[1] |
Kowall T, Foglia F, Helm L, et al. Molecular dynamics simulation study of lanthanide ions Ln3+ in aqueous solution: analysis of the structure of the first hydration shell and of the origin of symmetry fluctuations[J]. J Phys Chem, 1995, 99(35): 13078-13087.
|
[2] |
lannuzzi M. Ab initio molecular dynamics[M]∥Sauten R A V, Sautet P. Computational Methods in Catalysis and Materials Science: An Introduction for Scientists and Engineers. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2009: 93-120.
|
[3] |
Pastore G, Smargiassi E, Buda F. Theory of ab initio molecular-dynamics calculations[J]. Phys Rev A, 1991, 44(10): 6334-6347.
|
[4] |
Mark E T. Ab initio molecular dynamics: basic concepts, current trends and novel applications[J]. J Phys: Condens Matter, 2002, 14(50): R1297-R1355.
|
[5] |
Laasonen K. Ab initio molecular dynamics[M]∥Monticelli L, Salonen E. Biomolecular Simulations: Methods and Protocols. New York: Humana Press, 2013: 29-42.
|
[6] |
Tse J S. Ab initio molecular dynamics with density functional theory[J]. Annu Rev Phys Chem, 2002, 53(1): 249-290.
|
[7] |
Gross E K, Dreizler R M. Density functional theory[M]. Ⅱ Ciocco, Italy: Springer Science & Business Media, 2013: Vol. 337.
|
[8] |
Yang W, Ayers P W. Density-functional theory[M]∥Bultinck P, Winter H D, Langenaeker W, et al. Computational Medicinal Chemistry for Drug Discovery. Boca Raton: CRC Press, 2003: 103-132.
|
[9] |
Hansson T, Oostenbrink C, van Gunsteren W. Molecular dynamics simulations[J]. Curr Opin Struct Biol, 2002, 12(2): 190-196.
|
[10] |
Binder K, Horbach J, Kob W, et al. Molecular dynamics simulations[J]. J Phys: Condens Matter, 2004, 16(5): S429-S453.
|
[11] |
Monticelli L, Tieleman D P. Force fields for classical molecular dynamics[M]∥Monticelli L, Salonen E. Biomolecular Simulations: Methods and Protocols. New York: Humana Press, 2013: 197-214.
|
[12] |
Lopes P E M, Guvench O, MacKerell A D. Current status of protein force fields for molecular dynamics[J]. Methods in Molecular Biology (Clifton, N.J.), 2015, 1215: 47-71.
|
[13] |
Wang J, Wolf R M, Caldwell J W, et al. Development and testing of a general amber force field[J]. J Comput Chem, 2004, 25(9): 1157-1174.
|
[14] |
Dickson C J, Madej B D, Skjevik A A, et al. Lipid14: the AMBER lipid force field[J]. J Chem Theory Comput, 2014, 10(2): 865-879.
|
[15] |
Aduri R, Psciuk B T, Saro P, et al. AMBER force field parameters for the naturally occurring modified nucleosides in RNA[J]. J Chem Theory Comput, 2007, 3(4): 1464-1475.
|
[16] |
Hornak V, Abel R, Okur A, et al. Comparison of multiple AMBER force fields and development of improved protein backbone parameters[J]. Proteins: Structure, Function, and Bioinformatics, 2006, 65(3): 712-725.
|
[17] |
MacKerell Jr A D, Banavali N, Foloppe N. Development and current status of the CHARMM force field for nucleic acids[J]. Biopolymers: Original Research on Biomolecules, 2000, 56(4): 257-265.
|
[18] |
Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields[J]. J Comput Chem, 2010, 31(4): 671-690.
|
[19] |
Pastor R, MacKerell Jr A. Development of the CHARMM force field for lipids[J]. J Phys Chem Lett, 2011, 2(13): 1526-1532.
|
[20] |
van Gunsteren W F, Daura X, Mark A E. GROMOS force field[M]∥Schleyer P V R, Clark N L A T, Gasteiger J, et al. Encyclopedia of Computational Chemistry. New York: John Wiley & Sons, Ltd, 2002.
|
[21] |
Oostenbrink C, Villa A, Mark A E, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6[J]. J Comput Chem, 2004, 25(13): 1656-1676.
|
[22] |
Schmid N, Eichenberger A P, Choutko A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7[J]. Eur Biophys J, 2011, 40(7): 843-856.
|
[23] |
Oostenbrink C, Soares T A, van der Vegt N F, et al. Validation of the 53A6 GROMOS force field[J]. Eur Biophys J, 2005, 34(4): 273-284.
|
[24] |
Lins R D, Hünenberger P H. A new GROMOS force field for hexopyranose-based carbohydrates[J]. J Comput Chem, 2005, 26(13): 1400-1412.
|
[25] |
Jorgensen W L. OPLS force fields[M]∥Schleyer P V R, Clark N L A T, Gasteiger J, et al. Encyclopedia of Computational Chemistry. New York: John Wiley & Sons, Ltd, 2002.
|
[26] |
Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic -liquids[J]. J Am Chem Soc, 1996, 118(45): 11225-11236.
|
[27] |
Damm W, Frontera A, Tirado-Rives J, et al. OPLS all-atom force field for carbohydrates[J]. J Comput Chem, 1997, 18(16): 1955-1970.
|
[28] |
Baker C M. Polarizable force fields for molecular dynamics simulations of biomolecules[J]. WIREs Comput Mol Sci, 2015, 5(2): 241-254.
|
[29] |
Jones J E. On the determination of molecular fields Ⅱ: from the equation of state of a gas[J]. Proceedings of the Royal Society of London, Series A, 1924, 106(738): 463-477.
|
[30] |
Halgren T A. The representation of van der Waals(VDW) interactions in molecular mechanics force fields: potential form, combination rules, and VDW parameters[J]. J Am Chem Soc, 1992, 114(20): 7827-7843.
|
[31] |
D′Angelo P, Zitolo A, Migliorati V, et al. Revised ionic radii of lanthanoid(Ⅲ) ions in aqueous solution[J]. Inorg Chem, 2011, 50(10): 4572-4579.
|
[32] |
D′Angelo P, Martelli F, Spezia R, et al. Hydration properties and ionic radii of actinide(Ⅲ) ions in aqueous solution[J]. Inorg Chem, 2013, 52(18): 10318-10324.
|
[33] |
Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. AcCrA, 1976, 32(5): 751-767.
|
[34] |
Li P, Merz K M Jr. Metal ion modeling using classical mechanics[J]. Chem Rev, 2017, 117(3): 1564-1686.
|
[35] |
Guilbaud P, Wipff G. Hydration of uranyl (UO2+2) cation and its nitrate ion and 18-crown-6 adducts studied by molecular dynamics simulations[J]. J Phys Chem, 1993, 97(21): 5685-5692.
|
[36] |
Guilbaud P, Wipff G. Force field representation of the UO2+2 cation from free energy MD simulations in water: tests on its 18-crown-6 and NO-3 adducts, and on its calix[6]arene6- and CMPO complexes[J]. J Molecular Struct: theochem, 1996, 366(1-2): 55-63.
|
[37] |
Durand S, Dognon J-P, Guilbaud P, et al. Lanthanide and alkaline-earth complexes of EDTA in water: a molecular dynamics study of structures and binding selectivities[J]. Journal of the Chemical Society, Perkin Transactions 2, 2000(4): 705-714.
|
[38] |
Baaden M, Berny F, Madic C, et al. M3+ lanthanide cation solvation by acetonitrile: the role of cation size, counterions, and polarization effects investigated by molecular dynamics and quantum mechanical simulations[J]. J Phys Chem A, 2000, 104(32): 7659-7671.
|
[39] |
Pomogaev V, Tiwari S P, Rai N, et al. Development and application of effective pairwise potentials for UOn+2, NpOn+2, PuOn+2, and AmOn+2(n=1, 2) ions with water[J]. Phys Chem Chem Phys, 2013, 15(38): 15954-15963.
|
[40] |
Rai N, Tiwari S P, Maginn E J. Force field development for actinyl ions via quantum mechanical calculations: an approach to account for many body solvation effects[J]. J Phys Chem B, 2012, 116(35): 10885-10897.
|
[41] |
Duvail M, Vitorge P, Spezia R. Building a polarizable pair interaction potential for lanthanoids(Ⅲ) in liquid water: a molecular dynamics study of structure and dynamics of the whole series[J]. J Chem Phys, 2009, 130(10): 104501.
|
[42] |
Duvail M, Souaille M, Spezia R, et al. Pair interaction potentials with explicit polarization for molecular dynamics simulations of La3+ in bulk water[J]. J Chem Phys, 2007, 127(3): 034503.
|
[43] |
Spezia R, Jeanvoine Y, Vuilleumier R. Developing polarizable potential for molecular dynamics of Cm(Ⅲ)-carbonate complexes in liquid water[J]. J Mol Model, 2014, 20(8): 2398.
|
[44] |
Duvail M, Martelli F, Vitorge P, et al. Polarizable interaction potential for molecular dynamics simulations of actinoids(Ⅲ) in liquid water[J]. J Chem Phys, 2011, 135(4): 044503.
|
[45] |
Clavaguéra C, Sansot E, Calvo F, et al. Gd(Ⅲ) polyaminocarboxylate chelate: realistic many-body molecular dynamics simulations for molecular imaging applications[J]. J Phy Chem B, 2006, 110(26): 12848-12851.
|
[46] |
Clavaguéra C, Pollet R, Soudan J M, et al. Molecular dynamics study of the hydration of lanthanum(Ⅲ) and europium(Ⅲ) including many-body effects[J]. J Phy Chem B, 2005, 109(16): 7614-7616.
|
[47] |
Clavaguéra C, Calvo F, Dognon J-P. Theoretical study of the hydrated Gd3+ ion: structure, dynamics, and charge transfer[J]. J Chem Phys, 2006, 124(7): 074505.
|
[48] |
Marjolin A, Gourlaouen C, Clavaguera C, et al. Hydration Gibbs free energies of open and closed shell trivalent lanthanide and actinide cations from polarizable molecular dynamics[J]. J Mol Model, 2014, 20(10): 2471.
|
[49] |
Chaumont A, Klimchuk O, Gaillard C, et al. Perrhenate complexation by uranyl in traditional solvents and in ionic liquids: a joint molecular dynamics/spectroscopic study[J]. J Phys Chem B, 2012, 116(10): 3205-3219.
|
[50] |
Troxler L, Baaden M, Böhmer V, et al. Complexation of M3+ lanthanide cations by calix[4]arene-CMPO ligands: a molecular dynamics study in methanol solution and at a water/chloroform interface[J]. Supramol Chem, 2000, 12(1): 27-51.
|
[51] |
Chaumont A, Engler E, Wipff G. Uranyl and strontium salt solvation in room-temperature ionic liquids: a molecular dynamics investigation[J]. Inorg Chem, 2003, 42(17): 5348-5356.
|
[52] |
Chaumont A, Wipff G. Solvation of uranyl(Ⅱ) and europium(Ⅲ) cations and their chloro complexes in a room-temperature ionic liquid: a theoretical study of the effect of solvent “humidity”[J]. Inorg Chem, 2004, 43(19): 5891-5901.
|
[53] |
Chaumont A, Wipff G. Solvation of uranyl-CMPO complexes in dry vs. humid forms of the [BMI][PF6] ionic liquid: a molecular dynamics study[J]. Phys Chem Chem Phys, 2006, 8(4): 494-502.
|
[54] |
Gaillard C, Chaumont A, Billard I, et al. Uranyl coordination in ionic liquids: the competition between ionic liquid anions, uranyl counterions, and Cl- anions investigated by extended X-ray absorption fine structure and UV-visible spectroscopies and molecular dynamics simulations[J]. Inorg Chem, 2007, 46(12): 4815-4826.
|
[55] |
Kerisit S, Liu C. Structure, kinetics, and thermodynamics of the aqueous uranyl(Ⅵ) cation[J]. J Phys Chem A, 2013, 117(30): 6421-6432.
|
[56] |
Li P F, Song L F, Merz K M. Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water[J]. J Phys Chem B, 2015, 119(3): 883-895.
|
[57] |
Ohtaki H, Radnai T. Structure and dynamics of hydrated ions[J]. Chem Rev, 1993, 93(3): 1157-1204.
|
[58] |
Helm L, Merbach A E. Applications of advanced experimental techniques: high pressure NMR and computer simulations[J]. J Chem Soc, Dalton Trans, 2002(5): 633-641.
|
[59] |
Hagberg D, Bednarz E, Edelstein N M, et al. A quantum chemical and molecular dynamics study of the coordination of Cm(Ⅲ) in water[J]. J Am Chem Soc, 2007, 129(46): 14136-14137.
|
[60] |
Beuchat C, Hagberg D, Spezia R, et al. Hydration of lanthanide chloride salts: a quantum chemical and classical molecular dynamics simulation study[J]. J Phy Chem B, 2010, 114(47): 15590-15597.
|
[61] |
Hagberg D, Karlström G, Roos B O, et al. The coordination of uranyl in water: a combined quantum chemical and molecular simulation study[J]. J Am Chem Soc, 2005, 127(41): 14250-14256.
|
[62] |
Duvail M, Spezia R, Vitorge P. A dynamic model to explain hydration behaviour along the lanthanide series[J]. Chemphyschem, 2008, 9(5): 693-696.
|
[63] |
Xia M, Chai Z, Wang D. Polarizable and non-polarizable force field representations of ferric cation and validations[J]. J Phys Chem B, 2017, 121(23): 5718-5729.
|
[64] |
Meier W, Bopp P, Probst M M, et al. Molecular dynamics studies of lanthanum chloride solutions[J]. J Phys Chem, 1990, 94(11): 4672-4682.
|
[65] |
Allen F H. The Cambridge Structural Database: a quarter of a million crystal structures and rising[J]. Acta Crystallogr Sect B: Struct Sci, 2002, 58(3): 380-388.
|
[66] |
Bruno I J, Cole J C, Edgington P R, et al. New software for searching the Cambridge Structural Database and visualizing crystal structures[J]. AcCrB, 2002, 58(3-1): 389-397.
|
[67] |
Ciupka J, Cao-Dolg X, Wiebke J, et al. Computational study of lanthanide(Ⅲ) hydration[J]. Phys Chem Chem Phys, 2010, 12(40): 13215-13223.
|
[68] |
David F, Fourest B. Structure of trivalent lanthanide and actinide aquo ions[J]. New J Chem, 1997, 21(2): 167-176.
|
[69] |
Villa A, Hess B, Saint-Martin H. Dynamics and structure of Ln(Ⅲ)-aqua ions: a comparative molecular dynamics study using ab initio based flexible and polarizable model potentials[J]. J Phy Chem B, 2009, 113(20): 7270-7281.
|
[70] |
Cossy C, Helm L, Powell D H, et al. A change in coordination number from nine to eight along the lanthanide(Ⅲ) aqua ion series in solution: a neutron diffraction study[J]. New J Chem, 1995, 19(1): 27-35.
|
[71] |
Allen P, Bucher J, Shuh D, et al. Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions[J]. Inorg Chem, 2000, 39(3): 595-601.
|
[72] |
Ishiguro S-I, Umebayashi Y, Kato K, et al. Strong and weak solvation steric effects on lanthanoid(Ⅲ) ions in N, N-dimethylformamide-N, N-dimethylacetamide mixtures[J]. J Chem Soc, Faraday Trans, 1998, 94(24): 3607-3612.
|
[73] |
Duvail M, Spezia R, Cartailler T, et al. Temperature dependence of hydrated La3+ properties in liquid water: a molecular dynamics simulations study[J]. Chem Phys Lett, 2007, 448(1): 41-45.
|
[74] |
An Y, Berry M T, van Veggel F C. Aqueous solutions of europium(Ⅲ) dipicolinate complexes: estimates of water coordination based on molecular dynamics simulations and excited state decay rate constants[J]. J Phys Chem A, 2000, 104(47): 11243-11247.
|
[75] |
Lindgren M, Laaksonen A, Westlund P-O. A theoretical spin relaxation and molecular dynamics simulation study of the Gd(H2O)3+9 complex[J]. Phys Chem Chem Phys, 2009, 11(44): 10368-10376.
|
[76] |
Helm L, Merbach A E. Inorganic and bioinorganic solvent exchange mechanisms[J]. Chem Rev, 2005, 105(6): 1923-1960.
|
[77] |
Chopra M, Choudhury N. Molecular dynamics simulation study of distribution and dynamics of aqueous solutions of uranyl ions: the effect of varying temperature and concentration[J]. Phys Chem Chem Phys, 2015, 17(41): 27840-27850.
|
[78] |
Chopra M, Choudhury N. Effect of uranyl ion concentration on structure and dynamics of aqueous uranyl solution: a molecular dynamics simulation study[J]. J Phys Chem B, 2014, 118(49): 14373-14381.
|
[79] |
Yang T, Tsushima S, Suzuki A. Quantum mechanical and molecular dynamical simulations on thorium(Ⅳ) hydrates in aqueous solution[J]. J Phys Chem A, 2001, 105(45): 10439-10445.
|
[80] |
Yang T X, Tsushima S, Suzuki A. Chloride concentration and temperature effects on the hydration of Th(Ⅳ) ion: a molecular dynamics simulation[J]. Chem Phys Lett, 2002, 360(5-6): 534-542.
|
[81] |
Johansson G, Magini M, Ohtaki H. Coordination around thorium(Ⅳ) in aqueous perchlorate, chloride and nitrate solutions[J]. J Solution Chem, 1991, 20(8): 775-792.
|
[82] |
Marjolin A, Gourlaouen C, Clavaguéra C, et al. Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies[J]. Theor Chem Acc, 2012, 131(4): 1198.
|
[83] |
Montagna M, Spezia R, Bodo E. Solvation properties of the actinide ion Th(Ⅳ) in DMSO and DMSO: water mixtures through polarizable molecular dynamics[J]. Inorg Chem, 2017, 56(19): 11929-11937.
|
[84] |
Moll H, Denecke M, Jalilehvand F, et al. Structure of the aqua ions and fluoride complexes of uranium(Ⅳ) and thorium(Ⅳ) in aqueous solution an EXAFS study[J]. Inorg Chem, 1999, 38(8): 1795-1799.
|
[85] |
Wilson R E, Skanthakumar S, Burns P C, et al. Structure of the homoleptic thorium(Ⅳ) aqua ion [Th (H2O)10]Br4[J]. Angew Chem Int Ed, 2007, 46(42): 8043-8045.
|
[86] |
Torapava N, Persson I, Eriksson L, et al. Hydration and hydrolysis of thorium(Ⅳ) in aqueous solution and the structures of two crystalline thorium(Ⅳ) hydrates[J]. Inorg Chem, 2009, 48(24): 11712-11723.
|
[87] |
Kimura T, Nagaishi R, Kato Y, et al. Luminescence study on solvation of americium(Ⅲ), curium(Ⅲ) and several lanthanide(Ⅲ) ions in nonaqueous and binary mixed solvents[J]. Radiochim Acta, 2001, 89(3): 125-130.
|
[88] |
Kimura T, Choppin G R. Luminescence study on determination of the hydration number of Cm(Ⅲ)[J]. J Alloys Compd, 1994, 213: 313-317.
|
[89] |
Kimura T, Kato Y, Takeishi H, et al. Comparative study on the hydration states of Cm(Ⅲ) and Eu(Ⅲ) in solution and in cation exchange resin[J]. J Alloys Compd, 1998, 271: 719-722.
|
[90] |
Tian G, Kimura T, Yoshida Z, et al. Fluorescence and IR studies on the hydration state of lanthanides(Ⅲ) and curium(Ⅲ) in the complexes extracted with purified Cyanex301, Cyanex302 and Cyanex272[J]. Radiochim Acta, 2004, 92(8): 495-499.
|
[91] |
Stumpf T, Fanghänel T, Grenthe I. Complexation of trivalent actinide and lanthanide ions by glycolic acid: a TRLFS study[J]. J Chem Soc Dalton Trans, 2002(20): 3799-3804.
|
[92] |
Moll H, Geipel G, Bernhard G. Complexation of curium(Ⅲ) by adenosine 5′-triphosphate (ATP): a time-resolved laser-induced fluorescence spectroscopy(TRLFS) study[J]. Inorg Chim Acta, 2005, 358(7): 2275-2282.
|
[93] |
Kimura T, Choppin G R, Kato Y, et al. Determination of the hydration number of Cm(Ⅲ) in various aqueous solutions[J]. Radiochim Acta, 1996, 72(2): 61-64.
|
[94] |
Yang T, Bursten B E. Speciation of the curium(Ⅲ) ion in aqueous solution: a combined study by quantum chemistry and molecular dynamics simulation[J]. Inorg Chem, 2006, 45(14): 5291-5301.
|
[95] |
Lindqvist-Reis P, Klenze R, Schubert G, et al. Hydration of Cm3+ in aqueous solution from 20 to 200 C: a time-resolved laser fluorescence spectroscopy study[J]. J Phy Chem B, 2005, 109(7): 3077-3083.
|
[96] |
Lindqvist-Reis P, Walther C, Klenze R, et al. Large ground-state and excited-state crystal field splitting of 8-fold-coordinate Cm3+ in [Y(H2O)8]Cl3. 15-crown-5[J]. J Phy Chem B, 2006, 110(11): 5279-5285.
|
[97] |
Galbis E, Hernández-Cobos J, den Auwer C, et al. Solving the hydration structure of the heaviest actinide aqua ion known: the californium(Ⅲ) case[J]. Angew Chem Int Ed, 2010, 49(22): 3811-3815.
|
[98] |
Fourest B, Duplessis J, David F. Comparison of diffusion coefficients and hydrated radii for some trivalent lanthanide and actinide ions in aqueous solution[J]. Radiochim Acta, 1984, 36(4): 191-196.
|
[99] |
David F H, Vokhmin V. Thermodynamic properties of some tri- and tetravalent actinide aquo ions[J]. New J Chem, 2003, 27(11): 1627-1632.
|
[100] |
Bühl M, Kabrede H. Mechanism of water exchange in aqueous uranyl(Ⅵ) ion: a density functional molecular dynamics study[J]. Inorg Chem, 2006, 45(10): 3834-3836.
|
[101] |
Vallet V, Wahlgren U, Schimmelpfennig B, et al. The mechanism for water exchange in [UO2(H2O)5]2+ and [UO2(oxalate)2(H2O)]2-, as studied by quantum chemical methods[J]. J Am Chem Soc, 2001, 123(48): 11999-12008.
|
[102] |
Tiwari S P, Rai N, Maginn E J. Dynamics of actinyl ions in water: a molecular dynamics simulation study[J]. Phys Chem Chem Phys, 2014, 16(17): 8060-8069.
|
[103] |
Farkas I, Bányai I, Szabó Z, et al. Rates and mechanisms of water exchange of UO2+2(aq) and UO2(oxalate)F(H2O)2-: a variable-temperature 17O and 19F NMR study[J]. Inorg Chem, 2000, 39(4): 799-805.
|
[104] |
Atta-Fynn R, Bylaska E J, De Jong W A. Free energies and mechanisms of water exchange around uranyl from first principles molecular dynamics[J]. MRS Online Proceedings Library Archive, 2012, 1383.
|
[105] |
Kerisit S, Liu C. Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution[J]. Geochim Cosmochim Acta, 2010, 74(17): 4937-4952.
|
[106] |
Doudou S, Arumugam K, Vaughan D J, et al. Investigation of ligand exchange reactions in aqueous uranyl carbonate complexes using computational approaches[J]. Phys Chem Chem Phys, 2011, 13(23): 11402-11411.
|
[107] |
Marx G, Bischoff H. Transport processes of actinides in electrolyte solutions[J]. JRAC, 1976, 30(2): 567-581.
|
[108] |
Gibson J K, Haire R G, Santos M, et al. Oxidation studies of dipositive actinide ions, An2+(An=Th, U, Np, Pu, Am) in the gas phase: synthesis and characterization of the isolated uranyl, neptunyl, and plutonyl ions UO2+2(g), NpO2+2(g), and PuO2+2(g)[J]. J Phys Chem A, 2005, 109(12): 2768-2781.
|
[109] |
Szabó Z, Glaser J, Grenthe I. Kinetics of ligand exchange reactions for uranyl(2+) fluoride complexes in aqueous solution[J]. Inorg Chem, 1996, 35(7): 2036-2044.
|
[110] |
Druchok M, Bryk T, Holovko M. A molecular dynamics study of uranyl hydration[J]. J Mol Liq, 2005, 120(1-3): 11-14.
|
[111] |
Starck M, Laporte F A, Oros S, et al. Cyclic phosphopeptides to rationalize the role of phosphoamino acids in uranyl binding to biological targets[J]. Chemistry(Easton), 2017, 23(22): 5281-5290.
|
[112] |
Lebrun C, Starck M, Gathu V, et al. Engineering short peptide sequences for uranyl binding[J]. Chemistry(Easton), 2014, 20(50): 16566-16573.
|
[113] |
Wegner S V, Boyaci H, Chen H, et al. Engineering a uranyl-specific binding protein from NikR[J]. Angew Chem Int Edit, 2009, 48(13): 2339-2341.
|
[114] |
Vidaud C, Gourion-Arsiquaud S, Rollin-Genetet F, et al. Structural consequences of binding of UO2+2 to apotransferrin: can this protein account for entry of uranium into human cells?[J]. Biochem, 2007, 46(8): 2215-2226.
|
[115] |
Benavides-Garcia M G, Balasubramanian K. Structural insights into the binding of uranyl with human serum protein apotransferrin structure and spectra of protein-uranyl interactions[J]. Chem Res Toxicol, 2009, 22(9): 1613-1621.
|
[116] |
Michon J, Frelon S, Garnier C, et al. Determinations of uranium(Ⅵ) binding properties with some metalloproteins (transferrin, albumin, metallothionein and ferritin) by fluorescence quenching[J]. J Fluoresc, 2010, 20(2): 581-590.
|
[117] |
Odoh S O, Bondarevsky G D, Karpus J, et al. UO2+2 uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity[J]. J Am Chem Soc, 2014, 136(50): 17484-17494.
|
[118] |
Wang M, Ding W, Wang D. Binding mechanism of uranyl to transferrin implicated by density functional theory study[J]. Rsc Adv, 2017, 7(7): 3667-3675.
|
[119] |
Duvail M, Ruas A, Venault L, et al. Molecular dynamics studies of concentrated binary aqueous solutions of lanthanide salts: structures and exchange dynamics[J]. Inorg Chem, 2010, 49(2): 519-530.
|
[120] |
兰图,刘展翔,李兴亮, 等.低浓缩铀靶辐照后溶液中铀的化学种态及主要裂变元素的影响[J].无机化学学报,2015,31(9):1774-1784.
|
[121] |
Duvail M, Guilbaud P. Understanding the nitrate coordination to Eu3+ ions in solution by potential of mean force calculations[J]. Phys Chem Chem Phys, 2011, 13(13): 5840-5847.
|
[122] |
Wang H, Chai Z, Wang D. Influence of anions on the adsorption of uranyl on hydroxylated α-SiO2(001): a first-principles study[J]. Green Energy & Environment, 2017, 2(1): 30-41.
|
[123] |
Martelli F, Jeanvoine Y, Vercouter T, et al. Hydration properties of lanthanoid(Ⅲ) carbonate complexes in liquid water determined by polarizable molecular dynamics simulations[J]. Phys Chem Chem Phys, 2014, 16(8): 3693-3705.
|
[124] |
Duvail M, Villard A, Nguyen T N, et al. Thermodynamics of associated electrolytes in water: molecular dynamics simulations of sulfate solutions[J]. J Phys Chem B, 2015, 119(34): 11184-11195.
|
[125] |
Dunsmore H S, James J. The electrolytic dissociation of magnesium sulphate and lanthanum ferricyanide in mixed solvents[J]. J Chem Soc, 1951: 2925-2930.
|
[126] |
Akilan C, Rohman N, Hefter G, et al. Temperature effects on ion association and hydration in MgSO4 by dielectric spectroscopy[J]. Chemphyschem, 2006, 7(11): 2319-2330.
|
[127] |
Vercouter T, Amekraz B, Moulin C, et al. Sulfate complexation of trivalent lanthanides probed by nanoelectrospray mass spectrometry and time resolved laser-induced luminescence[J]. Inorg Chem, 2005, 44(21): 7570-7581.
|
[128] |
Laurie S, Monk C. Dissociation constants of some barium, europium, and hexaamminecobalt ion-pairs by use of sparingly soluble iodates containing radiotracers[J]. J Chem Soc, 1963: 3343-3347.
|
[129] |
Ahrland S, Kullberg L. Thermodynamics of metal complex formation in aqueous solution Ⅲ: a calorimetric study of hydrogen sulphate and uranium(Ⅵ) sulphate, acetate, and thiocyanate complexes[J]. Acta Chem Scand, 1971, 25(10): 3677-3691.
|
[130] |
Vercouter T, Vitorge P, Amekraz B, et al. Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(Ⅵ)[J]. Inorg Chem, 2008, 47(6): 2180-2189.
|
[131] |
Wallace R M. Deermination of stability constants by Donnan membrane equilibrium: the uranyl sulfate complexes[J]. J Phys Chem, 1967, 71(5): 1271-1276.
|
[132] |
Hudson M J, Harwood L M, Laventine D M, et al. Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides[J]. Inorg Chem, 2013, 52(7): 3414-3428.
|
[133] |
Ye X, Cui S, de Almeida V, et al. Interfacial complex formation in uranyl extraction by tributyl phosphate in dodecane diluent: a molecular dynamics study[J]. J Phys Chem B, 2009, 113(29): 9852-9862.
|
[134] |
Apelblat A, Faraggi M. Extraction in the system: uranyl nitrate-nitric acid-tributyl phosphate-diluent[J]. Journal of Nuclear Energy: Parts A/B: Reactor Science and Technology, 1966, 20(1): 55-65.
|
[135] |
Iso S, Meguro Y, Yoshida Z. Extraction of uranium(Ⅵ) from nitric acid solution into supercritical carbon dioxide containing tri-n-butylphosphate[J]. Chem Lett, 1995, 24(5): 365-366.
|
[136] |
Ye X, Cui S, de Almeida V F, et al. Uranyl nitrate complex extraction into TBP/dodecane organic solutions: a molecular dynamics study[J]. Phys Chem Chem Phys, 2010, 12(47): 15406-15409.
|
[137] |
Guilbaud P, Berthon L, Louisfrema W, et al. Determination of the structures of uranyl-tri-n-butyl-phosphate aggregates by coupling experimental results with molecular dynamic simulations[J]. Chemistry-A European Journal, 2017, 23(65): 16660-16670.
|
[138] |
Martell A E, Smith R M. Critical stability constants[M]. New York: Springer, 1974.
|
[139] |
Kumar K, Tweedle M F. Ligand basicity and rigidity control formation of macrocyclic polyamino carboxylate complexes of gadolinium(Ⅲ)[J]. Inorg Chem, 1993, 32(20): 4193-4199.
|
[140] |
Toth E, Brucher E, Lazar I, et al. Kinetics of formation and dissociation of lanthanide(Ⅲ)-DOTA complexes[J]. Inorg Chem, 1994, 33(18): 4070-4076.
|
[141] |
Chang C A, Liu Y L, Chen C Y, et al. Ligand preorganization in metal ion complexation: molecular mechanics/dynamics, kinetics, and laser-excited luminescence studies of trivalent lanthanide complex formation with macrocyclic ligands TETA and DOTA[J]. Inorg Chem, 2001, 40(14): 3448-3455.
|
[142] |
Coupez B, Wipff G. The synergistic effect of cobalt-dicarbollide anions on the extraction of M3+ lanthanide cations by calix[4] arenes: a molecular dynamics study at the water‘oil’interface[J]. Cr Chim, 2004, 7(12): 1153-1164.
|
[143] |
Arnaud-Neu F, Böhmer V, Dozol J F, et al. Calixarenes with diphenylphosphoryl acetamide functions at the upper rim: a new class of highly efficient extractants for lanthanides and actinides[J]. Journal of the Chemical Society, Perkin Transactions 2, 1996 (6): 1175-1182.
|
[144] |
Baaden M, Burgard M, Boehme C, et al. Lanthanide cation binding to a phosphoryl-calix[4] arene: the importance of solvent and counterions investigated by molecular dynamics and quantum mechanical simulations[J]. Phys Chem Chem Phys, 2001, 3(7): 1317-1325.
|
[145] |
Benay G, Schurhammer R, Wipff G. BTP-based ligands and their complexes with Eu3+ at “oil”/water interfaces: a molecular dynamics study[J]. Phys Chem Chem Phys, 2010, 12(36): 11089-11102.
|
[146] |
Benay G, Schurhammer R, Wipff G. Basicity, complexation ability and interfacial behavior of BTBPs: a simulation study[J]. Phys Chem Chem Phys, 2011, 13(7): 2922-2934.
|
[147] |
Cocalia V A, Gutowski K E, Rogers R D. The coordination chemistry of actinides in ionic liquids: a review of experiment and simulation[J]. Coord Chem Rev, 2006, 250(7): 755-764.
|
[148] |
Binnemans K. Lanthanides and actinides in ionic liquids[J]. Chem Rev, 2007, 107(6): 2592-2614.
|
[149] |
Sun X, Luo H, Dai S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle[J]. Chem Rev, 2011, 112(4): 2100-2128.
|
[150] |
Chaumont A, Wipff G. Solvation of Ln(Ⅲ) lanthanide cations in the [BMI][SCN], [MeBu3N][SCN], and [BMI]5[Ln (NCS)8] ionic liquids: a molecular dynamics study[J]. Inorg Chem, 2009, 48(10): 4277-4289.
|
[151] |
Chaumont A, Wipff G. Solvation of M3+ lanthanide cations in room-temperature ionic liquids: a molecular dynamics investigation[J]. Phys Chem Chem Phys, 2003, 5(16): 3481-3488.
|
[152] |
Maerzke K A, Goff G S, Runde W H, et al. Structure and dynamics of uranyl(Ⅵ) and plutonyl(Ⅵ) cations in ionic liquid/water mixtures via molecular dynamics simulations[J]. J Phy Chem B, 2013, 117(37): 10852-10868.
|
[153] |
Brown R D, Bunger W, Marshall W L, et al. The electrical conductivity of uranyl fluoride in aqueous solution[J]. J Am Chem Soc, 1954, 76(6): 1580-1581.
|
[154] |
Li B, Zhou J, Priest C, et al. Effect of salt on the uranyl binding with carbonate and calcium ions in aqueous solutions[J]. J Phy Chem B, 2017, 121(34): 8171-8178.
|
[155] |
Endrizzi F, Rao L. Chemical speciation of uranium(Ⅵ) in marine environments: complexation of calcium and magnesium ions with [(UO2)(CO3)3]4- and the effect on the extraction of uranium from seawater[J]. Chemistry-A European Journal, 2014, 20(44): 14499-14506.
|
[156] |
Greathouse J A, O′Brien R J, Bemis G, et al. Molecular dynamics study of aqueous uranyl interactions with quartz(010)[J]. J Phys Chem B, 2002, 106(7): 1646-1655.
|
[157] |
Boily J F, Rosso K M. Crystallographic controls on uranyl binding at the quartz/water interface[J]. Phys Chem Chem Phys, 2011, 13(17): 7845-7851.
|
[158] |
Kuta J, Wander M C, Wang Z, et al. Trends in Ln(Ⅲ) sorption to quartz assessed by molecular dynamics simulations and laser-induced fluorescence studies[J]. J Phys Chem C, 2011, 115(43): 21120-21127.
|
[159] |
Zaidan O F, Greathouse J A, Pabalan R T. Monte Carlo and molecular dynamics simulation of uranyl adsorption on montmorillonite clay[J]. Clays Clay Miner, 2003, 51(4): 372-381.
|
[160] |
Greathouse J A, Cygan R T. Molecular dynamics simulation of uranyl(Ⅵ) adsorption equilibria onto an external montmorillonite surface[J]. Phys Chem Chem Phys, 2005, 7(20): 3580-3586.
|
[161] |
Greathouse J A, Cygan R T. Water structure and aqueous uranyl(Ⅵ) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations[J]. Environ Sci Technol, 2006, 40(12): 3865-3871.
|
[162] |
Yang W, Zaoui A. Behind adhesion of uranyl onto montmorillonite surface: a molecular dynamics study[J]. J Hazard Mater, 2013, 261: 224-234.
|
[163] |
Zhang N, Liu X, Li C, et al. Effect of electrolyte concentration on uranium species adsorption: a molecular dynamics study[J]. Inorg Chem Front, 2015, 2(1): 67-74.
|
[164] |
Li L, Liu X, Lu X. A molecular dynamics study of uranyl-carbonate complexes adsorbed on basal surfaces of clay minerals[J]. Chinese Journal of Geochemistry, 2015, 34(2): 143-155.
|
[165] |
Arima T, Idemitsu K, Inagaki Y, et al. Diffusion and adsorption of uranyl ion in clays: molecular dynamics study[J]. Prog Nuclear Energy, 2016, 92: 286-297.
|
[166] |
张陶娜,徐雪雯,董亮,等.分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J].物理化学学报,2017,33(10):2013-2021.
|
[167] |
刘晓宇,黎春,田文宇,等.铀酰离子吸附在高岭土基面的分子动力学模拟[J].物理化学学报,2011,27(1):59-64.
|
[168] |
Yang W, Zaoui A. Uranyl adsorption on (001) surfaces of kaolinite: a molecular dynamics study[J]. Appl Clay Sci, 2013, 80-81: 98-106.
|
[169] |
Steele H, Wright K, Hillier I. Modelling the adsorption of uranyl on the surface of goethite[J]. Geochim Cosmochim Acta, 2002, 66(8): 1305-1310.
|
[170] |
Doudou S, Vaughan D J, Livens F R, et al. Atomistic simulations of calcium uranyl(Ⅵ) carbonate adsorption on calcite and stepped-calcite surfaces[J]. Environ Sci Technol, 2012, 46(14): 7587-7594.
|
[171] |
Kerisit S, Liu C. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces[J]. Environ Sci Technol, 2014, 48(7): 3899-3907.
|
[172] |
Ou X, Zhuang Z, Li J, et al. Mechanism of adsorption affinity and capacity of Mg(OH)2 to uranyl revealed by molecular dynamics simulation[J]. Rsc Adv, 2016, 37(6): 31507-31513.
|
[173] |
Lan T, Wang H, Liao J, et al. Dynamics of humic acid and its interaction with uranyl in the presence of hydrophobic surface implicated by molecular dynamics simulations[J]. Environ Sci Technol, 2016, 50(20): 11121-11128.
|
[174] |
Zhang C, Lu C, Wang Q, et al. Polarizable multipole-based force field for dimethyl and trimethyl phosphate[J]. J Chem Theory Comput, 2015, 11(11): 5326-5339.
|
[175] |
Shi Y, Xia Z, Zhang J, et al. The polarizable atomic multipole-based AMOEBA force field for proteins[J]. J Chem Theory Comput, 2013, 9(9): 4046-4063.
|
[176] |
Peng X, Zhang Y, Chu H, et al. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform[J]. J Comput Chem, 2016, 37(6): 614-22.
|