• 左
  • 右

基于分子力场的镧系和锕系元素分子动力学研究进展

夏苗仁, 刘子义, 柴之芳, 王东琪

夏苗仁, 刘子义, 柴之芳, 王东琪. 基于分子力场的镧系和锕系元素分子动力学研究进展[J]. 核化学与放射化学, 2019, 41(1): 91-114. DOI: 10.7538/hhx.2019.41.01.0091
引用本文: 夏苗仁, 刘子义, 柴之芳, 王东琪. 基于分子力场的镧系和锕系元素分子动力学研究进展[J]. 核化学与放射化学, 2019, 41(1): 91-114. DOI: 10.7538/hhx.2019.41.01.0091
XIA Miao-ren, LIU Zi-yi, CHAI Zhi-fang, WANG Dong-qi. Advances in Force Field Development and Molecular Dynamics Simulation of Lanthanides and Actinides[J]. Journal of Nuclear and Radiochemistry, 2019, 41(1): 91-114. DOI: 10.7538/hhx.2019.41.01.0091
Citation: XIA Miao-ren, LIU Zi-yi, CHAI Zhi-fang, WANG Dong-qi. Advances in Force Field Development and Molecular Dynamics Simulation of Lanthanides and Actinides[J]. Journal of Nuclear and Radiochemistry, 2019, 41(1): 91-114. DOI: 10.7538/hhx.2019.41.01.0091

基于分子力场的镧系和锕系元素分子动力学研究进展

Advances in Force Field Development and Molecular Dynamics Simulation of Lanthanides and Actinides

  • 摘要: 简要概述了镧系和锕系元素关键种态的力场发展及其应用。早期主要采用非极化力场研究镧系和锕系离子的溶剂化结构,取得了与实验吻合较好的结果。近年来发展起来的极化力场因考虑了对极化效应的处理而可获得更精确的结果,并在镧系和锕系溶液动力学研究中得到了初步的应用。本文从水溶液动力学、f区元素萃取相关的配位动力学、环境与健康相关的动力学等三个方面简要总结了近年来部分在分子力场水平上研究镧系和锕系溶液动力学和生物无机化学的工作。
    Abstract: We briefly overviewed the recent advances in the force field development and molecular dynamics simulations of lanthanides(Ln) and actinides(An) in condensed phase and in biomolecular systems. Earlier studies mainly concerned the solvated structures of Ln/An by using non-polarizable force field, which described the coordination chemistry of Ln/An consistently with experimental data while deviated significantly in the calculation of their dynamical properties. This motivated the development and applications of polarizable force fields of key of Ln/An. Selected work covering the issues of hydrated structures and dynamics in aqueous phase, dynamics relevant to the extraction of f-elements, and relevant to environment and health are overviewed to demonstrate the application of MD simulations at the force field level in the study of Ln/An chemistry.
  •   5403

  • [1] Kowall T, Foglia F, Helm L, et al. Molecular dynamics simulation study of lanthanide ions Ln3+ in aqueous solution: analysis of the structure of the first hydration shell and of the origin of symmetry fluctuations[J]. J Phys Chem, 1995, 99(35): 13078-13087.
    [2] lannuzzi M. Ab initio molecular dynamics[M]∥Sauten R A V, Sautet P. Computational Methods in Catalysis and Materials Science: An Introduction for Scientists and Engineers. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2009: 93-120.
    [3] Pastore G, Smargiassi E, Buda F. Theory of ab initio molecular-dynamics calculations[J]. Phys Rev A, 1991, 44(10): 6334-6347.
    [4] Mark E T. Ab initio molecular dynamics: basic concepts, current trends and novel applications[J]. J Phys: Condens Matter, 2002, 14(50): R1297-R1355.
    [5] Laasonen K. Ab initio molecular dynamics[M]∥Monticelli L, Salonen E. Biomolecular Simulations: Methods and Protocols. New York: Humana Press, 2013: 29-42.
    [6] Tse J S. Ab initio molecular dynamics with density functional theory[J]. Annu Rev Phys Chem, 2002, 53(1): 249-290.
    [7] Gross E K, Dreizler R M. Density functional theory[M]. Ⅱ Ciocco, Italy: Springer Science & Business Media, 2013: Vol. 337.
    [8] Yang W, Ayers P W. Density-functional theory[M]∥Bultinck P, Winter H D, Langenaeker W, et al. Computational Medicinal Chemistry for Drug Discovery. Boca Raton: CRC Press, 2003: 103-132.
    [9] Hansson T, Oostenbrink C, van Gunsteren W. Molecular dynamics simulations[J]. Curr Opin Struct Biol, 2002, 12(2): 190-196.
    [10] Binder K, Horbach J, Kob W, et al. Molecular dynamics simulations[J]. J Phys: Condens Matter, 2004, 16(5): S429-S453.
    [11] Monticelli L, Tieleman D P. Force fields for classical molecular dynamics[M]∥Monticelli L, Salonen E. Biomolecular Simulations: Methods and Protocols. New York: Humana Press, 2013: 197-214.
    [12] Lopes P E M, Guvench O, MacKerell A D. Current status of protein force fields for molecular dynamics[J]. Methods in Molecular Biology (Clifton, N.J.), 2015, 1215: 47-71.
    [13] Wang J, Wolf R M, Caldwell J W, et al. Development and testing of a general amber force field[J]. J Comput Chem, 2004, 25(9): 1157-1174.
    [14] Dickson C J, Madej B D, Skjevik A A, et al. Lipid14: the AMBER lipid force field[J]. J Chem Theory Comput, 2014, 10(2): 865-879.
    [15] Aduri R, Psciuk B T, Saro P, et al. AMBER force field parameters for the naturally occurring modified nucleosides in RNA[J]. J Chem Theory Comput, 2007, 3(4): 1464-1475.
    [16] Hornak V, Abel R, Okur A, et al. Comparison of multiple AMBER force fields and development of improved protein backbone parameters[J]. Proteins: Structure, Function, and Bioinformatics, 2006, 65(3): 712-725.
    [17] MacKerell Jr A D, Banavali N, Foloppe N. Development and current status of the CHARMM force field for nucleic acids[J]. Biopolymers: Original Research on Biomolecules, 2000, 56(4): 257-265.
    [18] Vanommeslaeghe K, Hatcher E, Acharya C, et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields[J]. J Comput Chem, 2010, 31(4): 671-690.
    [19] Pastor R, MacKerell Jr A. Development of the CHARMM force field for lipids[J]. J Phys Chem Lett, 2011, 2(13): 1526-1532.
    [20] van Gunsteren W F, Daura X, Mark A E. GROMOS force field[M]∥Schleyer P V R, Clark N L A T, Gasteiger J, et al. Encyclopedia of Computational Chemistry. New York: John Wiley & Sons, Ltd, 2002.
    [21] Oostenbrink C, Villa A, Mark A E, et al. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6[J]. J Comput Chem, 2004, 25(13): 1656-1676.
    [22] Schmid N, Eichenberger A P, Choutko A, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7[J]. Eur Biophys J, 2011, 40(7): 843-856.
    [23] Oostenbrink C, Soares T A, van der Vegt N F, et al. Validation of the 53A6 GROMOS force field[J]. Eur Biophys J, 2005, 34(4): 273-284.
    [24] Lins R D, Hünenberger P H. A new GROMOS force field for hexopyranose-based carbohydrates[J]. J Comput Chem, 2005, 26(13): 1400-1412.
    [25] Jorgensen W L. OPLS force fields[M]∥Schleyer P V R, Clark N L A T, Gasteiger J, et al. Encyclopedia of Computational Chemistry. New York: John Wiley & Sons, Ltd, 2002.
    [26] Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic -liquids[J]. J Am Chem Soc, 1996, 118(45): 11225-11236.
    [27] Damm W, Frontera A, Tirado-Rives J, et al. OPLS all-atom force field for carbohydrates[J]. J Comput Chem, 1997, 18(16): 1955-1970.
    [28] Baker C M. Polarizable force fields for molecular dynamics simulations of biomolecules[J]. WIREs Comput Mol Sci, 2015, 5(2): 241-254.
    [29] Jones J E. On the determination of molecular fields Ⅱ: from the equation of state of a gas[J]. Proceedings of the Royal Society of London, Series A, 1924, 106(738): 463-477.
    [30] Halgren T A. The representation of van der Waals(VDW) interactions in molecular mechanics force fields: potential form, combination rules, and VDW parameters[J]. J Am Chem Soc, 1992, 114(20): 7827-7843.
    [31] D′Angelo P, Zitolo A, Migliorati V, et al. Revised ionic radii of lanthanoid(Ⅲ) ions in aqueous solution[J]. Inorg Chem, 2011, 50(10): 4572-4579.
    [32] D′Angelo P, Martelli F, Spezia R, et al. Hydration properties and ionic radii of actinide(Ⅲ) ions in aqueous solution[J]. Inorg Chem, 2013, 52(18): 10318-10324.
    [33] Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. AcCrA, 1976, 32(5): 751-767.
    [34] Li P, Merz K M Jr. Metal ion modeling using classical mechanics[J]. Chem Rev, 2017, 117(3): 1564-1686.
    [35] Guilbaud P, Wipff G. Hydration of uranyl (UO2+2) cation and its nitrate ion and 18-crown-6 adducts studied by molecular dynamics simulations[J]. J Phys Chem, 1993, 97(21): 5685-5692.
    [36] Guilbaud P, Wipff G. Force field representation of the UO2+2 cation from free energy MD simulations in water: tests on its 18-crown-6 and NO-3 adducts, and on its calix[6]arene6- and CMPO complexes[J]. J Molecular Struct: theochem, 1996, 366(1-2): 55-63.
    [37] Durand S, Dognon J-P, Guilbaud P, et al. Lanthanide and alkaline-earth complexes of EDTA in water: a molecular dynamics study of structures and binding selectivities[J]. Journal of the Chemical Society, Perkin Transactions 2, 2000(4): 705-714.
    [38] Baaden M, Berny F, Madic C, et al. M3+ lanthanide cation solvation by acetonitrile: the role of cation size, counterions, and polarization effects investigated by molecular dynamics and quantum mechanical simulations[J]. J Phys Chem A, 2000, 104(32): 7659-7671.
    [39] Pomogaev V, Tiwari S P, Rai N, et al. Development and application of effective pairwise potentials for UOn+2, NpOn+2, PuOn+2, and AmOn+2(n=1, 2) ions with water[J]. Phys Chem Chem Phys, 2013, 15(38): 15954-15963.
    [40] Rai N, Tiwari S P, Maginn E J. Force field development for actinyl ions via quantum mechanical calculations: an approach to account for many body solvation effects[J]. J Phys Chem B, 2012, 116(35): 10885-10897.
    [41] Duvail M, Vitorge P, Spezia R. Building a polarizable pair interaction potential for lanthanoids(Ⅲ) in liquid water: a molecular dynamics study of structure and dynamics of the whole series[J]. J Chem Phys, 2009, 130(10): 104501.
    [42] Duvail M, Souaille M, Spezia R, et al. Pair interaction potentials with explicit polarization for molecular dynamics simulations of La3+ in bulk water[J]. J Chem Phys, 2007, 127(3): 034503.
    [43] Spezia R, Jeanvoine Y, Vuilleumier R. Developing polarizable potential for molecular dynamics of Cm(Ⅲ)-carbonate complexes in liquid water[J]. J Mol Model, 2014, 20(8): 2398.
    [44] Duvail M, Martelli F, Vitorge P, et al. Polarizable interaction potential for molecular dynamics simulations of actinoids(Ⅲ) in liquid water[J]. J Chem Phys, 2011, 135(4): 044503.
    [45] Clavaguéra C, Sansot E, Calvo F, et al. Gd(Ⅲ) polyaminocarboxylate chelate: realistic many-body molecular dynamics simulations for molecular imaging applications[J]. J Phy Chem B, 2006, 110(26): 12848-12851.
    [46] Clavaguéra C, Pollet R, Soudan J M, et al. Molecular dynamics study of the hydration of lanthanum(Ⅲ) and europium(Ⅲ) including many-body effects[J]. J Phy Chem B, 2005, 109(16): 7614-7616.
    [47] Clavaguéra C, Calvo F, Dognon J-P. Theoretical study of the hydrated Gd3+ ion: structure, dynamics, and charge transfer[J]. J Chem Phys, 2006, 124(7): 074505.
    [48] Marjolin A, Gourlaouen C, Clavaguera C, et al. Hydration Gibbs free energies of open and closed shell trivalent lanthanide and actinide cations from polarizable molecular dynamics[J]. J Mol Model, 2014, 20(10): 2471.
    [49] Chaumont A, Klimchuk O, Gaillard C, et al. Perrhenate complexation by uranyl in traditional solvents and in ionic liquids: a joint molecular dynamics/spectroscopic study[J]. J Phys Chem B, 2012, 116(10): 3205-3219.
    [50] Troxler L, Baaden M, Böhmer V, et al. Complexation of M3+ lanthanide cations by calix[4]arene-CMPO ligands: a molecular dynamics study in methanol solution and at a water/chloroform interface[J]. Supramol Chem, 2000, 12(1): 27-51.
    [51] Chaumont A, Engler E, Wipff G. Uranyl and strontium salt solvation in room-temperature ionic liquids: a molecular dynamics investigation[J]. Inorg Chem, 2003, 42(17): 5348-5356.
    [52] Chaumont A, Wipff G. Solvation of uranyl(Ⅱ) and europium(Ⅲ) cations and their chloro complexes in a room-temperature ionic liquid: a theoretical study of the effect of solvent “humidity”[J]. Inorg Chem, 2004, 43(19): 5891-5901.
    [53] Chaumont A, Wipff G. Solvation of uranyl-CMPO complexes in dry vs. humid forms of the [BMI][PF6] ionic liquid: a molecular dynamics study[J]. Phys Chem Chem Phys, 2006, 8(4): 494-502.
    [54] Gaillard C, Chaumont A, Billard I, et al. Uranyl coordination in ionic liquids: the competition between ionic liquid anions, uranyl counterions, and Cl- anions investigated by extended X-ray absorption fine structure and UV-visible spectroscopies and molecular dynamics simulations[J]. Inorg Chem, 2007, 46(12): 4815-4826.
    [55] Kerisit S, Liu C. Structure, kinetics, and thermodynamics of the aqueous uranyl(Ⅵ) cation[J]. J Phys Chem A, 2013, 117(30): 6421-6432.
    [56] Li P F, Song L F, Merz K M. Parameterization of highly charged metal ions using the 12-6-4 LJ-type nonbonded model in explicit water[J]. J Phys Chem B, 2015, 119(3): 883-895.
    [57] Ohtaki H, Radnai T. Structure and dynamics of hydrated ions[J]. Chem Rev, 1993, 93(3): 1157-1204.
    [58] Helm L, Merbach A E. Applications of advanced experimental techniques: high pressure NMR and computer simulations[J]. J Chem Soc, Dalton Trans, 2002(5): 633-641.
    [59] Hagberg D, Bednarz E, Edelstein N M, et al. A quantum chemical and molecular dynamics study of the coordination of Cm(Ⅲ) in water[J]. J Am Chem Soc, 2007, 129(46): 14136-14137.
    [60] Beuchat C, Hagberg D, Spezia R, et al. Hydration of lanthanide chloride salts: a quantum chemical and classical molecular dynamics simulation study[J]. J Phy Chem B, 2010, 114(47): 15590-15597.
    [61] Hagberg D, Karlström G, Roos B O, et al. The coordination of uranyl in water: a combined quantum chemical and molecular simulation study[J]. J Am Chem Soc, 2005, 127(41): 14250-14256.
    [62] Duvail M, Spezia R, Vitorge P. A dynamic model to explain hydration behaviour along the lanthanide series[J]. Chemphyschem, 2008, 9(5): 693-696.
    [63] Xia M, Chai Z, Wang D. Polarizable and non-polarizable force field representations of ferric cation and validations[J]. J Phys Chem B, 2017, 121(23): 5718-5729.
    [64] Meier W, Bopp P, Probst M M, et al. Molecular dynamics studies of lanthanum chloride solutions[J]. J Phys Chem, 1990, 94(11): 4672-4682.
    [65] Allen F H. The Cambridge Structural Database: a quarter of a million crystal structures and rising[J]. Acta Crystallogr Sect B: Struct Sci, 2002, 58(3): 380-388.
    [66] Bruno I J, Cole J C, Edgington P R, et al. New software for searching the Cambridge Structural Database and visualizing crystal structures[J]. AcCrB, 2002, 58(3-1): 389-397.
    [67] Ciupka J, Cao-Dolg X, Wiebke J, et al. Computational study of lanthanide(Ⅲ) hydration[J]. Phys Chem Chem Phys, 2010, 12(40): 13215-13223.
    [68] David F, Fourest B. Structure of trivalent lanthanide and actinide aquo ions[J]. New J Chem, 1997, 21(2): 167-176.
    [69] Villa A, Hess B, Saint-Martin H. Dynamics and structure of Ln(Ⅲ)-aqua ions: a comparative molecular dynamics study using ab initio based flexible and polarizable model potentials[J]. J Phy Chem B, 2009, 113(20): 7270-7281.
    [70] Cossy C, Helm L, Powell D H, et al. A change in coordination number from nine to eight along the lanthanide(Ⅲ) aqua ion series in solution: a neutron diffraction study[J]. New J Chem, 1995, 19(1): 27-35.
    [71] Allen P, Bucher J, Shuh D, et al. Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions[J]. Inorg Chem, 2000, 39(3): 595-601.
    [72] Ishiguro S-I, Umebayashi Y, Kato K, et al. Strong and weak solvation steric effects on lanthanoid(Ⅲ) ions in N, N-dimethylformamide-N, N-dimethylacetamide mixtures[J]. J Chem Soc, Faraday Trans, 1998, 94(24): 3607-3612.
    [73] Duvail M, Spezia R, Cartailler T, et al. Temperature dependence of hydrated La3+ properties in liquid water: a molecular dynamics simulations study[J]. Chem Phys Lett, 2007, 448(1): 41-45.
    [74] An Y, Berry M T, van Veggel F C. Aqueous solutions of europium(Ⅲ) dipicolinate complexes: estimates of water coordination based on molecular dynamics simulations and excited state decay rate constants[J]. J Phys Chem A, 2000, 104(47): 11243-11247.
    [75] Lindgren M, Laaksonen A, Westlund P-O. A theoretical spin relaxation and molecular dynamics simulation study of the Gd(H2O)3+9 complex[J]. Phys Chem Chem Phys, 2009, 11(44): 10368-10376.
    [76] Helm L, Merbach A E. Inorganic and bioinorganic solvent exchange mechanisms[J]. Chem Rev, 2005, 105(6): 1923-1960.
    [77] Chopra M, Choudhury N. Molecular dynamics simulation study of distribution and dynamics of aqueous solutions of uranyl ions: the effect of varying temperature and concentration[J]. Phys Chem Chem Phys, 2015, 17(41): 27840-27850.
    [78] Chopra M, Choudhury N. Effect of uranyl ion concentration on structure and dynamics of aqueous uranyl solution: a molecular dynamics simulation study[J]. J Phys Chem B, 2014, 118(49): 14373-14381.
    [79] Yang T, Tsushima S, Suzuki A. Quantum mechanical and molecular dynamical simulations on thorium(Ⅳ) hydrates in aqueous solution[J]. J Phys Chem A, 2001, 105(45): 10439-10445.
    [80] Yang T X, Tsushima S, Suzuki A. Chloride concentration and temperature effects on the hydration of Th(Ⅳ) ion: a molecular dynamics simulation[J]. Chem Phys Lett, 2002, 360(5-6): 534-542.
    [81] Johansson G, Magini M, Ohtaki H. Coordination around thorium(Ⅳ) in aqueous perchlorate, chloride and nitrate solutions[J]. J Solution Chem, 1991, 20(8): 775-792.
    [82] Marjolin A, Gourlaouen C, Clavaguéra C, et al. Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies[J]. Theor Chem Acc, 2012, 131(4): 1198.
    [83] Montagna M, Spezia R, Bodo E. Solvation properties of the actinide ion Th(Ⅳ) in DMSO and DMSO: water mixtures through polarizable molecular dynamics[J]. Inorg Chem, 2017, 56(19): 11929-11937.
    [84] Moll H, Denecke M, Jalilehvand F, et al. Structure of the aqua ions and fluoride complexes of uranium(Ⅳ) and thorium(Ⅳ) in aqueous solution an EXAFS study[J]. Inorg Chem, 1999, 38(8): 1795-1799.
    [85] Wilson R E, Skanthakumar S, Burns P C, et al. Structure of the homoleptic thorium(Ⅳ) aqua ion [Th (H2O)10]Br4[J]. Angew Chem Int Ed, 2007, 46(42): 8043-8045.
    [86] Torapava N, Persson I, Eriksson L, et al. Hydration and hydrolysis of thorium(Ⅳ) in aqueous solution and the structures of two crystalline thorium(Ⅳ) hydrates[J]. Inorg Chem, 2009, 48(24): 11712-11723.
    [87] Kimura T, Nagaishi R, Kato Y, et al. Luminescence study on solvation of americium(Ⅲ), curium(Ⅲ) and several lanthanide(Ⅲ) ions in nonaqueous and binary mixed solvents[J]. Radiochim Acta, 2001, 89(3): 125-130.
    [88] Kimura T, Choppin G R. Luminescence study on determination of the hydration number of Cm(Ⅲ)[J]. J Alloys Compd, 1994, 213: 313-317.
    [89] Kimura T, Kato Y, Takeishi H, et al. Comparative study on the hydration states of Cm(Ⅲ) and Eu(Ⅲ) in solution and in cation exchange resin[J]. J Alloys Compd, 1998, 271: 719-722.
    [90] Tian G, Kimura T, Yoshida Z, et al. Fluorescence and IR studies on the hydration state of lanthanides(Ⅲ) and curium(Ⅲ) in the complexes extracted with purified Cyanex301, Cyanex302 and Cyanex272[J]. Radiochim Acta, 2004, 92(8): 495-499.
    [91] Stumpf T, Fanghänel T, Grenthe I. Complexation of trivalent actinide and lanthanide ions by glycolic acid: a TRLFS study[J]. J Chem Soc Dalton Trans, 2002(20): 3799-3804.
    [92] Moll H, Geipel G, Bernhard G. Complexation of curium(Ⅲ) by adenosine 5′-triphosphate (ATP): a time-resolved laser-induced fluorescence spectroscopy(TRLFS) study[J]. Inorg Chim Acta, 2005, 358(7): 2275-2282.
    [93] Kimura T, Choppin G R, Kato Y, et al. Determination of the hydration number of Cm(Ⅲ) in various aqueous solutions[J]. Radiochim Acta, 1996, 72(2): 61-64.
    [94] Yang T, Bursten B E. Speciation of the curium(Ⅲ) ion in aqueous solution: a combined study by quantum chemistry and molecular dynamics simulation[J]. Inorg Chem, 2006, 45(14): 5291-5301.
    [95] Lindqvist-Reis P, Klenze R, Schubert G, et al. Hydration of Cm3+ in aqueous solution from 20 to 200 C: a time-resolved laser fluorescence spectroscopy study[J]. J Phy Chem B, 2005, 109(7): 3077-3083.
    [96] Lindqvist-Reis P, Walther C, Klenze R, et al. Large ground-state and excited-state crystal field splitting of 8-fold-coordinate Cm3+ in [Y(H2O)8]Cl3. 15-crown-5[J]. J Phy Chem B, 2006, 110(11): 5279-5285.
    [97] Galbis E, Hernández-Cobos J, den Auwer C, et al. Solving the hydration structure of the heaviest actinide aqua ion known: the californium(Ⅲ) case[J]. Angew Chem Int Ed, 2010, 49(22): 3811-3815.
    [98] Fourest B, Duplessis J, David F. Comparison of diffusion coefficients and hydrated radii for some trivalent lanthanide and actinide ions in aqueous solution[J]. Radiochim Acta, 1984, 36(4): 191-196.
    [99] David F H, Vokhmin V. Thermodynamic properties of some tri- and tetravalent actinide aquo ions[J]. New J Chem, 2003, 27(11): 1627-1632.
    [100] Bühl M, Kabrede H. Mechanism of water exchange in aqueous uranyl(Ⅵ) ion: a density functional molecular dynamics study[J]. Inorg Chem, 2006, 45(10): 3834-3836.
    [101] Vallet V, Wahlgren U, Schimmelpfennig B, et al. The mechanism for water exchange in [UO2(H2O)5]2+ and [UO2(oxalate)2(H2O)]2-, as studied by quantum chemical methods[J]. J Am Chem Soc, 2001, 123(48): 11999-12008.
    [102] Tiwari S P, Rai N, Maginn E J. Dynamics of actinyl ions in water: a molecular dynamics simulation study[J]. Phys Chem Chem Phys, 2014, 16(17): 8060-8069.
    [103] Farkas I, Bányai I, Szabó Z, et al. Rates and mechanisms of water exchange of UO2+2(aq) and UO2(oxalate)F(H2O)2-: a variable-temperature 17O and 19F NMR study[J]. Inorg Chem, 2000, 39(4): 799-805.
    [104] Atta-Fynn R, Bylaska E J, De Jong W A. Free energies and mechanisms of water exchange around uranyl from first principles molecular dynamics[J]. MRS Online Proceedings Library Archive, 2012, 1383.
    [105] Kerisit S, Liu C. Molecular simulation of the diffusion of uranyl carbonate species in aqueous solution[J]. Geochim Cosmochim Acta, 2010, 74(17): 4937-4952.
    [106] Doudou S, Arumugam K, Vaughan D J, et al. Investigation of ligand exchange reactions in aqueous uranyl carbonate complexes using computational approaches[J]. Phys Chem Chem Phys, 2011, 13(23): 11402-11411.
    [107] Marx G, Bischoff H. Transport processes of actinides in electrolyte solutions[J]. JRAC, 1976, 30(2): 567-581.
    [108] Gibson J K, Haire R G, Santos M, et al. Oxidation studies of dipositive actinide ions, An2+(An=Th, U, Np, Pu, Am) in the gas phase: synthesis and characterization of the isolated uranyl, neptunyl, and plutonyl ions UO2+2(g), NpO2+2(g), and PuO2+2(g)[J]. J Phys Chem A, 2005, 109(12): 2768-2781.
    [109] Szabó Z, Glaser J, Grenthe I. Kinetics of ligand exchange reactions for uranyl(2+) fluoride complexes in aqueous solution[J]. Inorg Chem, 1996, 35(7): 2036-2044.
    [110] Druchok M, Bryk T, Holovko M. A molecular dynamics study of uranyl hydration[J]. J Mol Liq, 2005, 120(1-3): 11-14.
    [111] Starck M, Laporte F A, Oros S, et al. Cyclic phosphopeptides to rationalize the role of phosphoamino acids in uranyl binding to biological targets[J]. Chemistry(Easton), 2017, 23(22): 5281-5290.
    [112] Lebrun C, Starck M, Gathu V, et al. Engineering short peptide sequences for uranyl binding[J]. Chemistry(Easton), 2014, 20(50): 16566-16573.
    [113] Wegner S V, Boyaci H, Chen H, et al. Engineering a uranyl-specific binding protein from NikR[J]. Angew Chem Int Edit, 2009, 48(13): 2339-2341.
    [114] Vidaud C, Gourion-Arsiquaud S, Rollin-Genetet F, et al. Structural consequences of binding of UO2+2 to apotransferrin: can this protein account for entry of uranium into human cells?[J]. Biochem, 2007, 46(8): 2215-2226.
    [115] Benavides-Garcia M G, Balasubramanian K. Structural insights into the binding of uranyl with human serum protein apotransferrin structure and spectra of protein-uranyl interactions[J]. Chem Res Toxicol, 2009, 22(9): 1613-1621.
    [116] Michon J, Frelon S, Garnier C, et al. Determinations of uranium(Ⅵ) binding properties with some metalloproteins (transferrin, albumin, metallothionein and ferritin) by fluorescence quenching[J]. J Fluoresc, 2010, 20(2): 581-590.
    [117] Odoh S O, Bondarevsky G D, Karpus J, et al. UO2+2 uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity[J]. J Am Chem Soc, 2014, 136(50): 17484-17494.
    [118] Wang M, Ding W, Wang D. Binding mechanism of uranyl to transferrin implicated by density functional theory study[J]. Rsc Adv, 2017, 7(7): 3667-3675.
    [119] Duvail M, Ruas A, Venault L, et al. Molecular dynamics studies of concentrated binary aqueous solutions of lanthanide salts: structures and exchange dynamics[J]. Inorg Chem, 2010, 49(2): 519-530.
    [120] 兰图,刘展翔,李兴亮, 等.低浓缩铀靶辐照后溶液中铀的化学种态及主要裂变元素的影响[J].无机化学学报,2015,31(9):1774-1784.
    [121] Duvail M, Guilbaud P. Understanding the nitrate coordination to Eu3+ ions in solution by potential of mean force calculations[J]. Phys Chem Chem Phys, 2011, 13(13): 5840-5847.
    [122] Wang H, Chai Z, Wang D. Influence of anions on the adsorption of uranyl on hydroxylated α-SiO2(001): a first-principles study[J]. Green Energy & Environment, 2017, 2(1): 30-41.
    [123] Martelli F, Jeanvoine Y, Vercouter T, et al. Hydration properties of lanthanoid(Ⅲ) carbonate complexes in liquid water determined by polarizable molecular dynamics simulations[J]. Phys Chem Chem Phys, 2014, 16(8): 3693-3705.
    [124] Duvail M, Villard A, Nguyen T N, et al. Thermodynamics of associated electrolytes in water: molecular dynamics simulations of sulfate solutions[J]. J Phys Chem B, 2015, 119(34): 11184-11195.
    [125] Dunsmore H S, James J. The electrolytic dissociation of magnesium sulphate and lanthanum ferricyanide in mixed solvents[J]. J Chem Soc, 1951: 2925-2930.
    [126] Akilan C, Rohman N, Hefter G, et al. Temperature effects on ion association and hydration in MgSO4 by dielectric spectroscopy[J]. Chemphyschem, 2006, 7(11): 2319-2330.
    [127] Vercouter T, Amekraz B, Moulin C, et al. Sulfate complexation of trivalent lanthanides probed by nanoelectrospray mass spectrometry and time resolved laser-induced luminescence[J]. Inorg Chem, 2005, 44(21): 7570-7581.
    [128] Laurie S, Monk C. Dissociation constants of some barium, europium, and hexaamminecobalt ion-pairs by use of sparingly soluble iodates containing radiotracers[J]. J Chem Soc, 1963: 3343-3347.
    [129] Ahrland S, Kullberg L. Thermodynamics of metal complex formation in aqueous solution Ⅲ: a calorimetric study of hydrogen sulphate and uranium(Ⅵ) sulphate, acetate, and thiocyanate complexes[J]. Acta Chem Scand, 1971, 25(10): 3677-3691.
    [130] Vercouter T, Vitorge P, Amekraz B, et al. Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(Ⅵ)[J]. Inorg Chem, 2008, 47(6): 2180-2189.
    [131] Wallace R M. Deermination of stability constants by Donnan membrane equilibrium: the uranyl sulfate complexes[J]. J Phys Chem, 1967, 71(5): 1271-1276.
    [132] Hudson M J, Harwood L M, Laventine D M, et al. Use of soft heterocyclic N-donor ligands to separate actinides and lanthanides[J]. Inorg Chem, 2013, 52(7): 3414-3428.
    [133] Ye X, Cui S, de Almeida V, et al. Interfacial complex formation in uranyl extraction by tributyl phosphate in dodecane diluent: a molecular dynamics study[J]. J Phys Chem B, 2009, 113(29): 9852-9862.
    [134] Apelblat A, Faraggi M. Extraction in the system: uranyl nitrate-nitric acid-tributyl phosphate-diluent[J]. Journal of Nuclear Energy: Parts A/B: Reactor Science and Technology, 1966, 20(1): 55-65.
    [135] Iso S, Meguro Y, Yoshida Z. Extraction of uranium(Ⅵ) from nitric acid solution into supercritical carbon dioxide containing tri-n-butylphosphate[J]. Chem Lett, 1995, 24(5): 365-366.
    [136] Ye X, Cui S, de Almeida V F, et al. Uranyl nitrate complex extraction into TBP/dodecane organic solutions: a molecular dynamics study[J]. Phys Chem Chem Phys, 2010, 12(47): 15406-15409.
    [137] Guilbaud P, Berthon L, Louisfrema W, et al. Determination of the structures of uranyl-tri-n-butyl-phosphate aggregates by coupling experimental results with molecular dynamic simulations[J]. Chemistry-A European Journal, 2017, 23(65): 16660-16670.
    [138] Martell A E, Smith R M. Critical stability constants[M]. New York: Springer, 1974.
    [139] Kumar K, Tweedle M F. Ligand basicity and rigidity control formation of macrocyclic polyamino carboxylate complexes of gadolinium(Ⅲ)[J]. Inorg Chem, 1993, 32(20): 4193-4199.
    [140] Toth E, Brucher E, Lazar I, et al. Kinetics of formation and dissociation of lanthanide(Ⅲ)-DOTA complexes[J]. Inorg Chem, 1994, 33(18): 4070-4076.
    [141] Chang C A, Liu Y L, Chen C Y, et al. Ligand preorganization in metal ion complexation: molecular mechanics/dynamics, kinetics, and laser-excited luminescence studies of trivalent lanthanide complex formation with macrocyclic ligands TETA and DOTA[J]. Inorg Chem, 2001, 40(14): 3448-3455.
    [142] Coupez B, Wipff G. The synergistic effect of cobalt-dicarbollide anions on the extraction of M3+ lanthanide cations by calix[4] arenes: a molecular dynamics study at the water‘oil’interface[J]. Cr Chim, 2004, 7(12): 1153-1164.
    [143] Arnaud-Neu F, Böhmer V, Dozol J F, et al. Calixarenes with diphenylphosphoryl acetamide functions at the upper rim: a new class of highly efficient extractants for lanthanides and actinides[J]. Journal of the Chemical Society, Perkin Transactions 2, 1996 (6): 1175-1182.
    [144] Baaden M, Burgard M, Boehme C, et al. Lanthanide cation binding to a phosphoryl-calix[4] arene: the importance of solvent and counterions investigated by molecular dynamics and quantum mechanical simulations[J]. Phys Chem Chem Phys, 2001, 3(7): 1317-1325.
    [145] Benay G, Schurhammer R, Wipff G. BTP-based ligands and their complexes with Eu3+ at “oil”/water interfaces: a molecular dynamics study[J]. Phys Chem Chem Phys, 2010, 12(36): 11089-11102.
    [146] Benay G, Schurhammer R, Wipff G. Basicity, complexation ability and interfacial behavior of BTBPs: a simulation study[J]. Phys Chem Chem Phys, 2011, 13(7): 2922-2934.
    [147] Cocalia V A, Gutowski K E, Rogers R D. The coordination chemistry of actinides in ionic liquids: a review of experiment and simulation[J]. Coord Chem Rev, 2006, 250(7): 755-764.
    [148] Binnemans K. Lanthanides and actinides in ionic liquids[J]. Chem Rev, 2007, 107(6): 2592-2614.
    [149] Sun X, Luo H, Dai S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle[J]. Chem Rev, 2011, 112(4): 2100-2128.
    [150] Chaumont A, Wipff G. Solvation of Ln(Ⅲ) lanthanide cations in the [BMI][SCN], [MeBu3N][SCN], and [BMI]5[Ln (NCS)8] ionic liquids: a molecular dynamics study[J]. Inorg Chem, 2009, 48(10): 4277-4289.
    [151] Chaumont A, Wipff G. Solvation of M3+ lanthanide cations in room-temperature ionic liquids: a molecular dynamics investigation[J]. Phys Chem Chem Phys, 2003, 5(16): 3481-3488.
    [152] Maerzke K A, Goff G S, Runde W H, et al. Structure and dynamics of uranyl(Ⅵ) and plutonyl(Ⅵ) cations in ionic liquid/water mixtures via molecular dynamics simulations[J]. J Phy Chem B, 2013, 117(37): 10852-10868.
    [153] Brown R D, Bunger W, Marshall W L, et al. The electrical conductivity of uranyl fluoride in aqueous solution[J]. J Am Chem Soc, 1954, 76(6): 1580-1581.
    [154] Li B, Zhou J, Priest C, et al. Effect of salt on the uranyl binding with carbonate and calcium ions in aqueous solutions[J]. J Phy Chem B, 2017, 121(34): 8171-8178.
    [155] Endrizzi F, Rao L. Chemical speciation of uranium(Ⅵ) in marine environments: complexation of calcium and magnesium ions with [(UO2)(CO3)3]4- and the effect on the extraction of uranium from seawater[J]. Chemistry-A European Journal, 2014, 20(44): 14499-14506.
    [156] Greathouse J A, O′Brien R J, Bemis G, et al. Molecular dynamics study of aqueous uranyl interactions with quartz(010)[J]. J Phys Chem B, 2002, 106(7): 1646-1655.
    [157] Boily J F, Rosso K M. Crystallographic controls on uranyl binding at the quartz/water interface[J]. Phys Chem Chem Phys, 2011, 13(17): 7845-7851.
    [158] Kuta J, Wander M C, Wang Z, et al. Trends in Ln(Ⅲ) sorption to quartz assessed by molecular dynamics simulations and laser-induced fluorescence studies[J]. J Phys Chem C, 2011, 115(43): 21120-21127.
    [159] Zaidan O F, Greathouse J A, Pabalan R T. Monte Carlo and molecular dynamics simulation of uranyl adsorption on montmorillonite clay[J]. Clays Clay Miner, 2003, 51(4): 372-381.
    [160] Greathouse J A, Cygan R T. Molecular dynamics simulation of uranyl(Ⅵ) adsorption equilibria onto an external montmorillonite surface[J]. Phys Chem Chem Phys, 2005, 7(20): 3580-3586.
    [161] Greathouse J A, Cygan R T. Water structure and aqueous uranyl(Ⅵ) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations[J]. Environ Sci Technol, 2006, 40(12): 3865-3871.
    [162] Yang W, Zaoui A. Behind adhesion of uranyl onto montmorillonite surface: a molecular dynamics study[J]. J Hazard Mater, 2013, 261: 224-234.
    [163] Zhang N, Liu X, Li C, et al. Effect of electrolyte concentration on uranium species adsorption: a molecular dynamics study[J]. Inorg Chem Front, 2015, 2(1): 67-74.
    [164] Li L, Liu X, Lu X. A molecular dynamics study of uranyl-carbonate complexes adsorbed on basal surfaces of clay minerals[J]. Chinese Journal of Geochemistry, 2015, 34(2): 143-155.
    [165] Arima T, Idemitsu K, Inagaki Y, et al. Diffusion and adsorption of uranyl ion in clays: molecular dynamics study[J]. Prog Nuclear Energy, 2016, 92: 286-297.
    [166] 张陶娜,徐雪雯,董亮,等.分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J].物理化学学报,2017,33(10):2013-2021.
    [167] 刘晓宇,黎春,田文宇,等.铀酰离子吸附在高岭土基面的分子动力学模拟[J].物理化学学报,2011,27(1):59-64.
    [168] Yang W, Zaoui A. Uranyl adsorption on (001) surfaces of kaolinite: a molecular dynamics study[J]. Appl Clay Sci, 2013, 80-81: 98-106.
    [169] Steele H, Wright K, Hillier I. Modelling the adsorption of uranyl on the surface of goethite[J]. Geochim Cosmochim Acta, 2002, 66(8): 1305-1310.
    [170] Doudou S, Vaughan D J, Livens F R, et al. Atomistic simulations of calcium uranyl(Ⅵ) carbonate adsorption on calcite and stepped-calcite surfaces[J]. Environ Sci Technol, 2012, 46(14): 7587-7594.
    [171] Kerisit S, Liu C. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces[J]. Environ Sci Technol, 2014, 48(7): 3899-3907.
    [172] Ou X, Zhuang Z, Li J, et al. Mechanism of adsorption affinity and capacity of Mg(OH)2 to uranyl revealed by molecular dynamics simulation[J]. Rsc Adv, 2016, 37(6): 31507-31513.
    [173] Lan T, Wang H, Liao J, et al. Dynamics of humic acid and its interaction with uranyl in the presence of hydrophobic surface implicated by molecular dynamics simulations[J]. Environ Sci Technol, 2016, 50(20): 11121-11128.
    [174] Zhang C, Lu C, Wang Q, et al. Polarizable multipole-based force field for dimethyl and trimethyl phosphate[J]. J Chem Theory Comput, 2015, 11(11): 5326-5339.
    [175] Shi Y, Xia Z, Zhang J, et al. The polarizable atomic multipole-based AMOEBA force field for proteins[J]. J Chem Theory Comput, 2013, 9(9): 4046-4063.
    [176] Peng X, Zhang Y, Chu H, et al. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform[J]. J Comput Chem, 2016, 37(6): 614-22.
图(1)
计量
  • 文章访问数:  1387
  • HTML全文浏览量:  1
  • PDF下载量:  4535
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-02-19

目录

    /

    返回文章
    返回