密封中子管氘-氘产额及二次电子抑制
D-D Yield and Secondary Electron Suppression in Sealed Neutron Tube
-
摘要: 中子管的工作参数是影响中子产额的重要因素。为了更准确地调控D-D中子管的中子产额,对中子管的工作参数与产额关系进行了研究,同时为了提高中子管束流品质及寿命,对中子管的二次电子抑制进行实验。采用控制参数变量的方法分别研究了D-D中子管的热子电流、阳极高压、靶极高压对中子产额的影响,以及二次电子抑制电阻阻值与靶极电流之间的关系。结果表明:中子产额随着热子电流的增加而增加,当靶极高压为-80 kV、阳极高压为2.6 kV时,热子电流的最佳调控范围为290~305 mA;阳极高压与中子产额呈非线性关系,最佳阳极高压需要高于2.6 kV;靶极高压升高,中子产额随之增加,而且高压越高产额增加越快,靶极高压最佳工作范围为-120~-100 kV;D-D中子管二次电子抑制电阻阻值为8.7 MΩ或者抑制电压为403 V时,便可以完全抑制住二次电子。中子管的工作参数与中子产额的关系为今后中子管产额稳定性自调节可提供参考,二次电子抑制实验为抑制二次电子电流的产生提供依据。Abstract: The operating parameters of neutron tube are important factors for neutron yield. In order to control the neutron yield of D-D neutron tube more accurately, the relationship between the working parameters and the yield of neutron tube was tested. At the same time, in order to improve the current quality and life of neutron tube, the secondary electron suppression of neutron tube was tested. The influence of thermionic current, anode high voltage and target high voltage on neutron yield and the relationship between secondary electron suppression resistance and target current of D-D neutron tube are studied by controlling parameter variables. The results show that the neutron yield increases with the increase of thermionic current. When the target voltage is -80 kV and the anode voltage is 2.6 kV, the optimal control range of the thermionic current is 290-305 mA. There is a nonlinear relationship between anode high voltage and neutron yield, and the optimal working voltage needs to be higher than 2.6 kV. The neutron yield increases with the increase of target high voltage, and the higher the high voltage is, the faster the neutron yield increases. The optimal working range of target negative high voltage is -120--100 kV. The secondary electron suppression resistance of D-D neutron tube is 8.7 MΩ or the suppression voltage is 403 V, and the secondary electron can be completely suppressed. The relationship between working parameters and neutron yield can provide a reference for the self-regulation of yield stability of neutron tube in the future. The secondary electron suppression experiment provides a basis for controlling the generation of secondary electron current.
-
-
[1] 魏保国,卢洪波.中子管及其应用技术[M].长春:东北师范大学出版社,1997. [2] 肖坤祥.小型石油测井中子管的参数测试[J].中国测井技术,2004,30(4):66-68. [3] Li C, Jing S W, Gao Y D, et al. MCNP optimization of fast neutron beam thermalization device based on D-T neutron generator[J]. Fusion Eng Des, 2020, 151: 732-736. [4] 乔华亚.中子管研究进展及应用[J].核电子学与探测技术,2008,28(6):1134-1139. [5] 刘炯,骆庆峰,鲁宁,等.影响中子管产额因素分析[J].石油仪器,2010,24(6):22-23. [6] 秦爱玲,邓景珊.中子发生器产额稳定性[J].核电子学与探测技术,2007,27(4):783-785. [7] 徐绍曾.中子管特性及其工作状态的调整[J].原子能科学技术,1986,20(2):192-195. [8] 朴春龙,苏桂芬,姚安居.关于低气压小电流Penning离子源质子比的研究[J].核技术,1983(4):35-37. [9] 魏宝杰.自成靶陶瓷中子管及其应用[J].核技术,1993,16(12):726-729. [10] Verbeke J M, Leung K N, Vujic J. Development of a scaled accelerator-tube neutron generator[J]. Appl Radiat Isot, 2000, 53(4-5): 801-809. [11] 王静,段萍.中子管靶面二次电子抑制[J].长安大学学报,2003,23(2):108-110. [12] Hale G M. Evaluated nuclear data file (ENDF)-Ⅷ.0[DB]. https:∥www.nndc.bnl.gov. 2021-05-10. [13] 金大志,杨中海,戴晶怡.中子发生器中二次电子抑制的数值模拟[J].电子科技大学学报,2009,38(1):84-86. [14] 金斗英.密封中子管中电子电流形成过程[J].吉林大学自然科学大学学报,1998,36(1):40-44. [15] Reijonen J, Gicquel F, Hahto S K, et al. D-D neutron generator development at LBNL[J]. Appl Radiat Isot, 2005, 63: 757-760. [16] 孟晓慧,董志伟.二次电子对离子束流品质影响的动态研究[J].强激光与粒子束,2018,30(11): 114005-1-114005-5. -
期刊类型引用(3)
1. 廖晨伦,孟献才,李旭,李晨暄,谢亚红,曹小岗,徐伟,李辉,梁立振. 紧凑型ECR-DD中子发生器二次电子抑制研究. 真空科学与技术学报. 2025(02): 81-88 . 百度学术
2. 梁斌斌,巴伟伟,王子默,彭怡刚,高翔. 大面积氘/氚靶制备及中子产额分析. 核化学与放射化学. 2024(02): 137-142 . 本站查看
3. 叶鸣,王丹,贺永宁. 金属柱状阵列结构二次电子发射系数模拟研究. 空间电子技术. 2022(04): 79-84 . 百度学术
其他类型引用(3)