005, 40(2-6): 666-669.
|
[4] |
曾峰,唐永金.铀胁迫对植物光合特性的影响及植物对铀的吸收转移[J].环境工程学报,2014,8(7):3075-3082.
|
[5] |
Domingo J L. Reproductive and developmental toxicity of natural and depleted uranium: a review[J]. Reproductive Toxicology, 2001, 15(6): 603-609.
|
[6] |
Schnug E, Lottermoser B G. Fertilizer-derived uranium and its threat to human health[J]. Environ Sci Technol, 2013, 47(6): 2433-2434.
|
[7] |
张珩,李积胜.铀对人体影响的机制及防治[J].环境卫生学杂志,2004,31(2):80-84.
|
[8] |
全国环境天然放射性水平调查总结报告编写小组.全国水体中天然放射性核素浓度调查(1983—1990年)[J].辐射防护,1992,12(2):143-613.
|
[9] |
魏广芝,徐乐昌.低浓度含铀废水的处理技术及其研究进展[J].铀矿冶,2007,26(2):90-95.
|
[10] |
蒋经乾,李玲,占凌之,等.某尾矿库周边水放射性分布特征及其评价[J].有色金属(冶炼部分),2015(11):60-63.
|
[11] |
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 23727-2009铀矿冶辐射防护和环境保护规定[S].北京:中国标准出版社,2009.
|
[12] |
世界卫生组织.饮用水水质准则[M].第四版.上海市供水调度监测中心,上海交通大学,译.上海:上海交通大学出版社,2014:162-163.
|
[13] |
Hou X, Roos P. Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples[J]. Anal Chim Acta, 2008, 608(2): 105-139.
|
[14] |
Davarani S S, Moazami H R, Keshtkar A R, et al. A selective electromembrane extraction of uranium(Ⅵ) prior to its fluoro-metric determination in water[J]. Anal Chim Acta, 2013, 783(11): 74-79.
|
[15] |
Jauberty L, Drogat N, Decossas J L, et al. Optimization of the arsenazo-Ⅲ method for the determination of uranium in water and plant samples[J]. Talanta, 2013, 115(17): 751-754.
|
[16] |
Thangavel S, Dhavile S M, Dash K, et al. Trace level determination of uranium and thorium in ilmenite ore by inductively coupled plasma atomic emission spectrometry(ICP-AES)[J]. Atomic Spectroscopy-Norwalk Connecticut, 2010, 31(3): 92-96.
|
[17] |
Al-Shawi A W, Dahl R. Determination of thorium and uranium in nitrophosphate fert-ilizer solution by ion chromatography[J]. J Chromatogr, A, 1995, 706(1-2): 175-181.
|
[18] |
D′Ilio S, Violante N, Senofonte O, et al. Determination of depleted uranium in human hair by quadrupole inductively coupled plasma mass spectrometry: method development and validation[J]. Analytical Methods, 2010, 2(8): 1184-1190.
|
[19] |
Ruan C, Luo W, Wang W, et al. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples[J]. Anal Chim Acta, 2007, 605(1): 80-86.
|
[20] |
Wang K X, Chen J S. Extended structures and physicochemical properties of uranyl-organic compounds[J]. Acc Chem Res, 2011, 44(7): 531-540.
|
[21] |
Matsui T, Fujimori H, Suzuki K. Effects of coexisting ions upon UO2+2 fluorescence in fuel reprocessing solutions[J]. J Nucl Sci Technol, 1988, 25(11): 868-874.
|
[22] |
Moulin C, Decambox P, Trecani L. Direct and fast uranium determination in zirconium by time-resolved laser-induced fluorescence spectrometry[J]. Anal Chim Acta, 1996, 321(1): 121-126.
|
[23] |
Meinrath G, Kato Y, Yoshida Z. Spectroscopic study of the uranyl hydrolysis species(UO2)2(OH)2+2[J]. J Radioanal Nucl Chem, 1993, 174(2): 299-314.
|
[24] |
Ganesh S, Khan F, Ahmed M K, et al. Determination of ultra traces amount of uranium in raffinates of Purex process by laser fluorimetry[J]. J Radioanal Nucl Chem, 2012, 292(1): 331-334.
|
[25] |
Maji S, Kumar S, Sankaran K. Fluorimetri-cestimation of U(Ⅵ) in the presence of a large excess of Th(Ⅳ)[J]. J Radioanal Nucl Chem, 2014, 302(3): 1277-1281.
|
[26] |
Liu J, Brown A K, Meng X, et al. A catalytic beacon sensor for uranium with partsper-trillion sensitivity and millionfold selectivity[J]. Proc Natl Acad Sci USA, 2007, 104(7): 2056-2061.
|
[27] |
Xiao S J, Zuo J, Zhu Z Q, et al. Highly sensitive DNAzyme sensor for selective detection of trace uranium in ore and natural water samples[J]. Sensors & Actuators B Chemical, 2015, 210: 656-660.
|
[28] |
Wen J, Huang Z, Hu S, et al. Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection[J]. J Hazard Mater, 2016, 318: 363-370.
|
[29] |
胡蓉,辛德华,秦安军,等.聚集诱导发光聚合物[J].高分子学报,2018(2):132-144.
|
[30] |
Nivens D A, Zhang Y, Angel S M. Detection of uranyl ion via fluorescence quenching and photochemical oxidation of calcein[J]. J Photochem Photobiol, A, 2002, 152(1-3): 167-173.
|
[31] |
Zhu J H, Zhao X, Yang J, et al. Selective colorimetric and fluorescent quenching determination of uranyl ion via its complexation with curcumin[J]. Spectrochim Acta, Part A, 2016, 159(15): 146-150.
|
[32] |
Maji S, Viswanathan K S. Sensitization of uranium fluorescence using, 6-pyridinedic-arboxylic acid: application for the determination of uranium in the presence of lanthanides[J]. J Lumin, 2009, 129(11): 1242-1248.
|
[33] |
Elabd A A, Elhefnawy O A. An efficient and sensitive optical sensor based on furosemide as a new fluoroionophore for determination of uranyl ion[J]. Journal of Fluorescence, 2015, 26(1): 1-6.
|
[34] |
Ci Y, Lan Z. Fluorometric determination of samarium and gadolinium by enhancement of fluorescence of samarium-thenoyltrifluoroacetone-1, 10-phenanthroline ternary complex by gadolinium[J]. Anal Chem, 1989, 61(10): 1063-1069.
|
[35] |
Maji S, Viswanathan K S. Enhancement of uranyl fluorescence using trimesic acid: ligand sensitization and co-fluorescence[J]. J Lumin, 2011, 131(9): 1848-1852.
|
[36] |
Elabd A A, Attia M S. A new thin film optical sensor for assessment of UO2+2 based on the fluorescence quenching of trimetazidine doped in sol gel matrix[J]. J Lumin, 2015, 165: 179-184.
|
[37] |
Elabd A A, Attia M S. Spectroflourimetric assessment of UO2+2 by the quenching of the fluorescence intensity of Clopidogrel embedded in PMMA matrix[J]. J Lumin, 2016: 313-318.
|
[38] |
He W, Ma J, Qian J, et al. Adsorption-assistant detection of trace uranyl ion with high sensitivity and selectivity in the presence of SBA-15[J]. J Radioanal Nucl Chem, 2018, 316(1): 201-207.
|
[39] |
Wezenberg S J, Escuderoadán E C, Benetbuchholz J, et al. Colorimetric discrimination between important alkaloid nuclei mediated by a bis-salphen chromophore[J]. Organic Letters, 2008, 10(15): 3311-3314.
|
[40] |
Shen X, Liao L, Chen L, et al. Spectroscopic study on the reactions of bissalophen with uranyl and then with fructose 1,6-bisphosphate and the analytical application[J]. Spectrochim Acta, Part A, 2014, 123(7): 110-116.
|
[41] |
陈琳,沈杏,何云飞,等.基于磺基Salophen配位反应荧光法测定铀酰[J].应用化工,2014(5):936-938.
|
[42] |
Li J, Li G, Han Q. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction[J]. Spectrochim Acta, Part A, 2016, 169(30): 208-215.
|
[43] |
Wu M, Liao L, Zhao M, et al. Separation and determination of trace uranium using adouble receptor sandwich supramolecule method based on immobilized salophen and fluore scence labeled oligonucleotide[J]. Anal Chim Acta, 2012, 729(11): 80-84.
|
[44] |
Devore I M A, Kerns S A, Gorden A E V. Characterization of quinoxolinol salenligands as selective ligands for chemo-sensors for uranium[J]. Eur J Inorg Chem, 2016, 2015(34): 5708-5714.
|
[45] |
Sessler J L, Melfi P J, Pantos G D. Uranium complexes of multidentate N-donor ligands[J]. Coord Chem Rev, 2006, 250(7-8): 816-843.
|
[46] |
Yang Y, Jiang J, Shen G, et al. An optical sensor for mercury ion based on the fluorescence quenching of tetra-(p-dimethylaminophenyl) porphyrin[J]. Anal Chim Acta, 2009, 636(1): 83-88.
|
[47] |
Yang R, Li K, Wang K, et al. Porphyrinassembly on beta-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio[J]. Anal Chem, 2003, 75(3): 612-621.
|
[48] |
Melfi P J, Camiolo S, Lee J T, et al. Immobilization of a hexaphyrin(1.0.1.0.0.0) derivative onto a tentagel-amino resin and its use in uranyl cation detection[J]. Dalton Transactions, 2008, 252(12): 1538-1540.
|
[49] |
Ho I T, Sessler J L, Gambhir S S, et al. Parts per billion detection of uranium with aporphyrinoid containing nanoparticle and in vivo photo acoustic imaging[J]. Analyst, 2015, 140(11): 3731-3737.
|
[50] |
Volkringer C, Henry N, Grandjean S, et al. Uranyl and/or rare-earth mellitates in extended organic-inorganic networks: a unique case of heterometallic cation-cation interacti on with U(Ⅵ)[CDS1]O-Ln(Ⅲ) bonding (Ln=Ce, Nd)[J]. J Am Chem Soc, 2012, 134(2): 1275-1283.
|
[51] |
Wang J, Xiao X, He B, et al. A novel resonance fluorescence chemosensor based on the formation of heterobinuclear complex with a ditetradentate macrocyclic ligand andeuropium(Ⅲ) for the determination of uranium(Ⅵ)[J]. Sens Actuators, B, 2018, 262(1): 359-364.
|
[52] |
Shamsipur M, Mohammadi M, Taherpour A, et al. Highly selective and sensitive fluorescence optode membrane for uranyl ion based on 5-(9-anthr-acenylmethyl)-5-aza-2, 8-dithia[9], (2, 9)-1, 10-phenanthrolinophane[J]. Rsc Advances, 2015, 5(112): 92061-92070.
|
[53] |
Vukovic S, Watson L A, Kang S O, et al. How amidoximate binds the uranyl cation[J]. Inorg Chem, 2012, 51(6): 3855-3859.
|
[54] |
Wei Y, Qian J, Huang L, et al. Bifunctional polymeric microspheres for efficient uranium sorption from aqueous solution: synergistic interaction of positive charge and amidoxime group[J]. Rsc Advances, 2015, 5(79): 64286-64292.
|
[55] |
Ma J, He W, Han X, et al. Amidoximated fluorescent polymer based sensor for detection of trace uranyl ion in aqueous solution[J]. Talanta, 2017, 168(1): 10-15.
|
[56] |
Bünau G V, Birks J B. Photophysics of aromatic molecules[M]. London: Wiley-Interscience, 1970.
|
[57] |
Senge M O, Davis M. Porphyrin(porphine): a neglected parent compound with potential[J]. J Porphyrins Phthalocyanines, 2010, 14(7): 557-567.
|
[58] |
Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organic thin films[J]. J Appl Phys, 1989, 65(9): 3610-3616.
|
[59] |
Thomas K R J, Lin J T, Tao Y T, et al. Star-shaped thieno-[3,4-b]-pyrazines: a new class of red-emitting electroluminescent materials[J]. Adv Mater, 2002, 14(11): 822-826.
|
[60] |
He F, Xu H, Yang B, et al. Oligomeric pheny-lenevinylene with cross dipole arrangement and amorphous morphology: enhanced solid-state luminescence efficiency and electroluminescence performance[J]. Adv Mater, 2010, 17(22): 2710-2714.
|
[61] |
Figueira-Duarte T M, Del Rosso P G, Trattnig R, et al. Designed suppression of agg regation in polypyrene: toward high-performance blue-light-emitting diodes[J]. Adv Mater, 2010, 22(9): 990-993.
|
[62] |
Shu X, Wang Y, Zhang S, et al. Determination of trace uranyl ion by thermoresponsive porphyrin-terminated polymeric sensor[J]. Talanta, 2015, 131(3): 198-204.
|
[63] |
Luo J, Xie Z, Lam J W, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-penta-phenylsilole[J]. Chem Commun, 2001, 18(18): 1740-1741.
|
[64] |
张双,秦安军,孙景志,等.聚集诱导发光机理研究[J]. 化学进展,2011,23(4):623-636.
|
[65] |
Zhao Z, Chen S, Lam J W, et al. Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries[J]. Chem Commun, 2010, 46(13): 2221-2223.
|
[66] |
Liu Y, Chen S, Lam J W Y, et al. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property[J]. Chem Mater, 2011, 23(23): 2536-2544.
|
[67] |
Park C, Hong J I. A new fluorescent sensor for the detection of pyrophosphate based on a tetraphenylethylene moiety[J]. Tetrahedron Letters, 2010, 51(15): 1960-1962.
|
[68] |
Wen X, Wang Q, Fan Z. Highly selective turn-on fluorogenic chemosensor for Zn(Ⅱ) detection based on aggregation-induced emission[J]. J Lumin, 2018, 194: 366-373.
|
[69] |
Wu W, Chen C, Tian Y, et al. Enhancement of aggregation-induced emission in dye-encapsulating polymeric micelles for bioimaging[J]. Adv Funct Mater, 2010, 20(9): 1413-1423.
|
[70] |
Hong Y, Feng C, Yu Y, et al. Quantitation, visualization, and monitoring of conformational transitions of human serum albumin by a tetraphenylethene derivative with aggregation-induced emission characteristics[J]. Anal Chem, 2010, 2(16): 7035-7043.
|
[71] |
Taniguchi R, Yamada T, Sada K, et al. Stimuli responsive fluorescence of AIEElastomer based on PDMS and tetraphenyl ethene[J]. Macromolecules, 2014, 47(18): 6382-6388.
|
[72] |
Chen X, He L, Wang Y, et al. Trace analysis of uranyl ion (UO2+2) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect[J]. Anal Chim Acta, 2014, 847: 55-60.
|
[73] |
Qiu X, Han S, Hu Y, et al. Ratiometric fluorescent nanosensors for copper(Ⅱ) basedon bis(rhodamine)-derived PMOs with J-type aggregates[J]. Chem, 2015, 21(10): 4126-4132.
|
[74] |
Chen X, Peng L, Feng M, et al. An aggregation induced emission enhancement-based ratio-metric fluorescent sensor for detecting trace uranyl ion (UO2+2) and the application in living cells imaging[J]. J Lumin, 2017, 186: 301-306.
|
[75] |
Zou Y, Wan M, Sang G, et al. An alternative copolymer of carbazole and thieno[3,4b]-pyrazine: synthesis and mercury detection[J]. Adv Funct Mater, 2008, 18(18): 2724-2732.
|