• 左
  • 右

α放射性金属药物的研究现状与展望

崔海平, 沈浪涛

崔海平, 沈浪涛. α放射性金属药物的研究现状与展望[J]. 核化学与放射化学, 2020, 42(6): 524-538. DOI: 10.7538/hhx.2020.YX.2020076
引用本文: 崔海平, 沈浪涛. α放射性金属药物的研究现状与展望[J]. 核化学与放射化学, 2020, 42(6): 524-538. DOI: 10.7538/hhx.2020.YX.2020076
CUI Hai-ping, SHEN Lang-tao. Alpha-Emitting Metallic Radiopharmaceuticals: Current Status and Future Prospects[J]. Journal of Nuclear and Radiochemistry, 2020, 42(6): 524-538. DOI: 10.7538/hhx.2020.YX.2020076
Citation: CUI Hai-ping, SHEN Lang-tao. Alpha-Emitting Metallic Radiopharmaceuticals: Current Status and Future Prospects[J]. Journal of Nuclear and Radiochemistry, 2020, 42(6): 524-538. DOI: 10.7538/hhx.2020.YX.2020076

α放射性金属药物的研究现状与展望

Alpha-Emitting Metallic Radiopharmaceuticals: Current Status and Future Prospects

  • 摘要: 靶向α治疗(TAT)是一种很有前景的肿瘤治疗方法。在TAT中,把含有α发射体核素的放射性药物的辐射选择性地传送到癌症细胞,而尽可能将全身的毒副作用最小化。与β粒子相比,α粒子具有更高的能量、更高的线性能量传递(LET)和更短的组织穿透距离。因此,TAT在靶向治疗中具有明显的优势。本文概述了用于TAT的一些锕系元素和它们的放射性金属衰变子体。这些放射性金属核素包括225Ac、212/213Bi、212Pb、227Th以及223Ra。首先比较了α粒子和β粒子的物理和辐射生物学性质。然后,描述了这些放射性金属核素的化学性质和来源。接着,展示了TAT中常用的一些双功能螯合剂。其后,介绍了TAT放射性药物的研究现状。最后,给出了TAT放射性药物研发中的挑战性问题和前景展望。
    Abstract: Targeted alpha therapy(TAT) is a very promising therapeutic way for the treatment of cancers. In TAT, a radiopharmaceutical containing alpha-emitter radionuclide was used to deliver systemic radiation selectively to cancer cell while minimizing systemic toxic effects. In comparison to β-particle, α-particle has higher energy, higher linear energy transfer(LET) and a shorter penetration range in tissues. Therefore, TAT has distinct advantages for use in targeted therapy. In this review, some actinoid elements and the radiometallic decay daughters of these actinoid elements, used in TAT, were discussed. These radiometallic nuclides included 225Ac, 212/213Bi, 212Pb, 227Th and 223Ra. Firstly, the physical, radiobiological properties of α-particle and β-particle were compared. Secondly, the chemical properties and their source of these radiometallic nuclides were described. Thirdly, the selected bifunctional chelators of TAT radiopharmaceuticals were presented. Fourthly, the current status of TAT radiopharmaceuticals was introduced. Lastly, our views about the future challenges and prospects of TAT radiopharmaceuticals were given.
  •   5579

  • [1] Frank R. Nuclear and radiochemistry, volume 2: modern application[M]. Berlin: Walter de Gruyter GmbH, 2016.
    [2] 唐任寰,刘元方,张青莲,等.锕系锕系后元素[M].北京:科学出版社,1998:3-86.
    [3] 沈浪涛.放射性药物化学领域中的重要事件和研究前沿[J].核化学与放射化学,2015,37(5):355-365.
    [4] IAEA. Nuclear technology review 2019[M]. Vienna, Austria: International Atomic Energy Agency (IAEA), 2020: 1-39.
    [5] Piro M H A. Advances in nuclear fuel chemistry[M]. Duxford, CB22 4QH, United Kingdom: Woodhead Publishing, 2020: 185-213.
    [6] Bombardieri E, Seregni E, Evangelista L, et al. Clinical applications of nuclear medicine targeted therapy[M]. Cham, Switzerland: Springer, 2018: 365-392.
    [7] 昝亮彪,刘宁,杨远友,等.α核素用于肿瘤靶向治疗研究的进展[J].核技术,2006,29:279-285.
    [8] 刘宁,马欢,杨远友,等.α核素肿瘤靶向治疗药物研究的进展与挑战[J].核化学与放射化学,2015,37(5):366-375.
    [9] Link W. Principles of cancer treatment and anticancer drug development[M]. Cham, Switzerland: Springer, 2019: 7-76.
    [10] Restifo N P, Smyth M J, Snyder A. Acquired resistance to immunotherapy and future challenges[J]. Nat Rev Cancer, 2016, 16(2): 121-126.
    [11] Poty S, Francesconi L C, McDevitt M R, et al. α-emitters for radiotherapy: from basic radiochemistry to clinical studies: part 1[J]. J Nucl Med, 2018, 59: 878-884.
    [12] Poty S, Francesconi L C, McDevitt M R, et al. α-emitters for radiotherapy: from basic radiochemistry to clinical studies: part Ⅱ[J]. J Nucl Med, 2018, 59: 1020-1027.
    [13] Targeted Alpha Therapy Working Group. Targeted alpha therapy, an emerging class of cancer agents: a review[J]. JAMA Oncol, 2018, 4: 1765-1772.
    [14] Sgouros G, Ballangrud A M, Jurcic J G, et al. Pharmacokinetics and dosimetry of an α-particle emitter antibody: 213Bi-HuM195(anti-CD33) in patients with leukemia[J]. J Nucl Med, 1999, 40: 1935-1946.
    [15] Lewis J S, Windhorst A D, Zeglis B. Radiopharmaceutical chemistry[M]. Cham, Switzerland: Springer, 2019: 409-424.
    [16] Mulford D A, Scheinberg D A, Jurcic J G. The promise of targeted α-particle therapy[J]. J Nucl Med, 2005, 46: 199S-204S.
    [17] Nonnekens J, Chatalic K L S, Molkenboer-kuenen J D M, et al. 213Bi-Labeled prostate-specific membrane antigen-targeting agents induce DNA double-strand breaks in prostate cancer xenografts[J]. Cancer Biother Radiopharm, 2017, 32: 67-73.
    [18] Hall E J, Giaccia A J. Radiobiology for the radiologist[M]. 7th ed. Philadelphia, USA: Lippincott Williams & Wilkins, 2012: 104-113.
    [19] Seidl C. Radioimmunotherapy with α-particle-emitting radionuclides[J]. Immunotherapy, 2014, 6: 431-458.
    [20] Thiele N A, Wilson J J. Actinium-225 for targeted α therapy: coordination chemistry and current chelation approaches[J]. Cancer Biother Radiopharm, 2018, 33: 336-348.
    [21] Kostelnik T, Orvig C. Radioactive main group and rare earth metals for imaging and therapy[J]. Chem Rev, 2019, 119: 902-956.
    [22] Boll R A, Malkemus D, Mirzadeh S. Production of actinium-225 for alpha particle mediated radioimmunotherapy[J]. Appl Radiat Isotop, 2005, 62: 667-679.
    [23] Apostolidis C, Molinet R, Morgenstern A, et al. Production of Ac-225 from Th-229 for targeted alpha therapy[J]. Anal Chem, 2005, 77: 6288-6291.
    [24] Zielinska B, Apostolidis C, Bruchertseifer F, et al. An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy[J]. Solvent Extr Ion Exch, 2007, 25: 339-349.
    [25] Perron R, Causey P, Gendron D. Development of a research-scale thorium/actinium generator at the Canadian nuclear laboratories[J]. J Med Imaging Radiat Sci, 2019, 50: S42.
    [26] Morgenstern A, Abbas K, Bruchertseifer F, et al. Production of alpha emitters for targeted alpha therapy[J]. Curr Radiopharm, 2008, 1: 135-143.
    [27] Weidner J W, Mashnik S G, John K D, et al. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV[J]. Appl Radiat Isotop, 2012, 70: 2602-2607.
    [28] Weidner J W, Mashnik S G, John K D, et al. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets[J]. Appl Radiat Isot, 2012, 70: 2590-2595.
    [29] John K. US DOE tri-lab research and production effort to provide accelerator-produced 225Ac for radiotherapy: 2019 update[J]. Eur J Nucl Med Mol Imaging, 2019, 46: S722.
    [30] Abergel R, An D, Lakes A, et al. Actinium biokinetics and dosimetry: what is the impact of Ac-227 in accelerator-produced Ac-225[J]. J Med Imaging Radiat Sci, 2019, 50: S23.
    [31] NIDC. Actinium-225 drug master file submitted to food and drug administration[J]. Newsletter: Spring, 2020: 3.
    [32] Salvador J A, Figueiredo S A, Pinto R M, et al. Bismuth compounds in medicinal chemistry[J]. Future Med Chem, 2012, 4: 1495-1453.
    [33] Stavila V, Davidovich R L, Gulea A, et al. Bismuth(Ⅲ) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: chemistry and structure[J]. Coord Chem Rev, 2006, 250: 2782-2810.
    [34] Yang N, Sun H. Biocoordination chemistry of bismuth: recent advances[J]. Coord Chem Rev, 2007, 251: 2354-2366.
    [35] Morgenstern A, Bruchertseifer F, Apostolidis C. Bismuth-213 and actinium-225 generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes[J]. Curr Radiopharm, 2012, 5: 221-227.
    [36] Bruchertseifer F, Christos A, Saed M, et al. Development of a high-activity 225Ac/213Bi radionuclide generator for synthesis of clinical doses of 213Bi-labelled biomolecules[C]∥Proceedings of the 8th International Symposium on Targeted Alpha Therapy. Oak Ridge, USA, June 4-6, 2013.
    [37] Knapp F F, Dash A. Radiopharmaceuticals for therapy[M]. India: Springer, 2016.
    [38] Hassfjell S. 212Pb generator based on a 228Th source[J]. Appl Radiat Isot, 2001, 55: 433-439.
    [39] Atcher R W, Friedman A M, Hines J J. An improved generator for the production of 212Pb and 212Bi from 224Ra[J]. Appl Radiat Isot, 1988, 39: 283-286.
    [40] Su F M, Beaumier P, Axworthy D, et al. Pretargeted radioimmunotherapy in tumored mice using an in vivo 212Pb/212Bi generator[J]. Nucl Med Biol, 2005, 32: 741-747.
    [41] Rotmensch J, Atcher R W, Hines J, et al. Comparison of short-lived high-LET α-emitting radionuclides lead-212 and bismuth-212 to low-LET X-rays on ovarian carcinoma[J]. Gynecol Oncol, 1989, 35: 297-300.
    [42] Casas J S, Sordo J. LEAD: chemistry, analytical aspects, environmental impact and health[M]. Amsterdam, the Netherlands: Elsevier, 2006.
    [43] Farkas E, Buglyo P. Lead(Ⅱ) complexes of amino acids, peptides, and other related ligands of biological interest[J]. Met Ions Life Sci, 2017, 17: 201-240.
    [44] Du A L, Mougin-Degraef M, Botosoa E P, et al. In vivo 212Pb/212Bi generator using indium-DTPA-tagged liposomes[J]. Radiochim Acta, 2011, 99: 743-749.
    [45] Tutson C D, Gorden A E V. Thorium coordination: a comprehensive review based on coordination number[J]. Coordin Chem Rev, 2017, 333: 27-43.
    [46] Natrajan L S, Swinburne A N, Andrews M B, et al. Redox and environmentally relevant aspects of actinide(Ⅳ) coordination chemistry[J]. Coordin Chem Rev, 2014, 266-267: 171-193.
    [47] Guseva L I. Radioisotope generators of short-lived α-emitting radionuclides promising for use in nuclear medicine[J]. Radiochem, 2014, 56: 451-467.
    [48] Weidner J W, Mashnik S G, John K D, et al. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets[J]. Appl Radiat Isot, 2012, 70: 2590-2595.
    [49] Aaseth J, Crisponi G, Andersen O, et al. Chelation therapy in the treatment of metal intoxication[M]. London: Elsevier, 2016.
    [50] Vaidyanathan G, Zalutsky M R. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy[J]. Curr Radiopharm, 2011, 4: 283-294.
    [51] Henriksen G, Fisher D R, Roeske J C, et al. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice[J]. J Nucl Med, 2003, 44: 252-259.
    [52] Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer[J]. N Engl J Med, 2013, 369: 213-223.
    [53] Koppe M J, Postema E J, Aarts F, et al. Antibody-guided radiation therapy of cancer[J]. Cancer Metastasis Rev, 2005, 24: 539-567.
    [54] Wilbur D S. Chemical and radiochemical considerations in radiolabeling with α-emitting radionuclides[J]. Curr Radiopharm, 2011, 4: 214-247.
    [55] Hassfjell S, Brechbiel M W. The development of the α-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications[J]. Chem Rev, 2001, 101: 2019-2036.
    [56] Coleman R, Aksnes A, Naume B, et al. A phase Ⅱa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease[J]. Breast Cancer Re Treat, 2014, 145: 411-418.
    [57] Subbiah V, Anderson P M, Kairemo K, et al. Alpha particle radium 223 dichloride in high-risk osteosarcoma: a phase Ⅰ dose escalation trial[J]. Clin Cancer Res, 2019, 25: 3802-3810.
    [58] Kratochwil C, Giesel F L, Bruchertseifer F, et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience[J]. Eur J Nucl Med Mol Imaging, 2014, 41: 2106-2119.
    [59] Kratochwil C, Bruchertseifer F, Giesel F L, et al. Ac-225-DOTATOC-dose finding for alpha particle emitter based radionuclide therapy of neuroendocrine tumors[J]. Eur J Nucl Med Mol Imaging, 2015, 42: S36.
    [60] Ballal S, Yadav M P, Bal C, et al. Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety[J]. Eur J Nucl Med Mol Imaging, 2020, 47: 934-946.
    [61] Kratochwil C, Bruchertseifer F, Giesel F L, et al. 225Ac-PSMA-617 for PSMA targeting alpha-radiation therapy of patients with metastatic castration-resistant prostate cancer[J]. J Nucl Med, 2016, 57: 1941-1944.
    [62] Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted alpha therapy of mCRPC with 225Actinium-PSMA-617: dosimetry estimate and empirical dose finding[J]. J Nucl Med, 2017, 58: 1624-1631.
    [63] Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted alpha therapy of mCRPC with 225Actinium-PSMA-617: swimmer-plot analysis suggests efficacy  regarding duration of tumor-control[J]. J Nucl Med, 2018, 59: 795-802.
    [64] Kelly J M, Amor-Coarasa A, Ponnala S, et al. A single dose of 225Ac-RPS-074 induces a complete tumor response in an LNCaP xenograft model[J]. J Nucl Med, 2019, 60: 649-655.
    [65] Sathekge M, Knoesen O, Meckel M, et al. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2017, 44: 1099-1100.
    [66] Krolicki L, Bruchertseifer F, Kunikowska J, et al. Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi substance P analogue[J]. Eur J Nucl Med Mol Imaging, 2018, 45: 1636-1644.
    [67] Giesel F L, Kratochwil C, Lindner T, et al. 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers[J]. J Nucl Med, 2019, 60: 386-392.
    [68] Watabe T, Liu Y, Kaneda-Nakashima K, et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu and 225Ac[J]. J Nucl Med, 2020, 61: 563-569.
    [69] Dahle J, Bruland O S, Larsen R H. Relative biologic effects of low-dose-rate alpha-emitting 227Th-rituximab and beta-emitting 90Y-tiuexetan-ibritumomab versus external beam X-radiation[J]. Int J Radiat Oncol Biol Phys, 2008, 72: 186-192.
    [70] Abbas N, Heyerdahl H, Bruland O S, et al. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab[J]. EJNMMI Res, 2011, 1: 18.
    [71] Heyerdahl H, Krogh C, Borrebk J, et al. Treatment of HER2-expressing breast cancer and ovarian cancer cells with alpha particle-emitting 227Th-trastuzumab[J]. Int J Radiat Oncol Biol Phys, 2011, 79: 563-570.
    [72] Hammer S, Hagemann U B, Zitzmann-Kolbe S, et al. Preclinical efficacy of a PSMA-targeted thorium-227 conjugate(PSMA-TTC), a targeted alpha therapy for prostate cancer[J]. Clin Cancer Res, 2020, 26: 1985-1996.
    [73] Hagemann U B, Ellingsen C, Schuhmacher J, et al. Mesothelin-targeted thorium-227 conjugate(MSLNTTC): preclinical evaluation of a new targeted alpha therapy for mesothelin-positive cancers[J]. Clin Cancer Res, 2019, 25: 4723-4734.
    [74] Jurcic J G, Rosenblat T L, McDevitt M R, et al. Phase Ⅰtrial of the targeted alpha-particle nano-generator actinium-225(225Ac-lintuzumab)(anti-CD33; HuM195) in acute myeloid leukemia(AML)[J]. J Clin Oncol, 2011, 29: 6516.
    [75] Jurcic J G, Levy M, Park J, et al. Trial in progress: a phase Ⅰ/Ⅱ study of lintuzumab-Ac-225 in older patients with untreated acute myeloid leukemia[J]. Clin Lymphoma Myeloma Leuk, 2017, 17: S277.
    [76] Dahle J, Borrebaek J, Jonasdottir T J, et al. Targeted cancer therapy with a novel low-dose rate alpha-emitting radioimmunoconjugate[J]. Blood, 2007, 110: 2049-2056.
    [77] Wadas T J, Pandya D N, Sai K K S, et al. Molecular targeted α-particle therapy for oncologic applications[J]. AJR Am J Roentgebol, 2014, 203: 253-260.
    [78] Dekempeneer Y, Keyaerts M, Krasniqi A, et al. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle[J]. Expert Opin Biol Ther, 2016, 16: 1035-1047.
    [79] Meredith R F, Torgue J, Azure M T, et al. Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients[J]. Cancer Biother Radiopharm, 2014, 29: 12-17.
    [80] Rosenblat T L, McDevitt M R, Mulford D A, et al. Sequential cytarabine and α-particle immunotherapy with bismuth-213-lintuzumab(HuM195) for acute myeloid leukemia[J]. Clin Cancer Res, 2010, 16: 5303-5311.
    [81] Autenrieth M E, Seidl C, Bruchertseifer F, et al. Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: a pilot study[J]. Eur J Nucl Med Mol Imaging, 2018, 45: 1364-1371.
  • 期刊类型引用(7)

    1. 刘彩霞,李秋硕,范玉芹,辛岩,费钰茜,曹浩楠,敬罕涛,崔丽巍,李柏,李玉锋. 放射金属组学:以α核素靶向治疗药物为例. 中国无机分析化学. 2024(01): 82-92 . 百度学术
    2. 王立琴,柳江燕. ~(225)Ac在肿瘤靶向治疗中的应用及进展. 中山大学学报(医学科学版). 2024(04): 503-510 . 百度学术
    3. 安世忠,官国英,赵云龙,王哲,李勇,王宇,赵鹏飞,宋国芳,王国宝. 加速器生产重要医用放射性同位素及应用概况. 同位素. 2024(06): 507-520+506 . 百度学术
    4. 宋鑫,许波华,陶巧玉,付莉莉,刘楚乔,孙璐瑶,邱云良. ~(225)Ac在肿瘤靶向治疗中的应用研究进展. 中国新药杂志. 2023(16): 1644-1651 . 百度学术
    5. 李慧杰,宋晶,赵连婷,范正悦,周锦,郑征,陈俊儒,宗晓郁,吕旋瑞,王萌萌,肖松涛,宋国芳,曹磊,宫建. 锕在肿瘤治疗中的现状与展望. 医药导报. 2023(10): 1517-1522 . 百度学术
    6. 赵紫宇,温凯,马承伟,褚浩淼,段菲,李光,李忠勇. α核素~(225)Ac的制备及医学应用现状. 同位素. 2022(03): 179-188 . 百度学术
    7. 张桃桃,张红,狄翠霞. 放射性药物在肿瘤靶向治疗中的应用. 中国生物化学与分子生物学报. 2022(11): 1435-1442 . 百度学术

    其他类型引用(2)

图(1)
计量
  • 文章访问数:  1732
  • HTML全文浏览量:  2
  • PDF下载量:  4585
  • 被引次数: 9
出版历程
  • 刊出日期:  2020-12-19

目录

    /

    返回文章
    返回