• 左
  • 右

高速逆流色谱法分离镧系和锕系元素的研究进展

李宇浩, 丁有钱, 王秀凤, 刚发源, 岳远振, 符之海, 白龙

李宇浩, 丁有钱, 王秀凤, 刚发源, 岳远振, 符之海, 白龙. 高速逆流色谱法分离镧系和锕系元素的研究进展[J]. 核化学与放射化学, 2022, 44(5): 515-523. DOI: 10.7538/hhx.2022.YX.2021013
引用本文: 李宇浩, 丁有钱, 王秀凤, 刚发源, 岳远振, 符之海, 白龙. 高速逆流色谱法分离镧系和锕系元素的研究进展[J]. 核化学与放射化学, 2022, 44(5): 515-523. DOI: 10.7538/hhx.2022.YX.2021013
LI Yu-hao, DING You-qian, WANG Xiu-feng, GANG Fa-yuan, YUE Yuan-zhen, FU Zhi-hai, BAI Long. Review of High-Speed Countercurrent Chromatography in Separation of Lanthanides and Actinides[J]. Journal of Nuclear and Radiochemistry, 2022, 44(5): 515-523. DOI: 10.7538/hhx.2022.YX.2021013
Citation: LI Yu-hao, DING You-qian, WANG Xiu-feng, GANG Fa-yuan, YUE Yuan-zhen, FU Zhi-hai, BAI Long. Review of High-Speed Countercurrent Chromatography in Separation of Lanthanides and Actinides[J]. Journal of Nuclear and Radiochemistry, 2022, 44(5): 515-523. DOI: 10.7538/hhx.2022.YX.2021013

高速逆流色谱法分离镧系和锕系元素的研究进展

Review of High-Speed Countercurrent Chromatography in Separation of Lanthanides and Actinides

  • 摘要: 在放射化学领域,镧系和锕系元素分离一直是研究热点之一。为实现燃耗分析,需要对溶解液中的镧系和锕系元素进行多组分的系统分离。常用的高压液相色谱法等由于处理量较小,无法满足分离要求。而液液萃取法具有较高的处理量,分离效率却较低。高速逆流色谱法(HSCCC)是一种新型的不需要固体载体的分离方法,它结合了液液萃取和分配色谱两者优点,已被广泛应用于生物活性物质的分离。其独特的优点在放化领域也引起了研究者们的注意。为此,本文介绍了高速逆流色谱的基本结构与原理特点,并就高速逆流色谱在镧系和锕系元素分离中的研究进展进行了综述,展望其在放化领域的应用前景。
    Abstract: In the field of radiochemistry, separation of lanthanides and actinides has always been one of the research hotspots. In order to achieve the burnup analysis, the lanthanide and actinide elements in the solution need to be separated. High pressure liquid chromatography and other commonly used methods cannot meet the separation requirements due to small processing capacity. On the other hand, liquid-liquid extraction method has a higher handling capacity, but the separation efficiency is low. High-speed countercurrent chromatography(HSCCC) is a novel separation method that gets rid of solid support. Having been widely used in the separation of bioactive substances, it combines the advantages of liquid-liquid extraction and distribution chromatography. Its unique advantages have also attracted the attention of radiochemistry researchers. In this paper, the basic structure, principle and characteristics of high-speed countercurrent chromatography(HSCCC) are introduced, the research progress in the separation of lanthanide and actinide elements is reviewed, and its application in radiochemistry is prospected.
  •   5706

  • [1] Ito Y. Efficient preparative counter-current chromatography with a coil planet centrifuge[J]. J Chromatogr, 1981, 214(1): 122-125.
    [2] 张天佑.逆流色谱技术的开发利用和动向[J].国际科技交流,1988(6):33-34.
    [3] Ma Y, Ito Y. Chiral separation by high-speed countercurrent chromatography[J]. Anal Chem, 1995, 67(17): 3069-3074.
    [4] Ito Y. Two-phase motion in hydrodynamic counter-current chromatography[J]. Current Chromatography, 2020, 7(2): 76-81.
    [5] Pérez E, Minguillón C. Counter-current chromatography in the separation of enantiomers[C]∥Subramanian G. Chiral separation techniques: a practical approach. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2007: 369-397.
    [6] Hopmann E, Frey A, Minceva M. A priori selection of the mobile and stationary phase in centrifugal partition chromatography and counter-current chromatography[J]. Chromatogr A, 2012, 1238: 68-76.
    [7] 张奇,杜琪珍.逆流色谱技术进展及其在食品工业中的应用[J].现代食品科技,2005,21(3):159-161.
    [8] Liang N, Neasová L, Zhao Y Y, et al. Advances in the separation of gangliosides by counter-current chromatography(CCC)[J]. J Chromatogr B, 2021: 122701.
    [9] Khan B M, Liu Y. High speed counter current chromatography: overview of solvent-system and elution-mode[J]. J Liq Chromatogr Related Technol, 2018, 41(10): 629-636.
    [10] Friesen J B, Pauli G. Guess: a generally useful estimate of solvent systems in CCC[J]. J Liq Chromatogr Related Technol, 2005, 28(17): 2777-2806.
    [11] Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography[J]. J Chromatogr A, 2005, 1065(2): 145-168.
    [12] Camacho-Frias E, Foucault A. Solvent systems in centrifugal partition chromatography[J]. Chromatogr Sci Ser, 1996, 68: 71-98.
    [13] Berthod A. Practical approach to high-speed counter-current chromatography[J]. J Chromatogr A, 1991, 550(1-2): 677-693.
    [14] Hopmann E, Frey A, Minceva M. A priori selection of the mobile and stationary phase in centrifugal partition chromatography and counter-current chromatography[J]. J Chromatogr A, 2012, 1238: 68-76.
    [15] 谭龙泉, 张所明.薄层色谱在高速逆流色谱溶剂系统选择过程中的应用[J].分析化学,1996,24(12):1448-1451.
    [16] Wu S, Wu D, Liang J, et al. Modeling gradient elution in countercurrent chromatography: efficient separation of tanshinones from salvia miltiorrhiza bunge[J]. J Sep Sci, 2012, 35: 964-976.
    [17] Agnely M, Thiebaut D. Dual-mode high-speed countercurrent chromatography: retention, resolution and examples[J]. J Chromatogr A, 1997, 790: 17-30.
    [18] Berthod A, Friesen J B, Inui T, et al. Elution-extrusion countercurrent chromatography: theory and concepts in metabolic analysis[J]. Anal Chem, 2007, 79(9): 3371-3382.
    [19] Weisz A, Scher A L, Shinomiya K, et al. A new preparative-scale purification technique: pH-zone-refining countercurrent chromatography[J]. J Amer Chem Soc, 1994, 116(2): 704-708.
    [20] Xu L, Ma T, Wang X, et al. Preparative separation of seven polyphenols from Perillae Folium via pH-zone-refining counter-current chromatography combined with high-speed counter-current chromatography[J]. Anal Methods, 2021, 13(10): 1232-1237.
    [21] Quan B H, Jing Z S, Qiao C F, et al. Preparative separation of gambogic acid and its C-2 epimer using recycling high-speed counter-current chromatography: sciencedirect[J]. J Chromatogr A, 2006, 1127(1-2): 298-301.
    [22] Fedotov P S, Maryutina T A, Pukhovskaya V M, et al. Influence of kinetic properties of extraction systems on the separation and preconcentration of some elements by countercurrent chromatography[J]. J Liq Chromatogr, 1994, 17(16): 3491-3506.
    [23] David F. Thermodynamic properties of lanthanide and actinide ions in avueous solution[J]. J Less-Common Met, 1986, 121: 27-42.
    [24] Prajapati P. High speed counter current chromatography: a review[J]. World Journal of Pharmaceutical Research, 2016, 5(7): 413-429.
    [25] 时新刚,陈志伟,刘东武.高速逆流色谱应用研究进展[J].生命科学仪器,2009(2):4-7.
    [26] Araki T, Okazawa T, Kubo Y, et al. Separation of lighter rare earth metal ions by centrifugal countercurrent type chromatography with di-(2-ethylhexyl)phosphoric acid[J]. J Liq Chromatogr, 1988, 11(1): 267-281.
    [27] Zolotov Y A, Spivakov B Y, Maryutina T A, et al. Partition countercurrent chromatography in inorganic analysis[J]. Fresenius′ Z Anal Chem, 1989, 335(8): 938-944.
    [28] Spivakov B Y, Maryutina T A, Fedotov P S, et al. Different two-phase liquid systems for inorganic separations by countercurrent chromatography[J]. Acs Symposium, 1999, 716: 333-346.
    [29] Kitazume E, Bhatnagar M, Ito Y. Separation of rare earth elements by high-speed counter-current chromatography[J]. J Chromatogr, 1991, 538(1): 133-140.
    [30] Berthod A, Xiang J, Alex S, et al. Chromatographie à contre courant et micelles inverses pour la séparation et l’extraction de cations métalliques[J]. Can J Chem, 1996, 74(2): 277-286.
    [31] Abe H, Usuda S, Tachimori S. Characteristics of centrigugal partition chromatography for lanthanoid separation in HDEHP extraction system[J]. J Liq Chromatogr, 1994, 17(8): 1821-1835.
    [32] Akiba K, Hashimoto H, Nakamura S, et al. Enrichment and separation of holmium and erbium by high-speed countercurrent chromatography[J]. J Liq Chromatogr, 1997, 20(13): 1995-2007.
    [33] Spivakov B Y, Maryutina T A, Fedotov P S, et al. Different two-phase liquid systems for inorganic separations by countercurrent chromatography[J]. Acs Symposium, 1999, 716: 333-346.
    [34] Soin A, Maryutina T, Musina N, et al. New possibility for REE determination in oil[J]. Int J Spectrosc, 2012, 2012: 1-5.
    [35] Fedotov P S. Untraditional applications of countercurrent chromatography[J]. J Liq Chromatogr Related Technol, 2007, 25: 2065-2078.
    [36] Maryutina T A, Fedotov P S. Countercurrent chromatography in elemental analysis: from oil to high-purity substances[J]. J Anal Chem, 2019, 74(3): 239-247.
    [37] 金玉仁,章连众,韩世钧,等.用DHDECMP在逆流色谱上分离镧系金属离子[J].化学学报,2000,58(6):692-695.
    [38] Myasoedov B F, Chmutova M K. New methods of transplutonium elements isolation, purification, and separation from rare earth elements and selected fission products[M]∥Separations of elements. Boston, MA: Springer, 1995: 11-29.
    [39] Hoshi H, Akiba K. High-speed countercurrent chromatography for separation of americium from lanthanoids[J]. J Radioanal Nucl Chem, 2001, 249(3): 547-550.
    [40] 吴剑峰,金玉仁,许启初,等.逆流色谱分离镅(Ⅲ)和铕(Ⅲ)的研究[J].分析化学,2006,34(9):1311-1314.
    [41] Myasoedov B F, Maryutina T A, Litvina M N, et al. Americium(Ⅲ)/curium(Ⅲ) separation by countercurrent chromatography using malonamide extractants[J]. Radiochim Acta, 2005, 93(1): 9-15.
    [42] Litvina M N, Malikov D A, Maryutina T A, et al. Separation of U, Pu, and Am recovered from mixed oxide(MOX) fuel by countercurrent chromatography[J]. Radiochem, 2007, 49(2): 162-165.
    [43] 吴剑峰,金玉仁,周国庆,等.逆流色谱分离感应耦合等离子体质谱在线测量超痕量钚[J].分析化学,2005,33(10):1397-1400.
    [44] 吴剑峰,金玉仁,周国庆,等.逆流色谱去除无机酸中痕量铀的研究[J].核技术,2006,29(3):214-220.
    [45] Ito Y, Weinstein M A, Aoki I, et al. The coil planet centrifuge: principle and application[J]. J Med Instruments(Japanese), 1966, 36(7): 1-13.
    [46] Domon B, Hostettmann K, Kovacˇevic K, et al. Separation of the enantiomers of (±) norephedrine by rotation locular counter-current chromatography[J]. J Chromatogr A, 1982, 250: 149-151.
    [47] Ito Y. High-speed countercurrent chromatography[J]. CRC Crit Rev Anal Chem, 1986, 17: 65.
    [48] 张天佑.逆流色谱技术[M].北京:科学技术出版社,1991.
  • 期刊类型引用(2)

    1. 郝思怡,朱群英. 溶剂梯度双柱循环色谱在微量杂质分离制备中的应用. 化学与粘合. 2024(01): 95-99 . 百度学术
    2. 古梅,吕开,熊亮萍,胡胜. 环境放射性样品中锕系核素组合分离方法研究进展. 材料导报. 2024(24): 80-87 . 百度学术

    其他类型引用(2)

图(1)
计量
  • 文章访问数:  323
  • HTML全文浏览量:  0
  • PDF下载量:  2514
  • 被引次数: 4
出版历程
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回