• 左
  • 右

加速器驱动先进核能系统的乏燃料循环再生研究

秦芝, 范芳丽, 田伟, 谈存敏, 吴晓蕾, 黄清钢, 王洁茹, 陈德胜, 曹石巍, 白静, 殷小杰, 王洋

秦芝, 范芳丽, 田伟, 谈存敏, 吴晓蕾, 黄清钢, 王洁茹, 陈德胜, 曹石巍, 白静, 殷小杰, 王洋. 加速器驱动先进核能系统的乏燃料循环再生研究[J]. 核化学与放射化学, 2022, 44(5): 489-499. DOI: 10.7538/hhx.2021.YX.2021033
引用本文: 秦芝, 范芳丽, 田伟, 谈存敏, 吴晓蕾, 黄清钢, 王洁茹, 陈德胜, 曹石巍, 白静, 殷小杰, 王洋. 加速器驱动先进核能系统的乏燃料循环再生研究[J]. 核化学与放射化学, 2022, 44(5): 489-499. DOI: 10.7538/hhx.2021.YX.2021033
QIN Zhi, FAN Fang-li, TIAN Wei, TAN Cun-min, WU Xiao-lei, HUANG Qing-gang, WANG Jie-ru, CHEN De-sheng, CAO Shi-wei, BAI Jing, YIN Xiao-jie, WANG Yang. Research on Spent Nuclear Fuel Cycle and Regeneration for Accelerator Driven Advanced Nuclear Energy System[J]. Journal of Nuclear and Radiochemistry, 2022, 44(5): 489-499. DOI: 10.7538/hhx.2021.YX.2021033
Citation: QIN Zhi, FAN Fang-li, TIAN Wei, TAN Cun-min, WU Xiao-lei, HUANG Qing-gang, WANG Jie-ru, CHEN De-sheng, CAO Shi-wei, BAI Jing, YIN Xiao-jie, WANG Yang. Research on Spent Nuclear Fuel Cycle and Regeneration for Accelerator Driven Advanced Nuclear Energy System[J]. Journal of Nuclear and Radiochemistry, 2022, 44(5): 489-499. DOI: 10.7538/hhx.2021.YX.2021033

加速器驱动先进核能系统的乏燃料循环再生研究

Research on Spent Nuclear Fuel Cycle and Regeneration for Accelerator Driven Advanced Nuclear Energy System

  • 摘要: 乏燃料后处理是核燃料循环的关键环节,制约核电的可持续发展。借助于加速器驱动先进核能系统(ADANES)提供的高通量、硬能谱的外源中子,其乏燃料后处理只需除去乏燃料中的挥发性裂变产物和影响次锕系元素嬗变的中子毒物,长寿命的次锕系元素Np、Am、Cm可与二氧化铀一起转化为新的燃料元件在加速器驱动燃烧器中燃烧、嬗变、增殖和产能。基于此,本课题组提出了加速器驱动的乏燃料后处理及再生制备的技术路线,包括高温氧化粉化与挥发、选择性溶解分离和燃料再生制备。本文主要介绍了近几年本课题组在这三方面所取得的一些成就,希望能为加速器驱动先进核能系统的乏燃料后处理提供基础数据。
    Abstract: Spent nuclear fuel reprocessing is the key step of the nuclear fuel cycle. It also restricts the sustainable development of nuclear power. With the help of external neutron source in an accelerator driven advanced nuclear energy system(ADANES), spent nuclear fuel reprocessing only needs to remove some volatile fission products and neutron poisons, such as rare elements. Moreover, it is not necessary to separate the long-lived minor actinides Np, Am and Cm finely. These minor actinides can be refabricated as new nuclear fuels together with uranium dioxide for burn, transmutation, breeding, and power production in the accelerator driven advanced nuclear energy system. Based on this, our group proposed a technical route for spent nuclear fuel reprocessing and regeneration of accelerator driven advanced nuclear energy system, including high-temperature oxidation pulverization and volatilization, selective dissolution separation, and fuel regeneration. The recent research of our group is summarized, which has a great significance for implementation of accelerator driven advanced nuclear energy system.
  •   5704

  • [1] Grimes R W, Nuttall W J. Generating the option of a two-stage nuclear renaissance[J]. Science, 2010, 329: 799-803.
    [2] Kharecha P A, Hansen J E. Prevented mortality and greenhouse gas emissions from historical and projected nuclear power[J]. Environ Sci Technol, 2013, 47: 4889-4895.
    [3] 顾忠茂,柴之芳.关于我国核燃料后处理/再循环的一些思考[J].化学进展,2011,23(7):1263-1271.
    [4] 叶国安,郑卫芳,何辉,等.我国核燃料后处理技术现状和发展[J].原子能科学技术,2020,54(增刊):75-83.
    [5] Ewing R C. Long-term storage of spent nuclear fuel[J]. Nat Mater, 2015, 14: 252-257.
    [6] Kleykamp H. Chemical states of the fission products in oxide fuels[J]. J Nucl Mater, 1985, 131: 221-246.
    [7] Xiao C L, Fard Z H, Sarma D, et al. Highly efficient separation of trivalent minor actinides by a layered metal sulfide (KInSn2S6) from acidic radioactive waste[J]. J Am Chem Soc, 2017, 139:16494-16497.
    [8] Guzmán J R, Espinosa-Paredes G, Franois J L, et al. Radiotoxicity of transuranics recycling in heterogeneous fuel assemblies for boiling water reactors[J]. Prog Nucl Energ, 2010, 52: 698-706.
    [9] 王建晨,陈靖.我国高放废液中铯分离研究进展[J].核化学与放射化学,2019,41(1):27-39.
    [10] 张生栋,严叔衡.乏燃料后处理湿法工艺技术基础研究发展现状[J].核化学与放射化学,2015,37(5):266-275.
    [11] 韦悦周.国外核燃料后处理化学分离技术的研究进展及考察[J].化学进展,2011,23(7):1272-1288.
    [12] Busquime Silva R, Kazimi M S, Hejzlar P. Nuclear fuel recycling: national and regional options for the US nuclear energy system[J]. Energy Environ Sci, 2010, 8(3): 996-1010.
    [13] 顾忠茂.我国先进核燃料循环技术发展战略的一些思考[J].核化学与放射化学,2006,28(1):1-10.
    [14] 顾忠茂,叶国安.先进核燃料循环体系研究进展[J].原子能科学技术,2002,36(2):160-167.
    [15] Burns J D, Moyer B A. Group hexavalent actinide separations: a new approach to used nuclear fuel recycling[J]. Inorg Chem, 2016, 55: 8913-8919.
    [16] Shcherbina N, Kivel N, Günther-Leopold I. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment[J]. J Nucl Mater, 2013, 437: 87-94.
    [17] Stanculescu A. Accelerator driven systems (ADSs) for nuclear transmutation[J]. Ann Nucl Energy, 2013, 62: 607-612.
    [18] 詹文龙,徐瑚珊.未来先进核裂变能:ADS嬗变系统[J].中国科学院院刊,2012,27(3):375-381.
    [19] 詹文龙,杨磊,闫雪松,等.加速器驱动先进核能系统及其研究进展[J].原子能科学技术,2019,53(10):1809-1815.
    [20] Yan X S, Yang L, Zhang X C, et al. Concept of an accelerator-driven advanced nuclear energy system[J]. Energies, 2017, 10(7): 1-13.
    [21] 骆鹏,王思成,胡正国,等.加速器驱动次临界系统:先进核燃料循环的选择[J].物理,2016,45(9):569-577.
    [22] 王志光,姚存峰,秦芝,等.加速器驱动次临界系统装置部件用材发展战略研究[J].中国工程科学,2019,21(1):039-048.
    [23] 谈存敏,陈德胜,王洁茹,等.模拟乏燃料的氧化挥发首端工艺研究[J].核化学与放射化学,2021,43(5):387-396.
    [24] Fan F L, Qin Z, Cao S W, et al. Highly efficient and selective dissolution separation of fission products by an ionic liquid [Hbet][Tf2N]: a new approach to spent nuclear fuel recycling[J]. Inorg Chem, 2019, 58 (1): 603-609.
    [25] 田伟.无冷却即时混合-微波辅助加热的快速溶胶凝胶法制备陶瓷核燃料小球研究[D].兰州:中国科学院近代物理研究所,2018.
    [26] 郭航旭.碳化铀和硼化铀陶瓷粉末的制备及性质研究[D].兰州:中国科学院近代物理研究所,2019.
    [27] 李辉波,何辉,叶国安,等.高温氧化挥发法:一种先进乏燃料后处理的首端工艺技术[J].原子能科学技术,2015,49(5):780-786.
    [28] Peakall K A, Antill J E. Oxidation of uranium dioxide in air at 350-1 000 ℃[J]. J Nucl Mater, 1960, 2: 194-195.
    [29] Yang M S, Choi H B, Jeong C J, et al. The status and prospect of DUPIC fuel technology[J]. Nucl Eng Technol, 2006, 38: 259-264.
    [30] Lee J S, Song K C, Yang M S, et al. Research and development program of KAERI for DUPIC (direct use of spent PWR fuel in CANDU reactors)[C]. Proceedings of International Conference and Technology Exhibition on Future Nuclear System. GLOBAL’93, Seattle, USA, Sep 12-17, 1993, 733-739.
    [31] Lee J W, Park G I, Choi Y. Fabrication of DUPIC fuel pellets using high burnup spent PWR fuel[J]. J Nucl Sci Tech, 2012, 49: 1092-1096.
    [32] Shcherbina N S, Kivel N, Günther-Leopold I. Effect of redox conditions on the fission products release from irradiated oxide fuel[J]. Procedia Chem, 2012, 7: 104-109.
    [33] Lee H, Park G I, Kang K H, et al. Pyroprocessing technology development at KAERI[J]. Nucl Eng Technol, 2011, 43: 317-328.
    [34] Park J J, Shin J, Park G, et al. An advanced voloxidation process at KAERI: Proceedings of Global, Paris, France, September 6-11, 2009[C]. Paris, 2009: 9161.
    [35] Muller J M, Galley S S, Albrecht-Schmitt T E, et al. Characterization of lanthanide complexes with bis-1,2,3-triazole-bipyridine ligands involved in actinide/lanthanide separation[J]. Inorg Chem, 2016, 55: 11454-11461.
    [36] Bhattacharyya A, Mohapatra P K, Roy A, et al. Ethyl-bis-triazinylpyridine(Et-BTP) for the separation of americium(Ⅲ) from trivalent lanthanides using solvent extraction and supported liquid membrane methods[J]. Hydrometallurgy, 2009, 99: 18-24.
    [37] Nash K L. Actinide partitioning: a review[J]. Solvent Extr Ion Exch, 2001, 19: 357-390.
    [38] Salvatores M, Palmiotti G. Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges[J]. Part Nucl Phys, 2011, 66: 144-146.
    [39] Leoncini A, Huskens J, Verboom W. Ligands for f-element extraction used in the nuclear fuel cycle[J]. Chem Soc Rev, 2017, 46: 7229-7273.
    [40] Panak P J, Geist A. Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands[J]. Chem Rev, 2013, 113:1199-1236.
    [41] Lavrov H V, Ustynyuk N A, Matveev P I, et al. A novel highly selective ligand for separation of actinides and lanthanides in the nuclear fuel cycle: experimental verification of the theoretical prediction[J]. Dalton Trans, 2017, 46: 10926-10934.
    [42] Fan F L, Tan C M, Wang J R, et al. Study on the phase separation behavior of (U,Nd)3O8 powder by high temperature oxidation[J]. J Radioanal Nucl Chem, 2019, 320(1): 235-243.
    [43] 王洁茹,范芳丽,秦芝,等.离子液体浮选分离模拟乏燃料中的稀土元素[J].核化学与放射化学,2019,41(4):378-385.
    [44] Fan F L, Chen D S, Huang Q G, et al. Radiation effect on ionic liquid [Hbet][Tf2N] for Nd2O3 separation from simulated spent nuclear fuels[J]. J Radioanal Nucl Chem, 2020, 326(1): 497-502.
    [45] 徐志昌,唐亚平,符晓铭,等.用全胶凝法生产HTRHTRHTR-10陶瓷UO2燃料核芯[J].核动力工程,2001,22(6):497-500.
    [46] Arima T, Idemitsu K, Yamahira K, et al. Application of internal gelation to sol-gel synthesis of ceria-doped zirconia microspheres as nuclear fuel analogous materials[J]. J Alloys Compd, 2005, 394: 271-276.
    [47] Tian W, Pouchon M A, Guo H X, et al. Fabrication of CeO2 ceramic spheres as a surrogate of nuclear fuel by an improved microwave-assisted rapid internal gelation process[J]. Ceram Int, 2018, 44: 6739-6746.
    [48] Duguay C, Pelloquin G. Fabrication of mixed uranium-plutonium carbide fuel pellets with a low oxygen content and an open-pore microstructure[J]. J Eur Ceram Soc, 2015, 35: 3977-3984.
    [49] Kutty T R G, Khan K B, Kutty P S, et al. Den-sification behaviour and sintering kinetics of (U0.45Pu0.55)C pellets[J]. J Nucl Mater, 2005, 340: 113-118.
    [50] 王德君,何淼,秦芝,等.碳化铀核燃料缺陷结构的研究现状[J].核技术,2017,40(7):87-98.
    [51] Guo H X, Wang J R, Bai J, et al. Low-temperature synthesis of uranium monocarbide by a Pechini-type in situ polymerizable complex method[J]. J Am Ceram Soc, 2018, 101(7): 2786-2795.
    [52] Tian W, Guo H X, Chen D S, et al. Preparation of UC ceramic nuclear fuel microspheres by combination of an improved microwave-assisted rapid internal gelation with carbothermic reduction process[J]. Ceram Int, 2018, 44: 17945-17952.
图(1)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  8
  • PDF下载量:  2489
  • 被引次数: 0
出版历程
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回