• 左
  • 右

镅锔分离研究进展

朱礼洋, 李晓敏, 杨素亮, 张生栋

朱礼洋, 李晓敏, 杨素亮, 张生栋. 镅锔分离研究进展[J]. 核化学与放射化学, 2020, 42(6): 465-477. DOI: 10.7538/hhx.2020.YX.2020103
引用本文: 朱礼洋, 李晓敏, 杨素亮, 张生栋. 镅锔分离研究进展[J]. 核化学与放射化学, 2020, 42(6): 465-477. DOI: 10.7538/hhx.2020.YX.2020103
ZHU Li-yang, LI Xiao-min, YANG Su-liang, ZHANG Sheng-dong. Research Progress on Separation of Americium and Curium[J]. Journal of Nuclear and Radiochemistry, 2020, 42(6): 465-477. DOI: 10.7538/hhx.2020.YX.2020103
Citation: ZHU Li-yang, LI Xiao-min, YANG Su-liang, ZHANG Sheng-dong. Research Progress on Separation of Americium and Curium[J]. Journal of Nuclear and Radiochemistry, 2020, 42(6): 465-477. DOI: 10.7538/hhx.2020.YX.2020103

镅锔分离研究进展

Research Progress on Separation of Americium and Curium

  • 摘要: 乏燃料后处理产生的高放废液中Am和Cm是长期释热的主要来源,将它们分离出来并进一步进行分离和处置,对高放废物的长期安全处理处置具有重要意义。另外,超钚元素生产涉及Am和Cm材料的获取以及辐照后靶件中Am和Cm的化学分离。因此Am、Cm的分离一直是锕系元素化学与材料研究的重要领域之一。但是Am、Cm之间的分离相当困难,水溶液中Am、Cm基本均以正三价离子形式存在,化学性质非常相似。早期的离子交换法分离因子低,近年来主要研究将Am(Ⅲ)氧化到高价态实现分离,或通过Am、Cm与配体的亲和力差异、不同配体组合产生“推拉效应”以提高分离因子。本文综述了相关研究现状,概述了主要流程研发情况,并展望了该领域的研究趋势。
    Abstract: The minor actinides Am and Cm are the main heat contributor to the long-term storage of high-level liquid waste. Separating them together or only Am from the liquid waste can greatly reduce the final disposal volume. During the production of trans-plutonium elements, the preparation of Am and Cm and the chemical separation of Am and Cm after irradiation are also involved. Therefore, the separation of Am and Cm is one of the important research areas of actinides chemistry and materials. But mutual separation of Am and Cm is difficult, due to their similar chemical properties, which mainly maintained as trivalent ions in aqueous solution. Recently, researches have been focused on oxidizing Am(Ⅲ) to a higher valence state, or, utilizing “push-pull effect” to increase the separation factor by the different affinity between Am and Cm with ligands. Current research status on Am and Cm separation, as well as well-developed processes is reviewed, and then the future research prospects are anticipated.
  •   5575

  • [1] Runde W. Americium and curium: radionuclides[Z]. John Wiley & Sons, Ltd., 2011. doi: 10.1002/9781119951438.eibc0438.
    [2] Navratil J D, Schulz W W. The production, recovery, properties, and applications of americium and curium[J]. JOM, 1993, 45: 32-34.
    [3] Miguirditchian M, Vanel V, Marie C, et al. Americium recovery from highly active PUREX raffinate by solvent extraction: the EXAm process: a review of 10 years of R&D[J]. Solv Extra Ion Exch, 2020, 38(4): 365-387.
    [4] Kooyman T, Buiron L, Rimpault G. A comparison of curium, neptunium and americium transmutation feasibility[J]. Ann Nucl Energy, 2018, 112: 748-758.
    [5] Jones J E. Process for producing ultra-pure plutonium-238, US 6896716 B1[P/OL]. 2005-05-24.
    [6] Nagame Y, Hirata M, Nakahara H. Production and chemistry of transuranium elements[M]∥Vértes A, Nagy S, Klencsár Z, et al. Handbook of nuclear chemistry. Boston: Springer, 2011: 817-875.
    [7] Morss L R, Edelstein N M, Fuger J. The chemistry of the actinide and transactinide elements[M]. Dordrecht: Springer, 2006.
    [8] Penneman R A, Keenan T K. The radiochemistry of americium and curium, NAS-NS-3006[R]. US: National Research Council, Committee on Nuclear Science, Los Alamos Scientific Lab., 1960.
    [9] Ghosh D C, Biswas R. Theoretical calculation of absolute radii of atoms and ions: part 1: the atomic radii[J]. Int J Mol Sci, 2002, 3(2): 87-113.
    [10] Seaborg G T. Overview of the actinide and lanthanide (the f) elements[J]. Radiochim Acta, 1993, 61(3-4): 115-122.
    [11] Cross J N, Su J, Batista E R, et al. Covalency in americium(Ⅲ) hexachloride[J]. J Am Chem Soc, 2017, 139(25): 8667-8677.
    [12] Riddle C L. Speciation behavior of americium higher oxidation states for the separation of americium from curium[D]. Las Vegas: University of Nevada, 2014.
    [13] Nikolaevskiiа V B, Shilovb V P. Extreme oxidation states of americium[J]. Radiochem, 2013, 55(3): 261-263.
    [14] Zachariasen W H. Crystal radii of the heavy elements[J]. Phys Rev, 1948, 73(9): 1104-1105.
    [15] Runde W H, Mincher B J. Higher oxidation states of americium: preparation, characterization and use for separations[J]. Chem Rev, 2011, 111(9): 5723-5741.
    [16] Mincher B J, Law J D, Goff G S, et al. Higher americium oxidation state research roadmap, FCRD-MRWFD-2016-000251[R]. US: U.S. Department of Energy, Material Recovery and Waste Form Development Campaign, 2015.
    [17] Burns J D, Moyer B A. Group hexavalent actinide separations: a new approach to used nuclear fuel recycling[J]. Inorg Chem, 2016, 55(17): 8913-8919.
    [18] Richards J M, Sudowe R. Separation of americium in high oxidation states from curium utilizing sodium bismuthate[J]. Anal Chem, 2016, 88(9): 4605-4608.
    [19] Dares C J, Lapides A M, Mincher B J, et al. Electrochemical oxidation of 243Am(Ⅲ) in nitric acid by a terpyridyl-derivatized electrode[J]. Science, 2015, 350(6261): 652-655.
    [20] Mason G W, Hills C, Boimeier A F, et al. Separation of americium and curium, US3743696A[P/OL]. 1973-07-03.
    [21] Mincher B J, Schmitt N C, Schuetz B K, et al. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution[J]. RSC Adv, 2015, 5(34): 27205-27210.
    [22] Kazi Z, Guérin N, Christl M, et al. Effective separation of Am(Ⅲ) and Cm(Ⅲ) using a DGA resin via the selective oxidation of Am(Ⅲ) to Am(Ⅴ)[J]. J Radioanal Nucl Chem, 2019, 321(1): 227-233.
    [23] Burns J D, Shehee T C, Clearfield A, et al. Separation of americium from curium by oxidation and ion exchange[J]. Anal Chem, 2012, 84(16): 6930-6932.
    [24] Usuda S, Yamanishi K, Mimura H, et al. Separation of Am and Cm by using TODGA and DOODA-(C8) adsorbents with hydrophilic ligand-nitric acid solution[J]. J Radioanal Nucl Chem, 2014, 303(2): 1351-1355.
    [25] Modolo G, Wilden A, Daniels H, et al. Development and demonstration of a new SANEX partitioning process for selective actinide(Ⅲ)/lanthanide(Ⅲ) separation using a mixture of CyMe4BTBP and TODGA[J]. Radiochim Acta, 2013, 101(3): 155-162.
    [26] Sasaki Y, Tsubata Y, Kitatsuji Y, et al. Novel extractant, NTA amide, and its combination with TEDGA for mutual separation of Am/Cm/Ln[J]. Solv Extra Ion Exch, 2014, 32(2): 179-188.
    [27] Gujar R B, Ansari S A, Mohapatra P K, et al. Solid phase extraction of Am(Ⅲ) and Cm(Ⅲ) from acidic feeds using tetraethyl diglycolamide (TEDGA) in ionic liquid[J]. J Radioanal Nucl Chem, 2015, 309: 819-825.
    [28] Chapron S, Marie C, Arrachart G, et al. New insight into the americium/curium separation by solvent extraction using diglycolamides[J]. Solv Extra Ion Exch, 2015, 33(3): 236-248.
    [29] Lan J H, Wu Q Y, Wang C Z, et al. Influence of complexing species on the extraction of trivalent actinides from lanthanides with CyMe4-BTBP: a theoretical study[J]. J Radioanal Nucl Chem, 2018, 318(3): 1453-1463.
    [30] Afsar A, Edwards A C, Geist A, et al. Effective separation of Am(Ⅲ) from Cm(Ⅲ) using modified BTPhen ligands[J]. Heterocycles, 2017, 95(1): 575-586.
    [31] Wagner C, Müllich U, Geist A, et al. Selective extraction of Am(Ⅲ) from PUREX raffinate: the AmSel system[J]. Solv Extra Ion Exch, 2015, 34(2): 103-113.
    [32] Lewis F W, Harwood L M, Hudson M J, et al. BTBPs versus BTPhens: some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens[J]. Inorg Chem, 2013, 52(9): 4993-5005.
    [33] Kaufholz P, Modolo G, Wilden A, et al. Solvent extraction and fluorescence spectroscopic investigation of the selective Am(Ⅲ) complexation with TS-BTPhen[J]. Solv Extra Ion Exch, 2016, 34(2): 126-140.
    [34] Afsar A, Harwood L M, Hudson M J, et al. Effective separation of the actinides Am(Ⅲ) and Cm(Ⅲ) by electronic modulation of bis-(1,2,4-triazin-3-yl)phenanthrolines[J]. Chem Commun, 2015, 51(27): 5860-5863.
    [35] Lewis F W, Harwood L M, Hudson M J, et al. Separation of the minor actinides americium(Ⅲ) and curium(Ⅲ) by hydrophobic and hydrophilic BTPhen ligands: exploiting differences in their rates of extraction and effective separations at equilibrium[J]. Solv Extra Ion Exch, 2018, 36(2): 115-135.
    [36] Distler P, Stamberg K, John J, et al. Modelling of the Am(Ⅲ)-Cm(Ⅲ) kinetic separation effect observed during metal ion extraction by bis-(1,2,4)-triazine ligands[J]. Sep Sci Technol, 2017, 53(2): 277-285.
    [37] Št’astná K, John J, Šebesta F, et al. Separation of curium from americium using composite sorbents and complexing agent solutions[J]. J Radioanal Nucl Chem, 2014, 304(1): 349-355.
    [38] Wagner C, Müllich U, Panak P J, et al. AmSel, a new system for extracting only americium from PUREX raffinate[C]. Proceedings of the Sustainable Nuclear Energy Conference, Manchester, UK, April 9-11, 2014.
    [39] 吴宇轩,刘宁,丁颂东.用于锕系分离和三价镧系/锕系分离的水溶性配体[J].化学进展,2014,26(10):1655-1664.
    [40] Sasaki Y, Tsubata Y, Kitatsuji Y, et al. Novel soft-hard donor ligand, NTAamide, for mutual separation of trivalent actinoids and lanthanoids[J]. Chem Lett, 2013, 42(1): 91-92.
    [41] Suzuki H, Tsubata Y, Kurosawa T, et al. Highly practical and simple ligand for separation of Am(Ⅲ) and Eu(Ⅲ) from highly acidic media[J]. Anal Sci, 2016, 32: 477-479.
    [42] Suzuki H T Y, Matsumura T. High-performance alkyl diamide amine and water-soluble diamide ligand for separating of Am(Ⅲ) from Cm(Ⅲ)[J]. Anal Sci, 2017, 33: 239-242.
    [43] Suzuki H, Tsubata Y, Kurosawa T, et al. Continuous extraction and separation of Am(Ⅲ) and Cm(Ⅲ) using a highly practical diamide amine extractant[J]. J Nucl Sci Technol, 2017, 54(11): 1163-1167.
    [44] Kaneko M, Suzuki H, Matsumura T. Theoretical elucidation of Am(Ⅲ)/Cm(Ⅲ) separation mechanism with diamide-type ligands using relativistic density functional theory calculation[J]. Inorg Chem, 2018, 57(23): 14513-14523.
    [45] Huang P W, Wang C Z, Wu Q Y, et al. Understanding Am3+/Cm3+ separation with H4TPAEN and its hydrophilic derivatives: a quantum chemical study[J]. Phys Chem Chem Phys, 2018, 20(20): 14031-14039.
    [46] Kong X H, Wu Q Y, Wang C Z, et al. Insight into the extraction mechanism of americium(Ⅲ) over europium(Ⅲ) with pyridylpyrazole: a relativistic quantum chemistry study[J]. J Phys Chem A, 2018, 122(18): 4499-4507.
    [47] Chatterton N, Bretonniere Y, Pecaut J, et al. An efficient design for the rigid assembly of four bidentate chromophores in water-stable highly luminescent lanthanide complexes[J]. Angew Chem Int Edit, 2005, 44(46): 7595-7598.
    [48] Gracia S, Arrachart G, Marie C, et al. Separation of Am(Ⅲ) by solvent extraction using water-soluble H4TPAEN derivatives[J]. Tetrahedron, 2015, 71(33): 5321-5336.
    [49] Marie C, Kaufholz P, Vanel V, et al. Development of a selective americium separation process using H4TPAEN as water-soluble stripping agent[J]. Solv Extra Ion Exch, 2019, 37(5): 313-327.
    [50] Boubals N, Wagner C, Dumas T, et al. Complexation of actinide(Ⅲ) and lanthanide(Ⅲ) with H4TPAEN for a separation of americium from curium and lanthanides[J]. Inorg Chem, 2017, 56(14): 7861-7869.
    [51] Jensen M P, Chiarizia R, Shkrob I A, et al. Aqueous complexes for efficient size-based separation of americium from curium[J]. Inorg Chem, 2014, 53(12): 6003-6012.
    [52] Kikunaga H, Yoshimura T, Kuribayashi T, et al. Separation of Am(Ⅲ), Cm(Ⅲ), and Cf(Ⅲ) using capillary electrophoresis[J]. Proceedings in Radiochemistry, 2011, 1(1): 167-171.
    [53] Banik N L, Lützenkirchen K, Malmbeck R, et al. A method for the mg scale separation of curium(Ⅲ) from americium(Ⅲ) by HPLC using a SCX column[J]. J Radioanal Nucl Chem, 2019, 321(3): 841-849.
    [54] Hanson K, Albrecht-Schmitt T E, Salpage S. Photochemical separations and compositions: WO 2019/018735 Al[P/OL]. 2019-01-24. https:∥patents.google.com/patent/WO2019018735Al/en.
    [55] Nuclear Energy Agency. State of the art report on the progress of nuclear fuel cycle chemistry, NEA No. 7267[R]. OECD, Nuclear Energy Agency, 2018.
    [56] Modolo G, Wilden A, Geist A, et al. A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate[J]. Radiochim Acta, 2012, 100(8-9): 715-725.
    [57] Modolo G, Kluxen P, Geist A. Demonstration of the LUCA process for the separation of americium(Ⅲ) from curium(Ⅲ), californium(Ⅲ), and lanthanides(Ⅲ) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate[J]. Radiochim Acta, 2010, 98(4): 193-201.
    [58] Bollesteros M J, Calor J N, Costenoble S, et al. Implementation of americium separation from a PUREX raffinate[J]. Procedia Chem, 2012, 7: 178-183.
    [59] Vanel V, Bollesteros M J, Marie C, et al. Consolidation of the EXAm process: towards the reprocessing of a concentrated PUREX raffinate[J]. Procedia Chem, 2016, 21: 190-197.
    [60] 蒋俭,张巧莲,李志,等.镅、锔同三乙四胺六乙酸的络合物稳定常数的测定[J].核化学与放射化学,1985,7(2):112-115.
    [61] 杨裕生,卢加春.镅(Ⅲ)、锔(Ⅲ)、镨(Ⅲ)和钕(Ⅲ)与2-羟基-2,4-二甲基戊酸络合物稳定常数[J].核化学与放射化学,1989,11(2):73-77.
    [62] 杨裕生,李晓忠,丁玉珍,等.三价镅-锔与镨-钕分离因数的关联及吡啶-2,6-二羧酸的配合物稳定常数的测定[J].核化学与放射化学,1995,17(1):13-18.
    [63] 杨裕生,卢加春.三价镅、锔同α-羟基羧酸的络合及其与镨、钕的相似性[J].核化学与放射化学,1991,13(2):65-70.
    [64] 陈励权,辛文达,杨宏秀,等.加压离子交换排代法提取镅、锔、钷的研究[J].原子能科学技术,1983,17(5):571-579.
    [65] 陈耀中,吴克明,谈炳美.甲醇-硝酸-阴离子交换树脂体系中用高压离子交换色层法分离镅和锔[J].核化学与放射化学,1982,4(3):177-181.
    [66] 张力争,汪瑞珍.季铵盐萃取分离镅、锔[J].原子能科学技术,1983,17(2):145-149.
    [67] 梁俊福,李旗.二(2,4,4-三甲基戊基)-2-二硫代膦酸萃取分离Am和Cm的研究[J].核化学与放射化学,2005,27(4):220-224.
    [68] 朱荣保,杨留成,徐颖璞,等.几种核物理探测器在高压离子交换分离镅、锔流程流线分析中的应用[J].原子能科学技术,1977,11(4):315-326.
    [69] Wu K M, Jiang F S, Wang R Z, et al. Separation of curium-242 from irradiated americium-241 targets[C]. Proceedings of the ACS Symposium Series, American Chemical Society, Washington DC, 1981.
  • 期刊类型引用(2)

    1. 郑夏宇,赵骁锋,滕元成,刘航,胡祺. 水合稀土磷酸盐的热行为及其相变产物的化学稳定性. 核化学与放射化学. 2023(02): 139-147 . 本站查看
    2. 何安林,何辉,李宗洋,唐洪彬,李峰峰,吴明宇,邹益晟,罗志福. ~(252)Cf生产关键技术及展望. 同位素. 2022(06): 558-564 . 百度学术

    其他类型引用(1)

图(1)
计量
  • 文章访问数:  1415
  • HTML全文浏览量:  2
  • PDF下载量:  4126
  • 被引次数: 3
出版历程
  • 刊出日期:  2020-12-19

目录

    /

    返回文章
    返回