• 左
  • 右

放射性废物玻璃固化体溶解行为及机理研究进展

马特奇, 梁威, 徐辉, 李伟平, 赵健, 韩小元

马特奇, 梁威, 徐辉, 李伟平, 赵健, 韩小元. 放射性废物玻璃固化体溶解行为及机理研究进展[J]. 核化学与放射化学, 2019, 41(5): 411-417. DOI: 10.7538/hhx.2019.YX.2018029
引用本文: 马特奇, 梁威, 徐辉, 李伟平, 赵健, 韩小元. 放射性废物玻璃固化体溶解行为及机理研究进展[J]. 核化学与放射化学, 2019, 41(5): 411-417. DOI: 10.7538/hhx.2019.YX.2018029
MA Te-qi, LIANG Wei, XU Hui, LI Wei-ping, ZHAO Jian, HAN Xiao-yuan. Research Progress on Dissolution Behavior and Mechanisms of Radioactive Waste Glasses[J]. Journal of Nuclear and Radiochemistry, 2019, 41(5): 411-417. DOI: 10.7538/hhx.2019.YX.2018029
Citation: MA Te-qi, LIANG Wei, XU Hui, LI Wei-ping, ZHAO Jian, HAN Xiao-yuan. Research Progress on Dissolution Behavior and Mechanisms of Radioactive Waste Glasses[J]. Journal of Nuclear and Radiochemistry, 2019, 41(5): 411-417. DOI: 10.7538/hhx.2019.YX.2018029

放射性废物玻璃固化体溶解行为及机理研究进展

Research Progress on Dissolution Behavior and Mechanisms of Radioactive Waste Glasses

  • 摘要: 玻璃固化体是高放废物深地质处置场景下最有潜力的固化体形式,其化学稳定性直接决定了核素释放的速率和总量。本文综述了放射性废物玻璃固化体溶解行为和机理的研究进展,主要包括溶解动力学过程、相应控制机理及影响因素,以期为我国放射性废物处置工程安全评价提供参考。
    Abstract: Glass is the most potential solid phase for high level waste (HLW) immobilization in the deep geological repository conditions. Chemical durability is the key character of nuclear waste glasses, as it directly results in the leaching rate and total dissolved amount of radioactive nuclides containing in the glasses. In order to offer special reference for our nuclear disposal engineering, the dissolution behaviors of nuclear waste glasses, including kinetic regimes, relative controlling mechanisms and influencing factors, were reviewed in this paper.
  •   5449

  • [1] Mckinley I G. The management of long lived nuclear waste[J]. Energy Policy, 1992, 20(7): 683-692.
    [2] Ojovan M I, Lee W E. Glassy waste forms for nuclear waste immobilization[J]. Metall Mater Trans A, 2011, 42(4): 837-851.
    [3] Weber W J, Navrotsky A, Stefanovsky S, et al. Materials science of high-level nuclear waste immobilization[J]. Mrs Bulletin, 2009, 34(1): 46-53.
    [4] Donald I W. Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes[J]. Tetrahedron Lett, 2010, 38(24): 4199-4202.
    [5] Verney-Carron A, Gin S, Libourel G. Archaeological analogs and the future of nuclear waste glass[J]. J Nucl Mater, 2010, 406(3): 365-370.
    [6] Libourel G, Verneycarron A, Morlok A, et al. The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses[J]. Comptes Rendus-Géoscience, 2011, 343(2): 237-245.
    [7] Zapol P, Criscenti L J, Schultz P A. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution, SAND2011-8250[R]. USA: Sandia National Laboratories, 2011.
    [8] Gin S, Abdelouas A, Criscenti L J, et al. An international initiative on long-term behavior of high-level nuclear waste glass[J]. Materials Today, 2013, 16(6): 243-248.
    [9] Poinssot C, Gin S. Long-term behavior science: the cornerstone approach for reliably assessing the long-term performance of nuclear waste[J]. J Nucl Mater, 2012, 420(1-3): 182-192.
    [10] Utton C A, Hand R J, Bingham P A, et al. Dissolution of vitrified wastes in a high-pH calcium-rich solution[J]. J Nucl Mater, 2013, 435(1-3): 112-122.
    [11] Frugier P, Gin S, Minet Y, et al. SON68 nuclear glass dissolution kinetics: current state of know-ledge and basis of the new GRAAL model[J]. J Nucl Mater, 2008, 380(1-3): 8-21.
    [12] Ferrand K, Abdelouas A, Grambow B. Water diffusion in the simulated French nuclear waste glass SON68 contacting silica rich solutions: experimental and modeling[J]. J Nucl Mater, 2006, 355(1-3): 54-67.
    [13] Ojovan M I, Pankov A, Lee W E. The ion exchange phase in corrosion of nuclear waste glasses[J]. J Nucl Mater, 2006, 358(1): 57-68.
    [14] Geneste G, Bouyer F, Gin S. Hydrogen-sodium interdiffusion in borosilicate glasses investigated from first principles[J]. J Non-Cryst Solids, 2006, 352(28-29): 3147-3152.
    [15] Chave T, Frugier P, Ayral A, et al. Solid state diffusion during nuclear glass residual alteration in solution[J]. J Nucl Mater, 2007, 362(2-3): 466-473.
    [16] Conradt R. Chemical durability of oxide glasses in aqueous solutions: a review[J]. J Am Ceram Soc, 2008, 91(3): 728-735.
    [17] Hunter F M I, Hoch A R, Heath T G, et al. Review of glass dissolution models and application to UK glasses, RWM005105[R]. U K: Nuclear Decommissioning Authority, 2015.
    [18] Bourcier W L. Critical review of glass performance modeling, ANL-94/17[R]. Argonne National Laboratory, Chemical Technology Division, 1994.
    [19] Jégou C, Gin S, Larché F. Alteration kinetics of a simplified nuclear glass in an aqueous medium: effects of solution chemistry and of protective gel properties on diminishing the alteration rate[J]. J Nucl Mater, 2000, 280(2): 216-229.
    [20] Ribet S, Gin S. Role of neoformed phases on the mechanisms controlling the resumption of SON68 glass alteration in alkaline media[J]. J Nucl Mater, 2004, 324(2-3): 152-164.
    [21] Geisler T, Janssen A, Scheiter D, et al. Aqueous corrosion of borosilicate glass under acidic conditions: a new corrosion mechanism[J]. J Non-Cryst Solids, 2010, 356(28): 1458-1465.
    [22] Mellott N P. Multicomponent aluminosilicate glasses: structure and acid corrosion[D]. America: The Pennsylvania State University, 2003.
    [23] Frugier P, Chave T, Gin S, et al. Application of the GRAAL model to leaching experiments with SON68 nuclear glass in initially pure water[J]. J Nucl Mater, 2009, 392(3): 552-567.
    [24] Minet Y, Bonin B, Gin S, et al. Analytic implementation of the GRAAL model: application to a R7T7-type glass package in a geological disposal environment[J]. J Nucl Mater, 2010, 404(3): 178-202.
    [25] Grambow B, Müller R. First-order dissolution rate law and the role of surface layers in glass performance assessment[J]. J Nucl Mater, 2001, 298(1-2): 112-124.
    [26] Rebiscoul D, Frugier P, Gin S, et al. Protective properties and dissolution ability of the gel formed during nuclear glass alteration[J]. J Nucl Mater, 2005, 342(1-3): 26-34.
    [27] Valle N, Verney-Carron A, Sterpenich J, et al. Elemental and isotopic (29Si and 18O) tracing of glass alteration mechanisms[J]. Geochim Cosmochim Ac, 2010, 74(12): 3412-3431.
    [28] Gin S, Jollivet P, Fournier M, et al. Origin and consequences of silicate glass passivation by surface layers[J]. Nat Commun, 2015, 6: 6360.
    [29] Gin S, Neill L, Fournier M, et al. The controversial role of inter-diffusion in glass alteration[J]. Chem Geol, 2016, 440: 115-123.
    [30] Hellmann R, Wirth R, Daval D, et al. Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: a study based on the nanometer-scale chemistry of fluid-silicate interfaces[J]. Chem Geol, 2012, 294-295(3): 203-216.
    [31] Neeway J, Abdelouas A, Grambow B, et al. Dissolution mechanism of the SON68 reference nuclear waste glass: new data in dynamic system in silica saturation conditions[J]. J Nucl Mater, 2011, 415(1): 31-37.
    [32] Frugier P, Martin C, Ribet I, et al. The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM and VRZ[J]. J Nucl Mater, 2005, 346(2-3): 194-207.
    [33] Gan X Y, Zhang Z T, Yuan W Y, et al. Long-term product consistency test of simulated 90-19/Nd HLW glass[J]. J Nucl Mater, 2011, 408(1): 102-109.
    [34] Gin S, Mestre J P. SON68 nuclear glass alteration kinetics between pH 7 and pH 11.5[J]. J Nucl Mater, 2001, 295(1): 83-96.
    [35] Fournier M, Gin S, Frugier P. Resumption of nuclear glass alteration: state of the art[J]. J Nucl Mater, 2014, 448(1-3): 348-363.
    [36] Mahadevan T S, Garofalini S H. Dissociative water potential for molecular dynamics simulations[J]. J Phys Chem B,  2007, 111(30): 8919-8927.
    [37] Devreux F, Ledieu A, Barboux P, et al. Leaching of borosilicate glasses Ⅱ: model and Monte-Carlo simulations[J]. J Non-Cryst Solids, 2004, 343(1-3): 13-25.
    [38] Rajmohan N, Frugier P, Gin S. Composition effects on synthetic glass alteration mechanisms Ⅰ: experiments[J]. Chem Geol, 2010, 279(3-4): 106-119.
    [39] Pèlegrin E, Calas G, Ildefonse P, et al. Structural evolution of glass surface during alteration: application to nuclear waste glasses[J]. J Non-Cryst Solids, 2010, 356(44-49): 2497-2508.
    [40] Pelmenschikov A, Strandh H, Pettersson L G M, et al. Lattice resistance to hydrolysis of Si-O-Si bonds of silicate minerals: Ab initio calculations of a single water attack onto the (001) and (111) β-cristobalite surfaces[J]. J Phys Chem B, 2000, 104(24): 5779-5783.
    [41] Jantzen C M, Kaplan D I, Bibler N E, et al. Performance of a buried radioactive high level waste (HLW) glass after 24 years[J]. J Nucl Mater, 2008, 378(3): 244-256.
    [42] Bonfils J, Peuget S, Panczer G, et al. Effect of chemical composition on borosilicate glass behavior under irradiation[J]. J Non-Cryst Solids, 2010, 356(6-8): 388-393.
    [43] Angeli F, Gaillard M, Jollivet P, et al. Influence of glass composition and alteration solution on leached silicate glass structure: a solid-state NMR investigation[J]. Geochim Cosmochim Ac, 2006, 70(10): 2577-2590.
    [44] Luckscheiter B, Nesovic M. Short-term corrosion of HLW glass in aqueous solutions enriched with various metal cations[J]. J Nucl Mater, 2004, 327(2-3): 182-187.
    [45] Chave T, Frugier P, Gin S, et al. Glass-water interphase reactivity with calcium rich solutions[J]. Geochim Cosmochim Ac, 2011, 75(15): 4125-4139.
    [46] Verney-Carron A, Gin S, Libourel G. A fractured roman glass block altered for 1 800 years in seawater: analogy with nuclear waste glass in a deep geological repository[J]. Geochim Cosmochim Ac, 2008, 72(22): 5372-5385.
    [47] Verney-Carron A, Gin S, Frugier P, et al. Long-term modeling of alteration-transport coupling: application to a fractured Roman glass[J]. Geochim Cosmochim Ac, 2010, 74(8): 2291-2315.
    [48] Tadjiev D R, Hand R J, Zeng P. Comparison of glass hydration layer thickness measured by transmission electron microscopy and nanoindentation[J]. Mater Lett, 2010, 64(9): 1041-1044.
图(1)
计量
  • 文章访问数:  1260
  • HTML全文浏览量:  3
  • PDF下载量:  3885
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-10-19

目录

    /

    返回文章
    返回