• 左
  • 右

多孔性硅基磷钼酸铵吸附剂对铯的固化性能

张晓霞, 吴昊, 韦悦周

张晓霞, 吴昊, 韦悦周. 多孔性硅基磷钼酸铵吸附剂对铯的固化性能[J]. 核化学与放射化学, 2020, 42(1): 51-57. DOI: 10.7538/hhx.2018.YX.2018058
引用本文: 张晓霞, 吴昊, 韦悦周. 多孔性硅基磷钼酸铵吸附剂对铯的固化性能[J]. 核化学与放射化学, 2020, 42(1): 51-57. DOI: 10.7538/hhx.2018.YX.2018058
ZHANG Xiao-xia, WU Hao, WEI Yue-zhou. Solidification Characteristics of Porous AMP/SiO2 Towards Cs(Ⅰ)[J]. Journal of Nuclear and Radiochemistry, 2020, 42(1): 51-57. DOI: 10.7538/hhx.2018.YX.2018058
Citation: ZHANG Xiao-xia, WU Hao, WEI Yue-zhou. Solidification Characteristics of Porous AMP/SiO2 Towards Cs(Ⅰ)[J]. Journal of Nuclear and Radiochemistry, 2020, 42(1): 51-57. DOI: 10.7538/hhx.2018.YX.2018058

多孔性硅基磷钼酸铵吸附剂对铯的固化性能

Solidification Characteristics of Porous AMP/SiO2 Towards Cs(Ⅰ)

  • 摘要: 以多孔二氧化硅为载体,结合旋转蒸发减压法与孔内结晶法合成了硅基磷钼酸铵吸附剂(AMP/SiO2),采用冷压成型/高温烧结工艺固化技术对分离模拟高放废液中Cs的二次固体废物AMP-Cs/SiO2进行了固化处理,并考察了固化体的性能。实验结果表明:不添加固定基材且烧结温度大于1000 ℃时,AMP/SiO2对Cs的固定率为40%。添加水铝英石(allophane)作为固化基材,烧结混合物(AMP-Cs/SiO2-allophane)形成稳定的结晶相Cs4Al4Si20O48,对铯的固定率不小于96%,抗压强度大于7 MPa。烧结固化体在25 ℃去离子水中浸出28 d后,Cs(Ⅰ)的浸出率约为3×10-5 g/(cm2•d)。
    Abstract: AMP loaded silica adsorbents (AMP/SiO2) were synthesized by the rotary evaporation reducing pressure method and the crystallization method. A pressing/sintering method was used for the stable solidification of secondary solid wastes AMP-Cs/SiO2 which was produced from the separation of Cs from simulated high level liquid waste. The properties of the solidified products were investigated. Without allophane, the immobilization percentage of Cs (Ⅰ) decreases to 40% when the temperature is more than 1 000 ℃. When adding allophane, the stable Cs4Al4Si20O48 crystalline phase is recrystallized, the Cs immobilization percentage is more than 96% and the compressive strength is higher than 7 MPa. The leachability of Cs (Ⅰ) from the deionized water (DW) is about 3×10-5 g/(cm2•d) at 25 ℃.
  •   5483

  • [1] 章泽甫,王俊峰,张天祥.动力堆核燃料后处理工学[M].北京:中国原子能出版社,2013:190-200.
    [2] 任凤仪,周镇兴.国外核燃料后处理[M].北京:中国原子能出版社,2006:106-130.
    [3] 周贤玉.核燃料后处理工程[M].哈尔滨:哈尔滨工程大学出版社,2009:100-110.
    [4] 王启龙,吴艳,韦悦周.硅基磷钼酸铵吸附剂的合成及其对Cs的吸附[J].核化学与放射化学,2016,36(4):210-215.
    [5] 王兰,侯晨曦,樊龙,等.矿物固化含Sr、Cs放射性废物研究进展[J].材料导报A:综述篇,2017,31(2):106-111.
    [6] Zhang X X, Wu Y, Chen B C, et al. The effect of γ-ray irradiation on the adsorption properties and chemical stability of AMP/SiO2 towards Cs(Ⅰ) in HNO3 solution[J]. J Radioanal Nucl Chem, 2016, 310(2): 905-910.
    [7] 刘坤贤,王邵,韩建平,等.放射性废物处理与处置[M].北京:中国原子能出版社,2012:197-220,355-377.
    [8] Ikarashi Y, Mimura H, Nakai T, et al. Selective cesium uptake behavior of insoluble ferrocyanide loaded zeolites and development of stable solidification method[J]. J Ion Exch, 2014, 25(4): 212-219.
    [9] Rocchiccioli D C, Aouissi A, Bettahar M M. Catalysis by 12-molybdophosphates 1: catalytic reactivity of 12-molybdophosphoric acid related to its thermal behavior investigated through IR, Raman, Polarographic, X-ray diffraction studies: a comparison with 12-molybdosilicic acid[J]. J Catal, 1996, 164(1): 16-27.
    [10] Kircher C C, Crouch S R. Kinetics of the formation and decomposition of 12-molybdophosphate[J]. J Anal Chem, 1983, 55(2): 242-248.
    [11] 原核工业第二研究设计院.GB 14569.1-2011低、中水平放射性废物固化体性能要求:水泥固化体[S].2011.
    [12] 姜自超,丁建华,汪宏涛,等.沸石细度对磷酸镁水泥固化体性能影响及133Cs固化机理[J].硅酸盐学报,45(5):674-678.
    [13] Amini M M, Ahanj M. Leach of cesium and barium from sol-gel derived zincborosilicate and borosilicate glasses[J]. J Sol-Gel Sci Technol, 2000, 18(2): 119-125.
    [14] Xu Z, Okada T, Nishimura F, et al. Phase separation of cesium from lead borosilicate glass by heat treatment under a reducing atmosphere[J]. J Hazard Mater, 2016, 317(5): 622-631.
  • 期刊类型引用(2)

    1. 陈东军. 改性甘蔗渣纤维素吸附剂对放射性Cs~+的吸附性能研究. 广州化工. 2024(18): 138-142 . 百度学术
    2. 张智渊,董越,邱雨晴,毕可鑫,胡孔球,戴一阳,周利,刘冲,吉旭,石伟群. 深度学习引导的高通量分子筛选用于锶铯的选择性配位(英文). 核化学与放射化学. 2023(05): 456-465 . 本站查看

    其他类型引用(0)

图(1)
计量
  • 文章访问数:  1818
  • HTML全文浏览量:  0
  • PDF下载量:  4346
  • 被引次数: 2
出版历程
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回