[1] |
Grimes R W, Nuttall W J. Generating the option of a two-stage nuclear renaissance[J]. Science, 2010, 329: 799-803.
|
[2] |
Kharecha P A, Hansen J E. Prevented mortality and greenhouse gas emissions from historical and projected nuclear power[J]. Environ Sci Technol, 2013, 47: 4889-4895.
|
[3] |
顾忠茂,柴之芳.关于我国核燃料后处理/再循环的一些思考[J].化学进展,2011,23(7):1263-1271.
|
[4] |
叶国安,郑卫芳,何辉,等.我国核燃料后处理技术现状和发展[J].原子能科学技术,2020,54(增刊):75-83.
|
[5] |
Ewing R C. Long-term storage of spent nuclear fuel[J]. Nat Mater, 2015, 14: 252-257.
|
[6] |
Kleykamp H. Chemical states of the fission products in oxide fuels[J]. J Nucl Mater, 1985, 131: 221-246.
|
[7] |
Xiao C L, Fard Z H, Sarma D, et al. Highly efficient separation of trivalent minor actinides by a layered metal sulfide (KInSn2S6) from acidic radioactive waste[J]. J Am Chem Soc, 2017, 139:16494-16497.
|
[8] |
Guzmán J R, Espinosa-Paredes G, Franois J L, et al. Radiotoxicity of transuranics recycling in heterogeneous fuel assemblies for boiling water reactors[J]. Prog Nucl Energ, 2010, 52: 698-706.
|
[9] |
王建晨,陈靖.我国高放废液中铯分离研究进展[J].核化学与放射化学,2019,41(1):27-39.
|
[10] |
张生栋,严叔衡.乏燃料后处理湿法工艺技术基础研究发展现状[J].核化学与放射化学,2015,37(5):266-275.
|
[11] |
韦悦周.国外核燃料后处理化学分离技术的研究进展及考察[J].化学进展,2011,23(7):1272-1288.
|
[12] |
Busquime Silva R, Kazimi M S, Hejzlar P. Nuclear fuel recycling: national and regional options for the US nuclear energy system[J]. Energy Environ Sci, 2010, 8(3): 996-1010.
|
[13] |
顾忠茂.我国先进核燃料循环技术发展战略的一些思考[J].核化学与放射化学,2006,28(1):1-10.
|
[14] |
顾忠茂,叶国安.先进核燃料循环体系研究进展[J].原子能科学技术,2002,36(2):160-167.
|
[15] |
Burns J D, Moyer B A. Group hexavalent actinide separations: a new approach to used nuclear fuel recycling[J]. Inorg Chem, 2016, 55: 8913-8919.
|
[16] |
Shcherbina N, Kivel N, Günther-Leopold I. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment[J]. J Nucl Mater, 2013, 437: 87-94.
|
[17] |
Stanculescu A. Accelerator driven systems (ADSs) for nuclear transmutation[J]. Ann Nucl Energy, 2013, 62: 607-612.
|
[18] |
詹文龙,徐瑚珊.未来先进核裂变能:ADS嬗变系统[J].中国科学院院刊,2012,27(3):375-381.
|
[19] |
詹文龙,杨磊,闫雪松,等.加速器驱动先进核能系统及其研究进展[J].原子能科学技术,2019,53(10):1809-1815.
|
[20] |
Yan X S, Yang L, Zhang X C, et al. Concept of an accelerator-driven advanced nuclear energy system[J]. Energies, 2017, 10(7): 1-13.
|
[21] |
骆鹏,王思成,胡正国,等.加速器驱动次临界系统:先进核燃料循环的选择[J].物理,2016,45(9):569-577.
|
[22] |
王志光,姚存峰,秦芝,等.加速器驱动次临界系统装置部件用材发展战略研究[J].中国工程科学,2019,21(1):039-048.
|
[23] |
谈存敏,陈德胜,王洁茹,等.模拟乏燃料的氧化挥发首端工艺研究[J].核化学与放射化学,2021,43(5):387-396.
|
[24] |
Fan F L, Qin Z, Cao S W, et al. Highly efficient and selective dissolution separation of fission products by an ionic liquid [Hbet][Tf2N]: a new approach to spent nuclear fuel recycling[J]. Inorg Chem, 2019, 58 (1): 603-609.
|
[25] |
田伟.无冷却即时混合-微波辅助加热的快速溶胶凝胶法制备陶瓷核燃料小球研究[D].兰州:中国科学院近代物理研究所,2018.
|
[26] |
郭航旭.碳化铀和硼化铀陶瓷粉末的制备及性质研究[D].兰州:中国科学院近代物理研究所,2019.
|
[27] |
李辉波,何辉,叶国安,等.高温氧化挥发法:一种先进乏燃料后处理的首端工艺技术[J].原子能科学技术,2015,49(5):780-786.
|
[28] |
Peakall K A, Antill J E. Oxidation of uranium dioxide in air at 350-1 000 ℃[J]. J Nucl Mater, 1960, 2: 194-195.
|
[29] |
Yang M S, Choi H B, Jeong C J, et al. The status and prospect of DUPIC fuel technology[J]. Nucl Eng Technol, 2006, 38: 259-264.
|
[30] |
Lee J S, Song K C, Yang M S, et al. Research and development program of KAERI for DUPIC (direct use of spent PWR fuel in CANDU reactors)[C]. Proceedings of International Conference and Technology Exhibition on Future Nuclear System. GLOBAL’93, Seattle, USA, Sep 12-17, 1993, 733-739.
|
[31] |
Lee J W, Park G I, Choi Y. Fabrication of DUPIC fuel pellets using high burnup spent PWR fuel[J]. J Nucl Sci Tech, 2012, 49: 1092-1096.
|
[32] |
Shcherbina N S, Kivel N, Günther-Leopold I. Effect of redox conditions on the fission products release from irradiated oxide fuel[J]. Procedia Chem, 2012, 7: 104-109.
|
[33] |
Lee H, Park G I, Kang K H, et al. Pyroprocessing technology development at KAERI[J]. Nucl Eng Technol, 2011, 43: 317-328.
|
[34] |
Park J J, Shin J, Park G, et al. An advanced voloxidation process at KAERI: Proceedings of Global, Paris, France, September 6-11, 2009[C]. Paris, 2009: 9161.
|
[35] |
Muller J M, Galley S S, Albrecht-Schmitt T E, et al. Characterization of lanthanide complexes with bis-1,2,3-triazole-bipyridine ligands involved in actinide/lanthanide separation[J]. Inorg Chem, 2016, 55: 11454-11461.
|
[36] |
Bhattacharyya A, Mohapatra P K, Roy A, et al. Ethyl-bis-triazinylpyridine(Et-BTP) for the separation of americium(Ⅲ) from trivalent lanthanides using solvent extraction and supported liquid membrane methods[J]. Hydrometallurgy, 2009, 99: 18-24.
|
[37] |
Nash K L. Actinide partitioning: a review[J]. Solvent Extr Ion Exch, 2001, 19: 357-390.
|
[38] |
Salvatores M, Palmiotti G. Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges[J]. Part Nucl Phys, 2011, 66: 144-146.
|
[39] |
Leoncini A, Huskens J, Verboom W. Ligands for f-element extraction used in the nuclear fuel cycle[J]. Chem Soc Rev, 2017, 46: 7229-7273.
|
[40] |
Panak P J, Geist A. Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands[J]. Chem Rev, 2013, 113:1199-1236.
|
[41] |
Lavrov H V, Ustynyuk N A, Matveev P I, et al. A novel highly selective ligand for separation of actinides and lanthanides in the nuclear fuel cycle: experimental verification of the theoretical prediction[J]. Dalton Trans, 2017, 46: 10926-10934.
|
[42] |
Fan F L, Tan C M, Wang J R, et al. Study on the phase separation behavior of (U,Nd)3O8 powder by high temperature oxidation[J]. J Radioanal Nucl Chem, 2019, 320(1): 235-243.
|
[43] |
王洁茹,范芳丽,秦芝,等.离子液体浮选分离模拟乏燃料中的稀土元素[J].核化学与放射化学,2019,41(4):378-385.
|
[44] |
Fan F L, Chen D S, Huang Q G, et al. Radiation effect on ionic liquid [Hbet][Tf2N] for Nd2O3 separation from simulated spent nuclear fuels[J]. J Radioanal Nucl Chem, 2020, 326(1): 497-502.
|
[45] |
徐志昌,唐亚平,符晓铭,等.用全胶凝法生产HTRHTRHTR-10陶瓷UO2燃料核芯[J].核动力工程,2001,22(6):497-500.
|
[46] |
Arima T, Idemitsu K, Yamahira K, et al. Application of internal gelation to sol-gel synthesis of ceria-doped zirconia microspheres as nuclear fuel analogous materials[J]. J Alloys Compd, 2005, 394: 271-276.
|
[47] |
Tian W, Pouchon M A, Guo H X, et al. Fabrication of CeO2 ceramic spheres as a surrogate of nuclear fuel by an improved microwave-assisted rapid internal gelation process[J]. Ceram Int, 2018, 44: 6739-6746.
|
[48] |
Duguay C, Pelloquin G. Fabrication of mixed uranium-plutonium carbide fuel pellets with a low oxygen content and an open-pore microstructure[J]. J Eur Ceram Soc, 2015, 35: 3977-3984.
|
[49] |
Kutty T R G, Khan K B, Kutty P S, et al. Den-sification behaviour and sintering kinetics of (U0.45Pu0.55)C pellets[J]. J Nucl Mater, 2005, 340: 113-118.
|
[50] |
王德君,何淼,秦芝,等.碳化铀核燃料缺陷结构的研究现状[J].核技术,2017,40(7):87-98.
|
[51] |
Guo H X, Wang J R, Bai J, et al. Low-temperature synthesis of uranium monocarbide by a Pechini-type in situ polymerizable complex method[J]. J Am Ceram Soc, 2018, 101(7): 2786-2795.
|
[52] |
Tian W, Guo H X, Chen D S, et al. Preparation of UC ceramic nuclear fuel microspheres by combination of an improved microwave-assisted rapid internal gelation with carbothermic reduction process[J]. Ceram Int, 2018, 44: 17945-17952.
|