[1] |
Mckinley I G. The management of long lived nuclear waste[J]. Energy Policy, 1992, 20(7): 683-692.
|
[2] |
Ojovan M I, Lee W E. Glassy waste forms for nuclear waste immobilization[J]. Metall Mater Trans A, 2011, 42(4): 837-851.
|
[3] |
Weber W J, Navrotsky A, Stefanovsky S, et al. Materials science of high-level nuclear waste immobilization[J]. Mrs Bulletin, 2009, 34(1): 46-53.
|
[4] |
Donald I W. Waste immobilization in glass and ceramic based hosts: radioactive, toxic and hazardous wastes[J]. Tetrahedron Lett, 2010, 38(24): 4199-4202.
|
[5] |
Verney-Carron A, Gin S, Libourel G. Archaeological analogs and the future of nuclear waste glass[J]. J Nucl Mater, 2010, 406(3): 365-370.
|
[6] |
Libourel G, Verneycarron A, Morlok A, et al. The use of natural and archeological analogues for understanding the long-term behavior of nuclear glasses[J]. Comptes Rendus-Géoscience, 2011, 343(2): 237-245.
|
[7] |
Zapol P, Criscenti L J, Schultz P A. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution, SAND2011-8250[R]. USA: Sandia National Laboratories, 2011.
|
[8] |
Gin S, Abdelouas A, Criscenti L J, et al. An international initiative on long-term behavior of high-level nuclear waste glass[J]. Materials Today, 2013, 16(6): 243-248.
|
[9] |
Poinssot C, Gin S. Long-term behavior science: the cornerstone approach for reliably assessing the long-term performance of nuclear waste[J]. J Nucl Mater, 2012, 420(1-3): 182-192.
|
[10] |
Utton C A, Hand R J, Bingham P A, et al. Dissolution of vitrified wastes in a high-pH calcium-rich solution[J]. J Nucl Mater, 2013, 435(1-3): 112-122.
|
[11] |
Frugier P, Gin S, Minet Y, et al. SON68 nuclear glass dissolution kinetics: current state of know-ledge and basis of the new GRAAL model[J]. J Nucl Mater, 2008, 380(1-3): 8-21.
|
[12] |
Ferrand K, Abdelouas A, Grambow B. Water diffusion in the simulated French nuclear waste glass SON68 contacting silica rich solutions: experimental and modeling[J]. J Nucl Mater, 2006, 355(1-3): 54-67.
|
[13] |
Ojovan M I, Pankov A, Lee W E. The ion exchange phase in corrosion of nuclear waste glasses[J]. J Nucl Mater, 2006, 358(1): 57-68.
|
[14] |
Geneste G, Bouyer F, Gin S. Hydrogen-sodium interdiffusion in borosilicate glasses investigated from first principles[J]. J Non-Cryst Solids, 2006, 352(28-29): 3147-3152.
|
[15] |
Chave T, Frugier P, Ayral A, et al. Solid state diffusion during nuclear glass residual alteration in solution[J]. J Nucl Mater, 2007, 362(2-3): 466-473.
|
[16] |
Conradt R. Chemical durability of oxide glasses in aqueous solutions: a review[J]. J Am Ceram Soc, 2008, 91(3): 728-735.
|
[17] |
Hunter F M I, Hoch A R, Heath T G, et al. Review of glass dissolution models and application to UK glasses, RWM005105[R]. U K: Nuclear Decommissioning Authority, 2015.
|
[18] |
Bourcier W L. Critical review of glass performance modeling, ANL-94/17[R]. Argonne National Laboratory, Chemical Technology Division, 1994.
|
[19] |
Jégou C, Gin S, Larché F. Alteration kinetics of a simplified nuclear glass in an aqueous medium: effects of solution chemistry and of protective gel properties on diminishing the alteration rate[J]. J Nucl Mater, 2000, 280(2): 216-229.
|
[20] |
Ribet S, Gin S. Role of neoformed phases on the mechanisms controlling the resumption of SON68 glass alteration in alkaline media[J]. J Nucl Mater, 2004, 324(2-3): 152-164.
|
[21] |
Geisler T, Janssen A, Scheiter D, et al. Aqueous corrosion of borosilicate glass under acidic conditions: a new corrosion mechanism[J]. J Non-Cryst Solids, 2010, 356(28): 1458-1465.
|
[22] |
Mellott N P. Multicomponent aluminosilicate glasses: structure and acid corrosion[D]. America: The Pennsylvania State University, 2003.
|
[23] |
Frugier P, Chave T, Gin S, et al. Application of the GRAAL model to leaching experiments with SON68 nuclear glass in initially pure water[J]. J Nucl Mater, 2009, 392(3): 552-567.
|
[24] |
Minet Y, Bonin B, Gin S, et al. Analytic implementation of the GRAAL model: application to a R7T7-type glass package in a geological disposal environment[J]. J Nucl Mater, 2010, 404(3): 178-202.
|
[25] |
Grambow B, Müller R. First-order dissolution rate law and the role of surface layers in glass performance assessment[J]. J Nucl Mater, 2001, 298(1-2): 112-124.
|
[26] |
Rebiscoul D, Frugier P, Gin S, et al. Protective properties and dissolution ability of the gel formed during nuclear glass alteration[J]. J Nucl Mater, 2005, 342(1-3): 26-34.
|
[27] |
Valle N, Verney-Carron A, Sterpenich J, et al. Elemental and isotopic (29Si and 18O) tracing of glass alteration mechanisms[J]. Geochim Cosmochim Ac, 2010, 74(12): 3412-3431.
|
[28] |
Gin S, Jollivet P, Fournier M, et al. Origin and consequences of silicate glass passivation by surface layers[J]. Nat Commun, 2015, 6: 6360.
|
[29] |
Gin S, Neill L, Fournier M, et al. The controversial role of inter-diffusion in glass alteration[J]. Chem Geol, 2016, 440: 115-123.
|
[30] |
Hellmann R, Wirth R, Daval D, et al. Unifying natural and laboratory chemical weathering with interfacial dissolution-reprecipitation: a study based on the nanometer-scale chemistry of fluid-silicate interfaces[J]. Chem Geol, 2012, 294-295(3): 203-216.
|
[31] |
Neeway J, Abdelouas A, Grambow B, et al. Dissolution mechanism of the SON68 reference nuclear waste glass: new data in dynamic system in silica saturation conditions[J]. J Nucl Mater, 2011, 415(1): 31-37.
|
[32] |
Frugier P, Martin C, Ribet I, et al. The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM and VRZ[J]. J Nucl Mater, 2005, 346(2-3): 194-207.
|
[33] |
Gan X Y, Zhang Z T, Yuan W Y, et al. Long-term product consistency test of simulated 90-19/Nd HLW glass[J]. J Nucl Mater, 2011, 408(1): 102-109.
|
[34] |
Gin S, Mestre J P. SON68 nuclear glass alteration kinetics between pH 7 and pH 11.5[J]. J Nucl Mater, 2001, 295(1): 83-96.
|
[35] |
Fournier M, Gin S, Frugier P. Resumption of nuclear glass alteration: state of the art[J]. J Nucl Mater, 2014, 448(1-3): 348-363.
|
[36] |
Mahadevan T S, Garofalini S H. Dissociative water potential for molecular dynamics simulations[J]. J Phys Chem B, 2007, 111(30): 8919-8927.
|
[37] |
Devreux F, Ledieu A, Barboux P, et al. Leaching of borosilicate glasses Ⅱ: model and Monte-Carlo simulations[J]. J Non-Cryst Solids, 2004, 343(1-3): 13-25.
|
[38] |
Rajmohan N, Frugier P, Gin S. Composition effects on synthetic glass alteration mechanisms Ⅰ: experiments[J]. Chem Geol, 2010, 279(3-4): 106-119.
|
[39] |
Pèlegrin E, Calas G, Ildefonse P, et al. Structural evolution of glass surface during alteration: application to nuclear waste glasses[J]. J Non-Cryst Solids, 2010, 356(44-49): 2497-2508.
|
[40] |
Pelmenschikov A, Strandh H, Pettersson L G M, et al. Lattice resistance to hydrolysis of Si-O-Si bonds of silicate minerals: Ab initio calculations of a single water attack onto the (001) and (111) β-cristobalite surfaces[J]. J Phys Chem B, 2000, 104(24): 5779-5783.
|
[41] |
Jantzen C M, Kaplan D I, Bibler N E, et al. Performance of a buried radioactive high level waste (HLW) glass after 24 years[J]. J Nucl Mater, 2008, 378(3): 244-256.
|
[42] |
Bonfils J, Peuget S, Panczer G, et al. Effect of chemical composition on borosilicate glass behavior under irradiation[J]. J Non-Cryst Solids, 2010, 356(6-8): 388-393.
|
[43] |
Angeli F, Gaillard M, Jollivet P, et al. Influence of glass composition and alteration solution on leached silicate glass structure: a solid-state NMR investigation[J]. Geochim Cosmochim Ac, 2006, 70(10): 2577-2590.
|
[44] |
Luckscheiter B, Nesovic M. Short-term corrosion of HLW glass in aqueous solutions enriched with various metal cations[J]. J Nucl Mater, 2004, 327(2-3): 182-187.
|
[45] |
Chave T, Frugier P, Gin S, et al. Glass-water interphase reactivity with calcium rich solutions[J]. Geochim Cosmochim Ac, 2011, 75(15): 4125-4139.
|
[46] |
Verney-Carron A, Gin S, Libourel G. A fractured roman glass block altered for 1 800 years in seawater: analogy with nuclear waste glass in a deep geological repository[J]. Geochim Cosmochim Ac, 2008, 72(22): 5372-5385.
|
[47] |
Verney-Carron A, Gin S, Frugier P, et al. Long-term modeling of alteration-transport coupling: application to a fractured Roman glass[J]. Geochim Cosmochim Ac, 2010, 74(8): 2291-2315.
|
[48] |
Tadjiev D R, Hand R J, Zeng P. Comparison of glass hydration layer thickness measured by transmission electron microscopy and nanoindentation[J]. Mater Lett, 2010, 64(9): 1041-1044.
|