• 左
  • 右

有机荧光探针在铀酰离子检测方面的研究进展

胡家宁, 林娜, 高博, 付军, 罗文华

胡家宁, 林娜, 高博, 付军, 罗文华. 有机荧光探针在铀酰离子检测方面的研究进展[J]. 核化学与放射化学, 2018, 40(6): 337-348. DOI: 10.7538/hhx.2018.YX.2018036
引用本文: 胡家宁, 林娜, 高博, 付军, 罗文华. 有机荧光探针在铀酰离子检测方面的研究进展[J]. 核化学与放射化学, 2018, 40(6): 337-348. DOI: 10.7538/hhx.2018.YX.2018036
HU Jia-ning, LIN Na, GAO Bo, FU Jun, LUO Wen-hua. Progress of Organic Fluorescent Probes in Uranyl Ion Detection[J]. Journal of Nuclear and Radiochemistry, 2018, 40(6): 337-348. DOI: 10.7538/hhx.2018.YX.2018036
Citation: HU Jia-ning, LIN Na, GAO Bo, FU Jun, LUO Wen-hua. Progress of Organic Fluorescent Probes in Uranyl Ion Detection[J]. Journal of Nuclear and Radiochemistry, 2018, 40(6): 337-348. DOI: 10.7538/hhx.2018.YX.2018036

有机荧光探针在铀酰离子检测方面的研究进展

Progress of Organic Fluorescent Probes in Uranyl Ion Detection

  • 摘要: 荧光分析法是检测铀酰离子最主要的方法之一,它具有设备简单、高灵敏度和高选择性等优点。本文主要阐述了近几年来有机荧光分子在铀酰离子检测领域的研究进展,主要包括有机荧光染料、含氧酸等天然荧光/药物分子,以及利用席夫碱、卟啉、偕氨肟等官能团构筑的有机荧光分子和AIE型荧光分子等。这为后续性能优异的有机荧光探针的分子设计和铀酰离子检测等研究工作提供了借鉴。
    Abstract: The fluorescence analysis method is one of the most important methods for uranyl ion detection with the advantages of simple equipment, high sensitivity and high selectivity. In this paper, the important research results of organic fluorescent molecules for uranyl ion detection in recent years are reviewed, mainly including sensing application of natural fluorescences such as organic fluorescent dyes and drug molecules, and novel organic fluorescent developed with schiff base, porphyrin, amidoxime and AIE molecule. This will provide a facile approach for rational design of new materials with better performance and application of uranyl ion detection.
  • [1] Hill D J. Nuclear energy for the future[J]. Nature Materials, 2008, 7(9): 680-682.
    [2] Sheppard S C, Sheppard M I, Gallerand M O, et al. Derivation of ecotoxicity thresholds for uranium[J]. J Environ Radioact, 2005, 79(1): 55-83.
    [3] Singh S, Malhotra R, Bajwa B S. Uranium uptake studies in some plants[J]. Radiat Meas, 2005, 40(2-6): 666-669.
    [4] 曾峰,唐永金.铀胁迫对植物光合特性的影响及植物对铀的吸收转移[J].环境工程学报,2014,8(7):3075-3082.
    [5] Domingo J L. Reproductive and developmental toxicity of natural and depleted uranium: a review[J]. Reproductive Toxicology, 2001, 15(6): 603-609.
    [6] Schnug E, Lottermoser B G. Fertilizer-derived uranium and its threat to human health[J]. Environ Sci Technol, 2013, 47(6): 2433-2434.
    [7] 张珩,李积胜.铀对人体影响的机制及防治[J].环境卫生学杂志,2004,31(2):80-84.
    [8] 全国环境天然放射性水平调查总结报告编写小组.全国水体中天然放射性核素浓度调查(1983—1990年)[J].辐射防护,1992,12(2):143-613.
    [9] 魏广芝,徐乐昌.低浓度含铀废水的处理技术及其研究进展[J].铀矿冶,2007,26(2):90-95.
    [10] 蒋经乾,李玲,占凌之,等.某尾矿库周边水放射性分布特征及其评价[J].有色金属(冶炼部分),2015(11):60-63.
    [11] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 23727-2009铀矿冶辐射防护和环境保护规定[S].北京:中国标准出版社,2009.
    [12] 世界卫生组织.饮用水水质准则[M].第四版.上海市供水调度监测中心,上海交通大学,译.上海:上海交通大学出版社,2014:162-163.
    [13] Hou X, Roos P. Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples[J]. Anal Chim Acta, 2008, 608(2): 105-139.
    [14] Davarani S S, Moazami H R, Keshtkar A R, et al. A selective electromembrane extraction of uranium(Ⅵ) prior to its fluoro-metric determination in water[J]. Anal Chim Acta, 2013, 783(11): 74-79.
    [15] Jauberty L, Drogat N, Decossas J L, et al. Optimization of the arsenazo-Ⅲ method for the determination of uranium in water and plant samples[J]. Talanta, 2013, 115(17): 751-754.
    [16] Thangavel S, Dhavile S M, Dash K, et al. Trace level determination of uranium and thorium in ilmenite ore by inductively coupled plasma atomic emission spectrometry(ICP-AES)[J]. Atomic Spectroscopy-Norwalk Connecticut, 2010, 31(3): 92-96.
    [17] Al-Shawi A W, Dahl R. Determination of thorium and uranium in nitrophosphate fert-ilizer solution by ion chromatography[J]. J Chromatogr, A, 1995, 706(1-2): 175-181.
    [18] D′Ilio S, Violante N, Senofonte O, et al. Determination of depleted uranium in human hair by quadrupole inductively coupled plasma mass spectrometry: method development and validation[J]. Analytical Methods, 2010, 2(8): 1184-1190.
    [19] Ruan C, Luo W, Wang W, et al. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples[J]. Anal Chim Acta, 2007, 605(1): 80-86.
    [20] Wang K X, Chen J S. Extended structures and physicochemical properties of uranyl-organic compounds[J]. Acc Chem Res, 2011, 44(7): 531-540.
    [21] Matsui T, Fujimori H, Suzuki K. Effects of coexisting ions upon UO2+2 fluorescence in fuel reprocessing solutions[J]. J Nucl Sci Technol, 1988, 25(11): 868-874.
    [22] Moulin C, Decambox P, Trecani L. Direct and fast uranium determination in zirconium by time-resolved laser-induced fluorescence spectrometry[J]. Anal Chim Acta, 1996, 321(1): 121-126.
    [23] Meinrath G, Kato Y, Yoshida Z. Spectroscopic study of the uranyl hydrolysis species(UO2)2(OH)2+2[J]. J Radioanal Nucl Chem, 1993, 174(2): 299-314.
    [24] Ganesh S, Khan F, Ahmed M K, et al. Determination of ultra traces amount of uranium in raffinates of Purex process by laser fluorimetry[J]. J Radioanal Nucl Chem, 2012, 292(1): 331-334.
    [25] Maji S, Kumar S, Sankaran K. Fluorimetri-cestimation of U(Ⅵ) in the presence of a large excess of Th(Ⅳ)[J]. J Radioanal Nucl Chem, 2014, 302(3): 1277-1281.
    [26] Liu J, Brown A K, Meng X, et al. A catalytic beacon sensor for uranium with partsper-trillion sensitivity and millionfold selectivity[J]. Proc Natl Acad Sci USA, 2007, 104(7): 2056-2061.
    [27] Xiao S J, Zuo J, Zhu Z Q, et al. Highly sensitive DNAzyme sensor for selective detection of trace uranium in ore and natural water samples[J]. Sensors & Actuators B Chemical, 2015, 210: 656-660.
    [28] Wen J, Huang Z, Hu S, et al. Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection[J]. J Hazard Mater, 2016, 318: 363-370.
    [29] 胡蓉,辛德华,秦安军,等.聚集诱导发光聚合物[J].高分子学报,2018(2):132-144.
    [30] Nivens D A, Zhang Y, Angel S M. Detection of uranyl ion via fluorescence quenching and photochemical oxidation of calcein[J]. J Photochem Photobiol, A, 2002, 152(1-3): 167-173.
    [31] Zhu J H, Zhao X, Yang J, et al. Selective colorimetric and fluorescent quenching determination of uranyl ion via its complexation with curcumin[J]. Spectrochim Acta, Part A, 2016, 159(15): 146-150.
    [32] Maji S, Viswanathan K S. Sensitization of uranium fluorescence using, 6-pyridinedic-arboxylic acid: application for the determination of uranium in the presence of lanthanides[J]. J Lumin, 2009, 129(11): 1242-1248.
    [33] Elabd A A, Elhefnawy O A. An efficient and sensitive optical sensor based on furosemide as a new fluoroionophore for determination of uranyl ion[J]. Journal of Fluorescence, 2015, 26(1): 1-6.
    [34] Ci Y, Lan Z. Fluorometric determination of samarium and gadolinium by enhancement of fluorescence of samarium-thenoyltrifluoroacetone-1, 10-phenanthroline ternary complex by gadolinium[J]. Anal Chem, 1989, 61(10): 1063-1069.
    [35] Maji S, Viswanathan K S. Enhancement of uranyl fluorescence using trimesic acid: ligand sensitization and co-fluorescence[J]. J Lumin, 2011, 131(9): 1848-1852.
    [36] Elabd A A, Attia M S. A new thin film optical sensor for assessment of UO2+2 based on the fluorescence quenching of trimetazidine doped in sol gel matrix[J]. J Lumin, 2015, 165: 179-184.
    [37] Elabd A A, Attia M S. Spectroflourimetric assessment of UO2+2 by the quenching of the fluorescence intensity of Clopidogrel embedded in PMMA matrix[J]. J Lumin, 2016: 313-318.
    [38] He W, Ma J, Qian J, et al. Adsorption-assistant detection of trace uranyl ion with high sensitivity and selectivity in the presence of SBA-15[J]. J Radioanal Nucl Chem, 2018, 316(1): 201-207.
    [39] Wezenberg S J, Escuderoadán E C, Benetbuchholz J, et al. Colorimetric discrimination between important alkaloid nuclei mediated by a bis-salphen chromophore[J]. Organic Letters, 2008, 10(15): 3311-3314.
    [40] Shen X, Liao L, Chen L, et al. Spectroscopic study on the reactions of bissalophen with uranyl and then with fructose 1,6-bisphosphate and the analytical application[J]. Spectrochim Acta, Part A, 2014, 123(7): 110-116.
    [41] 陈琳,沈杏,何云飞,等.基于磺基Salophen配位反应荧光法测定铀酰[J].应用化工,2014(5):936-938.
    [42] Li J, Li G, Han Q. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction[J]. Spectrochim Acta, Part A, 2016, 169(30): 208-215.
    [43] Wu M, Liao L, Zhao M, et al. Separation and determination of trace uranium using adouble receptor sandwich supramolecule method based on immobilized salophen and fluore scence labeled oligonucleotide[J]. Anal Chim Acta, 2012, 729(11): 80-84.
    [44] Devore I M A, Kerns S A, Gorden A E V. Characterization of quinoxolinol salenligands as selective ligands for chemo-sensors for uranium[J]. Eur J Inorg Chem, 2016, 2015(34): 5708-5714.
    [45] Sessler J L, Melfi P J, Pantos G D. Uranium complexes of multidentate N-donor ligands[J]. Coord Chem Rev, 2006, 250(7-8): 816-843.
    [46] Yang Y, Jiang J, Shen G, et al. An optical sensor for mercury ion based on the fluorescence quenching of tetra-(p-dimethylaminophenyl) porphyrin[J]. Anal Chim Acta, 2009, 636(1): 83-88.
    [47] Yang R, Li K, Wang K, et al. Porphyrinassembly on beta-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio[J]. Anal Chem, 2003, 75(3): 612-621.
    [48] Melfi P J, Camiolo S, Lee J T, et al. Immobilization of a hexaphyrin(1.0.1.0.0.0) derivative onto a tentagel-amino resin and its use in uranyl cation detection[J]. Dalton Transactions, 2008, 252(12): 1538-1540.
    [49] Ho I T, Sessler J L, Gambhir S S, et al. Parts per billion detection of uranium with aporphyrinoid containing nanoparticle and in vivo photo acoustic imaging[J]. Analyst, 2015, 140(11): 3731-3737.
    [50] Volkringer C, Henry N, Grandjean S, et al. Uranyl and/or rare-earth mellitates in extended organic-inorganic networks: a unique case of heterometallic cation-cation interacti on with U(Ⅵ)[CDS1]O-Ln(Ⅲ) bonding (Ln=Ce, Nd)[J]. J Am Chem Soc, 2012, 134(2): 1275-1283.
    [51] Wang J, Xiao X, He B, et al. A novel resonance fluorescence chemosensor based on the formation of heterobinuclear complex with a ditetradentate macrocyclic ligand andeuropium(Ⅲ) for the determination of uranium(Ⅵ)[J]. Sens Actuators, B, 2018, 262(1): 359-364.
    [52] Shamsipur M, Mohammadi M, Taherpour A, et al. Highly selective and sensitive fluorescence optode membrane for uranyl ion based on 5-(9-anthr-acenylmethyl)-5-aza-2, 8-dithia[9], (2, 9)-1, 10-phenanthrolinophane[J]. Rsc Advances, 2015, 5(112): 92061-92070.
    [53] Vukovic S, Watson L A, Kang S O, et al. How amidoximate binds the uranyl cation[J]. Inorg Chem, 2012, 51(6): 3855-3859.
    [54] Wei Y, Qian J, Huang L, et al. Bifunctional polymeric microspheres for efficient uranium sorption from aqueous solution: synergistic interaction of positive charge and amidoxime group[J]. Rsc Advances, 2015, 5(79): 64286-64292.
    [55] Ma J, He W, Han X, et al. Amidoximated fluorescent polymer based sensor for detection of trace uranyl ion in aqueous solution[J]. Talanta, 2017, 168(1): 10-15.
    [56] Bünau G V, Birks J B. Photophysics of aromatic molecules[M]. London: Wiley-Interscience, 1970.
    [57] Senge M O, Davis M. Porphyrin(porphine): a neglected parent compound with potential[J]. J Porphyrins Phthalocyanines, 2010, 14(7): 557-567.
    [58] Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organic thin films[J]. J Appl Phys, 1989, 65(9): 3610-3616.
    [59] Thomas K R J, Lin J T, Tao Y T, et al. Star-shaped thieno-[3,4-b]-pyrazines: a new class of red-emitting electroluminescent materials[J]. Adv Mater, 2002, 14(11): 822-826.
    [60] He F, Xu H, Yang B, et al. Oligomeric pheny-lenevinylene with cross dipole arrangement and amorphous morphology: enhanced solid-state luminescence efficiency and electroluminescence performance[J]. Adv Mater, 2010, 17(22): 2710-2714.
    [61] Figueira-Duarte T M, Del Rosso P G, Trattnig R, et al. Designed suppression of agg regation in polypyrene: toward high-performance blue-light-emitting diodes[J]. Adv Mater, 2010, 22(9): 990-993.
    [62] Shu X, Wang Y, Zhang S, et al. Determination of trace uranyl ion by thermoresponsive porphyrin-terminated polymeric sensor[J]. Talanta, 2015, 131(3): 198-204.
    [63] Luo J, Xie Z, Lam J W, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-penta-phenylsilole[J]. Chem Commun, 2001, 18(18): 1740-1741.
    [64] 张双,秦安军,孙景志,等.聚集诱导发光机理研究[J]. 化学进展,2011,23(4):623-636.
    [65] Zhao Z, Chen S, Lam J W, et al. Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries[J]. Chem Commun, 2010, 46(13): 2221-2223.
    [66] Liu Y, Chen S, Lam J W Y, et al. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property[J]. Chem Mater, 2011, 23(23): 2536-2544.
    [67] Park C, Hong J I. A new fluorescent sensor for the detection of pyrophosphate based on a tetraphenylethylene moiety[J]. Tetrahedron Letters, 2010, 51(15): 1960-1962.
    [68] Wen X, Wang Q, Fan Z. Highly selective turn-on fluorogenic chemosensor for Zn(Ⅱ) detection based on aggregation-induced emission[J]. J Lumin, 2018, 194: 366-373.
    [69] Wu W, Chen C, Tian Y, et al. Enhancement of aggregation-induced emission in dye-encapsulating polymeric micelles for bioimaging[J]. Adv Funct Mater, 2010, 20(9): 1413-1423.
    [70] Hong Y, Feng C, Yu Y, et al. Quantitation, visualization, and monitoring of conformational transitions of human serum albumin by a tetraphenylethene derivative with aggregation-induced emission characteristics[J]. Anal Chem, 2010, 2(16): 7035-7043.
    [71] Taniguchi R, Yamada T, Sada K, et al. Stimuli responsive fluorescence of AIEElastomer based on PDMS and tetraphenyl ethene[J]. Macromolecules, 2014, 47(18): 6382-6388.
    [72] Chen X, He L, Wang Y, et al. Trace analysis of uranyl ion (UO2+2) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect[J]. Anal Chim Acta, 2014, 847: 55-60.
    [73] Qiu X, Han S, Hu Y, et al. Ratiometric fluorescent nanosensors for copper(Ⅱ) basedon bis(rhodamine)-derived PMOs with J-type aggregates[J]. Chem, 2015, 21(10): 4126-4132.
    [74] Chen X, Peng L, Feng M, et al. An aggregation induced emission enhancement-based ratio-metric fluorescent sensor for detecting trace uranyl ion (UO2+2) and the application in living cells imaging[J]. J Lumin, 2017, 186: 301-306.
    [75] Zou Y, Wan M, Sang G, et al. An alternative copolymer of carbazole and thieno[3,4b]-pyrazine: synthesis and mercury detection[J]. Adv Funct Mater, 2008, 18(18): 2724-2732.
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  3
  • PDF下载量:  4596
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-12-19

目录

    /

    返回文章
    返回