[1] |
Runde W. Americium and curium: radionuclides[Z]. John Wiley & Sons, Ltd., 2011. doi: 10.1002/9781119951438.eibc0438.
|
[2] |
Navratil J D, Schulz W W. The production, recovery, properties, and applications of americium and curium[J]. JOM, 1993, 45: 32-34.
|
[3] |
Miguirditchian M, Vanel V, Marie C, et al. Americium recovery from highly active PUREX raffinate by solvent extraction: the EXAm process: a review of 10 years of R&D[J]. Solv Extra Ion Exch, 2020, 38(4): 365-387.
|
[4] |
Kooyman T, Buiron L, Rimpault G. A comparison of curium, neptunium and americium transmutation feasibility[J]. Ann Nucl Energy, 2018, 112: 748-758.
|
[5] |
Jones J E. Process for producing ultra-pure plutonium-238, US 6896716 B1[P/OL]. 2005-05-24.
|
[6] |
Nagame Y, Hirata M, Nakahara H. Production and chemistry of transuranium elements[M]∥Vértes A, Nagy S, Klencsár Z, et al. Handbook of nuclear chemistry. Boston: Springer, 2011: 817-875.
|
[7] |
Morss L R, Edelstein N M, Fuger J. The chemistry of the actinide and transactinide elements[M]. Dordrecht: Springer, 2006.
|
[8] |
Penneman R A, Keenan T K. The radiochemistry of americium and curium, NAS-NS-3006[R]. US: National Research Council, Committee on Nuclear Science, Los Alamos Scientific Lab., 1960.
|
[9] |
Ghosh D C, Biswas R. Theoretical calculation of absolute radii of atoms and ions: part 1: the atomic radii[J]. Int J Mol Sci, 2002, 3(2): 87-113.
|
[10] |
Seaborg G T. Overview of the actinide and lanthanide (the f) elements[J]. Radiochim Acta, 1993, 61(3-4): 115-122.
|
[11] |
Cross J N, Su J, Batista E R, et al. Covalency in americium(Ⅲ) hexachloride[J]. J Am Chem Soc, 2017, 139(25): 8667-8677.
|
[12] |
Riddle C L. Speciation behavior of americium higher oxidation states for the separation of americium from curium[D]. Las Vegas: University of Nevada, 2014.
|
[13] |
Nikolaevskiiа V B, Shilovb V P. Extreme oxidation states of americium[J]. Radiochem, 2013, 55(3): 261-263.
|
[14] |
Zachariasen W H. Crystal radii of the heavy elements[J]. Phys Rev, 1948, 73(9): 1104-1105.
|
[15] |
Runde W H, Mincher B J. Higher oxidation states of americium: preparation, characterization and use for separations[J]. Chem Rev, 2011, 111(9): 5723-5741.
|
[16] |
Mincher B J, Law J D, Goff G S, et al. Higher americium oxidation state research roadmap, FCRD-MRWFD-2016-000251[R]. US: U.S. Department of Energy, Material Recovery and Waste Form Development Campaign, 2015.
|
[17] |
Burns J D, Moyer B A. Group hexavalent actinide separations: a new approach to used nuclear fuel recycling[J]. Inorg Chem, 2016, 55(17): 8913-8919.
|
[18] |
Richards J M, Sudowe R. Separation of americium in high oxidation states from curium utilizing sodium bismuthate[J]. Anal Chem, 2016, 88(9): 4605-4608.
|
[19] |
Dares C J, Lapides A M, Mincher B J, et al. Electrochemical oxidation of 243Am(Ⅲ) in nitric acid by a terpyridyl-derivatized electrode[J]. Science, 2015, 350(6261): 652-655.
|
[20] |
Mason G W, Hills C, Boimeier A F, et al. Separation of americium and curium, US3743696A[P/OL]. 1973-07-03.
|
[21] |
Mincher B J, Schmitt N C, Schuetz B K, et al. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution[J]. RSC Adv, 2015, 5(34): 27205-27210.
|
[22] |
Kazi Z, Guérin N, Christl M, et al. Effective separation of Am(Ⅲ) and Cm(Ⅲ) using a DGA resin via the selective oxidation of Am(Ⅲ) to Am(Ⅴ)[J]. J Radioanal Nucl Chem, 2019, 321(1): 227-233.
|
[23] |
Burns J D, Shehee T C, Clearfield A, et al. Separation of americium from curium by oxidation and ion exchange[J]. Anal Chem, 2012, 84(16): 6930-6932.
|
[24] |
Usuda S, Yamanishi K, Mimura H, et al. Separation of Am and Cm by using TODGA and DOODA-(C8) adsorbents with hydrophilic ligand-nitric acid solution[J]. J Radioanal Nucl Chem, 2014, 303(2): 1351-1355.
|
[25] |
Modolo G, Wilden A, Daniels H, et al. Development and demonstration of a new SANEX partitioning process for selective actinide(Ⅲ)/lanthanide(Ⅲ) separation using a mixture of CyMe4BTBP and TODGA[J]. Radiochim Acta, 2013, 101(3): 155-162.
|
[26] |
Sasaki Y, Tsubata Y, Kitatsuji Y, et al. Novel extractant, NTA amide, and its combination with TEDGA for mutual separation of Am/Cm/Ln[J]. Solv Extra Ion Exch, 2014, 32(2): 179-188.
|
[27] |
Gujar R B, Ansari S A, Mohapatra P K, et al. Solid phase extraction of Am(Ⅲ) and Cm(Ⅲ) from acidic feeds using tetraethyl diglycolamide (TEDGA) in ionic liquid[J]. J Radioanal Nucl Chem, 2015, 309: 819-825.
|
[28] |
Chapron S, Marie C, Arrachart G, et al. New insight into the americium/curium separation by solvent extraction using diglycolamides[J]. Solv Extra Ion Exch, 2015, 33(3): 236-248.
|
[29] |
Lan J H, Wu Q Y, Wang C Z, et al. Influence of complexing species on the extraction of trivalent actinides from lanthanides with CyMe4-BTBP: a theoretical study[J]. J Radioanal Nucl Chem, 2018, 318(3): 1453-1463.
|
[30] |
Afsar A, Edwards A C, Geist A, et al. Effective separation of Am(Ⅲ) from Cm(Ⅲ) using modified BTPhen ligands[J]. Heterocycles, 2017, 95(1): 575-586.
|
[31] |
Wagner C, Müllich U, Geist A, et al. Selective extraction of Am(Ⅲ) from PUREX raffinate: the AmSel system[J]. Solv Extra Ion Exch, 2015, 34(2): 103-113.
|
[32] |
Lewis F W, Harwood L M, Hudson M J, et al. BTBPs versus BTPhens: some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens[J]. Inorg Chem, 2013, 52(9): 4993-5005.
|
[33] |
Kaufholz P, Modolo G, Wilden A, et al. Solvent extraction and fluorescence spectroscopic investigation of the selective Am(Ⅲ) complexation with TS-BTPhen[J]. Solv Extra Ion Exch, 2016, 34(2): 126-140.
|
[34] |
Afsar A, Harwood L M, Hudson M J, et al. Effective separation of the actinides Am(Ⅲ) and Cm(Ⅲ) by electronic modulation of bis-(1,2,4-triazin-3-yl)phenanthrolines[J]. Chem Commun, 2015, 51(27): 5860-5863.
|
[35] |
Lewis F W, Harwood L M, Hudson M J, et al. Separation of the minor actinides americium(Ⅲ) and curium(Ⅲ) by hydrophobic and hydrophilic BTPhen ligands: exploiting differences in their rates of extraction and effective separations at equilibrium[J]. Solv Extra Ion Exch, 2018, 36(2): 115-135.
|
[36] |
Distler P, Stamberg K, John J, et al. Modelling of the Am(Ⅲ)-Cm(Ⅲ) kinetic separation effect observed during metal ion extraction by bis-(1,2,4)-triazine ligands[J]. Sep Sci Technol, 2017, 53(2): 277-285.
|
[37] |
Št’astná K, John J, Šebesta F, et al. Separation of curium from americium using composite sorbents and complexing agent solutions[J]. J Radioanal Nucl Chem, 2014, 304(1): 349-355.
|
[38] |
Wagner C, Müllich U, Panak P J, et al. AmSel, a new system for extracting only americium from PUREX raffinate[C]. Proceedings of the Sustainable Nuclear Energy Conference, Manchester, UK, April 9-11, 2014.
|
[39] |
吴宇轩,刘宁,丁颂东.用于锕系分离和三价镧系/锕系分离的水溶性配体[J].化学进展,2014,26(10):1655-1664.
|
[40] |
Sasaki Y, Tsubata Y, Kitatsuji Y, et al. Novel soft-hard donor ligand, NTAamide, for mutual separation of trivalent actinoids and lanthanoids[J]. Chem Lett, 2013, 42(1): 91-92.
|
[41] |
Suzuki H, Tsubata Y, Kurosawa T, et al. Highly practical and simple ligand for separation of Am(Ⅲ) and Eu(Ⅲ) from highly acidic media[J]. Anal Sci, 2016, 32: 477-479.
|
[42] |
Suzuki H T Y, Matsumura T. High-performance alkyl diamide amine and water-soluble diamide ligand for separating of Am(Ⅲ) from Cm(Ⅲ)[J]. Anal Sci, 2017, 33: 239-242.
|
[43] |
Suzuki H, Tsubata Y, Kurosawa T, et al. Continuous extraction and separation of Am(Ⅲ) and Cm(Ⅲ) using a highly practical diamide amine extractant[J]. J Nucl Sci Technol, 2017, 54(11): 1163-1167.
|
[44] |
Kaneko M, Suzuki H, Matsumura T. Theoretical elucidation of Am(Ⅲ)/Cm(Ⅲ) separation mechanism with diamide-type ligands using relativistic density functional theory calculation[J]. Inorg Chem, 2018, 57(23): 14513-14523.
|
[45] |
Huang P W, Wang C Z, Wu Q Y, et al. Understanding Am3+/Cm3+ separation with H4TPAEN and its hydrophilic derivatives: a quantum chemical study[J]. Phys Chem Chem Phys, 2018, 20(20): 14031-14039.
|
[46] |
Kong X H, Wu Q Y, Wang C Z, et al. Insight into the extraction mechanism of americium(Ⅲ) over europium(Ⅲ) with pyridylpyrazole: a relativistic quantum chemistry study[J]. J Phys Chem A, 2018, 122(18): 4499-4507.
|
[47] |
Chatterton N, Bretonniere Y, Pecaut J, et al. An efficient design for the rigid assembly of four bidentate chromophores in water-stable highly luminescent lanthanide complexes[J]. Angew Chem Int Edit, 2005, 44(46): 7595-7598.
|
[48] |
Gracia S, Arrachart G, Marie C, et al. Separation of Am(Ⅲ) by solvent extraction using water-soluble H4TPAEN derivatives[J]. Tetrahedron, 2015, 71(33): 5321-5336.
|
[49] |
Marie C, Kaufholz P, Vanel V, et al. Development of a selective americium separation process using H4TPAEN as water-soluble stripping agent[J]. Solv Extra Ion Exch, 2019, 37(5): 313-327.
|
[50] |
Boubals N, Wagner C, Dumas T, et al. Complexation of actinide(Ⅲ) and lanthanide(Ⅲ) with H4TPAEN for a separation of americium from curium and lanthanides[J]. Inorg Chem, 2017, 56(14): 7861-7869.
|
[51] |
Jensen M P, Chiarizia R, Shkrob I A, et al. Aqueous complexes for efficient size-based separation of americium from curium[J]. Inorg Chem, 2014, 53(12): 6003-6012.
|
[52] |
Kikunaga H, Yoshimura T, Kuribayashi T, et al. Separation of Am(Ⅲ), Cm(Ⅲ), and Cf(Ⅲ) using capillary electrophoresis[J]. Proceedings in Radiochemistry, 2011, 1(1): 167-171.
|
[53] |
Banik N L, Lützenkirchen K, Malmbeck R, et al. A method for the mg scale separation of curium(Ⅲ) from americium(Ⅲ) by HPLC using a SCX column[J]. J Radioanal Nucl Chem, 2019, 321(3): 841-849.
|
[54] |
Hanson K, Albrecht-Schmitt T E, Salpage S. Photochemical separations and compositions: WO 2019/018735 Al[P/OL]. 2019-01-24. https:∥patents.google.com/patent/WO2019018735Al/en.
|
[55] |
Nuclear Energy Agency. State of the art report on the progress of nuclear fuel cycle chemistry, NEA No. 7267[R]. OECD, Nuclear Energy Agency, 2018.
|
[56] |
Modolo G, Wilden A, Geist A, et al. A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate[J]. Radiochim Acta, 2012, 100(8-9): 715-725.
|
[57] |
Modolo G, Kluxen P, Geist A. Demonstration of the LUCA process for the separation of americium(Ⅲ) from curium(Ⅲ), californium(Ⅲ), and lanthanides(Ⅲ) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate[J]. Radiochim Acta, 2010, 98(4): 193-201.
|
[58] |
Bollesteros M J, Calor J N, Costenoble S, et al. Implementation of americium separation from a PUREX raffinate[J]. Procedia Chem, 2012, 7: 178-183.
|
[59] |
Vanel V, Bollesteros M J, Marie C, et al. Consolidation of the EXAm process: towards the reprocessing of a concentrated PUREX raffinate[J]. Procedia Chem, 2016, 21: 190-197.
|
[60] |
蒋俭,张巧莲,李志,等.镅、锔同三乙四胺六乙酸的络合物稳定常数的测定[J].核化学与放射化学,1985,7(2):112-115.
|
[61] |
杨裕生,卢加春.镅(Ⅲ)、锔(Ⅲ)、镨(Ⅲ)和钕(Ⅲ)与2-羟基-2,4-二甲基戊酸络合物稳定常数[J].核化学与放射化学,1989,11(2):73-77.
|
[62] |
杨裕生,李晓忠,丁玉珍,等.三价镅-锔与镨-钕分离因数的关联及吡啶-2,6-二羧酸的配合物稳定常数的测定[J].核化学与放射化学,1995,17(1):13-18.
|
[63] |
杨裕生,卢加春.三价镅、锔同α-羟基羧酸的络合及其与镨、钕的相似性[J].核化学与放射化学,1991,13(2):65-70.
|
[64] |
陈励权,辛文达,杨宏秀,等.加压离子交换排代法提取镅、锔、钷的研究[J].原子能科学技术,1983,17(5):571-579.
|
[65] |
陈耀中,吴克明,谈炳美.甲醇-硝酸-阴离子交换树脂体系中用高压离子交换色层法分离镅和锔[J].核化学与放射化学,1982,4(3):177-181.
|
[66] |
张力争,汪瑞珍.季铵盐萃取分离镅、锔[J].原子能科学技术,1983,17(2):145-149.
|
[67] |
梁俊福,李旗.二(2,4,4-三甲基戊基)-2-二硫代膦酸萃取分离Am和Cm的研究[J].核化学与放射化学,2005,27(4):220-224.
|
[68] |
朱荣保,杨留成,徐颖璞,等.几种核物理探测器在高压离子交换分离镅、锔流程流线分析中的应用[J].原子能科学技术,1977,11(4):315-326.
|
[69] |
Wu K M, Jiang F S, Wang R Z, et al. Separation of curium-242 from irradiated americium-241 targets[C]. Proceedings of the ACS Symposium Series, American Chemical Society, Washington DC, 1981.
|