• 左
  • 右

锕系金属(铀和锔)内嵌硼球烯的理论研究

张乃心, 王聪芝, 赵玉宝, 石伟群

张乃心, 王聪芝, 赵玉宝, 石伟群. 锕系金属(铀和锔)内嵌硼球烯的理论研究[J]. 核化学与放射化学, 2022, 44(5): 549-557. DOI: 10.7538/hhx.2022.YX.2021037
引用本文: 张乃心, 王聪芝, 赵玉宝, 石伟群. 锕系金属(铀和锔)内嵌硼球烯的理论研究[J]. 核化学与放射化学, 2022, 44(5): 549-557. DOI: 10.7538/hhx.2022.YX.2021037
ZHANG Nai-xin, WANG Cong-zhi, ZHAO Yu-bao, SHI Wei-qun. Theoretical Studies on Actinides(U and Cm) Endohedral Borospherenes[J]. Journal of Nuclear and Radiochemistry, 2022, 44(5): 549-557. DOI: 10.7538/hhx.2022.YX.2021037
Citation: ZHANG Nai-xin, WANG Cong-zhi, ZHAO Yu-bao, SHI Wei-qun. Theoretical Studies on Actinides(U and Cm) Endohedral Borospherenes[J]. Journal of Nuclear and Radiochemistry, 2022, 44(5): 549-557. DOI: 10.7538/hhx.2022.YX.2021037

锕系金属(铀和锔)内嵌硼球烯的理论研究

Theoretical Studies on Actinides(U and Cm) Endohedral Borospherenes

  • 摘要: 最近发现的全硼富勒烯(硼球烯,D2d B-/040),开启了硼球烯化学研究的新篇章。类似于富勒烯,金属掺杂也是硼球烯修饰和功能化重要途径。本工作采用密度泛函理论预测了一系列锕系金属掺杂硼球烯[An@B39n+(An=U,n=3;An=Cm,n=2)。理论计算表明,这些硼球烯均为稳定的金属内嵌硼球烯,其中[U@B393+的能量最低,结构具有C3对称性,而[Cm@B39]2+C1结构。成键性质分析表明,[U@B393+和[Cm@B392+均存在σ和π离域键。另外[An@B39n+中U-B键的共价相互作用强于Cm-B键,且[U@B393+较[Cm@B392+更稳定。因此,An-B键的共价特征对于这些锕系金属内嵌硼球烯的形成是必不可少的。本工作扩展了硼球烯体系,并为新型稳定金属内嵌硼球烯的设计提供了理论线索。
    Abstract: The recently discovered all-boron fullerene(D2d B-/040) opened a new chapter in borospherene chemistry. Similar to fullerenes, metal doping is also an important way for modification and functionalization of borospherenes. This work predicts a series of stable actinide metal-doped borospherenes [An@B39n+ (An=U, n=3; An=Cm, n=2) by using density functional theory. Theoretical calculations show that these borospherenes are all endohedral borospherenes, among which the lowest energy structures of [U@B393+ has C3 symmetry, while [Cm@B392+ is a C1 structure. Bonding nature analysis shows that delocalized σ and π bonds exist in [U@B393+ and [Cm@B392+. In addition, the covalent interaction of the U-B bond in [An@B39n+ is stronger than that of the Cm-B bond. Therefore, the covalency in the An-B bonds may be essential for the formation of these metal-doped borospherenes. This work expands the borospherenes system and provides theoretical clues for the design of novel stable metal endohedral borospherenes.
  •   5710

  • [1] Kroto H W, Heath J R, Obrien S C, et al. C60: buckminsterfullerene[J]. Nature, 1985, 318: 162-163.
    [2] Heath J R, Obrien S C, Zhang Q, et al. Lanthanum complexes of spheroidal carbon shells[J]. J Am Chem Soc, 1985, 107: 7779-7780.
    [3] Wan Z M, Christian J F, Anderson S L. Collision of Li+ and Na+ with C60 insertion, fragmentation, and thermionic emission[J]. Phys Rev Lett, 1992, 69: 1352-1355.
    [4] Lu J, Ge L X, Zhang X W, et al. Electronic structures of endohedral Sr@C60, Ba@C60, Fe@C60 and Mn@C60[J]. Mod Phys Lett B, 1999, 13: 97-101.
    [5] Okazaki T, Lian Y F, Gu Z N, et al. Isolation and spectroscopic characterization of Sm-containing metallofullerenes[J]. Chem Phys Lett, 2000, 320: 435-440.
    [6] Waiblinger M, Lips K, Harneit W, et al. Thermal stability of the endohedral fullerenes NaC60, NaC70, and PaC60[J]. Phys Rev B, 2001, 63(4): 45421.
    [7] Zhuang J X, Abella L, Sergentu D C, et al. Diuranium(Ⅳ) carbide cluster U2C2 stabilized inside fullerene cages[J]. J Am Chem Soc, 2019, 141: 20249-20260.
    [8] Li X M, Yao Y R, Yang W, et al. Crystallographic and spectroscopic characterization of a mixed actinide-lanthanide carbide cluster stabilized inside an Ih(7)-C80 fullerene cage[J]. Chem Commun, 2020, 56: 3867-3870.
    [9] Wang Y F, Morales-Martinez R, Zhan X X, et al. Unique four-electron metal-to-cage charge transfer of Th to a C82 fullerene cage: complete structural characterization of Th@C3V(8)-C82[J]. J Am Chem Soc, 2017, 139: 5110-5116.
    [10] Zhang X X, Wang Y F, Morales-Martinez R, et al. U2@Ih(7)-C80: crystallographic characterization of a long-sought dimetallic actinide endohedral fullerene[J]. J Am Chem Soc, 2018, 140: 3907-3915.
    [11] Zhang X X, Li W L, Feng L, et al. A diuranium carbide cluster stabilized inside a C80 fullerene cage[J]. Nat Commun, 2018, 9: 2753.
    [12] Szwacki N G, Sadrzadeh A, Yakobson B I. B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure[J]. Phys Rev Lett, 2007, 98: 166804.
    [13] Zhao J J, Wang L, Li F Y, et al. B80 and other medium-sized boron clusters: core shell structures, not hollow cages[J]. J Phys Chem A, 2010, 114: 9969-9972.
    [14] De S, Willand A, Amsler M, et al. Energy landscape of fullerene materials: a comparison of boron to boron nitride and carbon[J]. Phys Rev Lett, 2011, 106: 225502.
    [15] Lv J, Wang Y C, Zhu L, et al. B38: an all-boron fullerene analogue[J]. Nanoscale, 2014, 6: 11692-11696.
    [16] Ozdogan C, Mukhopadhyay S, Hayami W, et al. The unusually stable B100 fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets[J]. J Phys Chem C, 2010, 114: 4362-4375.
    [17] Polad S, Ozay M. A new hole density as a stability measure for boron fullerenes[J]. Phys Chem Chem Phys, 2013, 15: 19819-19824.
    [18] Quarles K D, Kah C B, Gunasinghe R N, et al. Filled pentagons and electron counting rule for boron fullerenes[J]. J Chem Theory Comput, 2011, 7: 2017-2020.
    [19] Sheng X L, Yan Q B, Zheng Q R, et al. Boron fullerenes B32+8k with four-membered rings and B32 solid phases: geometrical structures and electronic properties[J]. Phys Chem Chem Phys, 2009, 11: 9696-9702.
    [20] Wang L, Zhao J J, Li F Y, et al. Boron fullerenes with 32-56 atoms: irregular cage configurations and electronic properties[J]. Chem Phys Lett, 2010, 501: 16-19.
    [21] Zope R R, Baruah T. Snub boron nanostructures: chiral fullerenes, nanotubes and planar sheet[J]. Chem Phys Lett, 2011, 501: 193-196.
    [22] Zhai H J, Kiran B, Li J, et al. Hydrocarbon analogues of boron clusters-planarity aromaticity and antiaromaticity[J]. Nat Mater, 2003, 2: 827-833.
    [23] Zhai H J, Zhao Y F, Li W L, et al. Observation of an all-boron fullerene[J]. Nat Chem, 2014, 6: 727-731.
    [24] Li W L, Chen X, Jian T, et al. From planar boron clusters to borophenes and metalloborophenes[J]. Nat Rev Chem, 2017, 1: 0071.
    [25] Chen Q, Li W L, Zhao Y F, et al. Experimental and theoretical evidence of an axially chiral borospherene[J]. ACS Nano, 2015, 9: 754-760.
    [26] Chen Q, Zhang S Y, Bai H, et al. Cage-like B+41 and B2+42: new chiral members of the borospherene family[J]. Angew Chem Int Edit, 2015, 54: 8160-8164.
    [27] Pei L, Yan M, Zhao X Y, et al. Sea-shell-like B+31 and B32: two new axially chiral members of the borospherene family[J]. RSC Adv, 2020, 10: 10129-10133.
    [28] Bai H, Chen Q, Zhai H J, et al. Endohedral and exohedral metalloborospherenes: M@B40 (M=Ca, Sr) and M&B40 (M=Be, Mg)[J]. Angew Chem Int Edit, 2015, 54: 941-945.
    [29] Xi C, Yang L, Liu C, et al. Lanthanide metals in the boron cages: computational prediction of M@Bn (M=Eu, Gd; n=38, 40)[J]. Int J Quantum Chem, 2018, 118: 25576.
    [30] Yu T R, Gao Y, Xu D X, et al. Actinide endohedral boron clusters: a closed-shell electronic structure of U@B40[J]. Nano Res, 2018, 11: 354-359.
    [31] Wang C Z, Bo T, Lan J H, et al. Ultrastable actinide endohedral borospherenes[J]. Chem Commun, 2018, 54: 2248-2251.
    [32] Hu S X, Chen M Y, Ao B Y. Theoretical studies on the oxidation states and electronic structures of actinide-borides: AnB12 (An=Th-Cm) clusters[J]. Phys Chem Chem Phys, 2018, 20: 23856-23863.
    [33] Hu S X, Zhang P, Zou W L, et al. New theoretical insights into high-coordination-number complexes in actinides-centered borane[J]. Nanoscale, 2020, 12: 15054-15065.
    [34] Zhang N, Li A, Wang C, et al. Theoretical prediction of chiral actinide endohedral borospherenes dagger[J]. New J Chem, 2021, 15: 6803-6810.
    [35] Frisch M T, Schlegel G, Scuseria H, et al. Gaussian 16[R]. Wallingford, CT: Gaussian Ict, 2016.
    [36] Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: the PBE0 model[J]. J Chem Phys, 1999, 110: 6158-6170.
    [37] Cao X Y, Dolg M, Stoll H. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials[J]. J Chem Phys, 2003, 118: 487-496.
    [38] Dolg M, Cao X Y. Relativistic pseudopotentials: their development and scope of applications[J]. Chem Rev, 2012, 112: 403-480.
    [39] Li F Y, Jin P, Jiang D E, et al. B80 and B101-103 clusters: remarkable stability of the core-shell structures established by validated density functionals[J]. J Chem Phys, 2012, 136: 074302.
    [40] Bai H, Chen Q, Miao C Q, et al. Ribbon aromaticity in double-chain planar BnH2-2 and Li2BnH2 nanoribbon clusters up to n=22: lithiated boron dihydride analogues of polyenes[J]. Phys Chem Chem Phys, 2013, 15: 18872-18880.
    [41] Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. J Comput Chem, 2012, 33: 580-592.
    [42] Zubarev D Y, Boldyrev A I. Developing paradigms of chemical bonding: adaptive natural density partitioning[J]. Phys Chem Chem Phys, 2008, 10: 5207-5217.
    [43] Bader R F W. Atoms in molecules: a quantum theory[R]. Clarendon Press, Oxford, New York, 1990.
    [44] Lu T, Chen F W. Calculation of molecular orbital composition[J]. Acta Chim Sinica, 2011, 69: 2393-2406.
    [45] Hirshfeld F L. Bonder-atom fragments for describing molecular charge-densities[J]. Theor Chim Acta, 1977, 44: 129-138.
    [46] Guerra C F, Handgraaf J W, Baerends E J, et al. Voronoi deformation density(VDD) charges: assessment of the mulliken, bader, hirshfeld, weinhold, and VDD methods for charge analysis[J]. J Comput Chem, 2004, 25: 189-210.
    [47] Chen Q, Gao T, Tian W J, et al. Endohedral C3 Ca@B+39 and C2 Ca@B+39: axially chiral metalloborospherenes based on B-39[J]. Phys Chem Chem Phys, 2015, 17: 19690-19694.
    [48] Pyykkö P, Atsumi M. Molecular double-bond covalent radii for elements Li-E112[J]. Chem Eur J, 2009, 15: 12770-12779.
    [49] Foroutan-Nejad C, Badri Z, Marek R. Multi-center covalency: revisiting the nature of anion-pi interac-tions[J]. Phys Chem Chem Phys, 2015, 17: 30670-30679.
    [50] Spackman M A, Jayatilaka D. Hirshfeld surface analysis[J]. Crystengcomm, 2009, 11: 19-32.
    [51] Dognon J P, Clavaguera C, Pyykkö P. A predicted organometallic series following a 32-electron principle: An@C28 (An=Th, Pa+, U2+, Pu4+)[J]. J Am Chem Soc, 2009, 131: 238-243.
    [52] Li W L, Chen Q, Tian W J, et al. The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene[J]. J Am Chem Soc, 2014, 136: 12257-12260.
    [53] Liu H, Chen Q, Li H R, et al. Aromatic cage-like B34 and B+35: new axially chiral members of the borospherene family[J]. Phys Chem Chem Phys, 2018, 20: 15344-15349.
    [54] Jian T, Li W L, Chen X, et al. Competition between drum and quasi-planar structures in RhB-18: motifs for metallo-boronanotubes and metallo-borophenes[J]. Chem Sci, 2016, 7: 7020-7027.
    [55] Li W L, Zhao Y F, Hu H S, et al. A quasiplanar chiral boron cluster[J]. Angew Chem Int Edit, 2014, 53: 5540-5545.
    [56] Lu T, Chen F W. Comparison of computational methods for atomic charges[J]. Acta Phys-Chim Sin, 2012, 28: 1-18.
    [57] Espinosa E, Molins E, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities[J]. Chem Phys Lett, 1998, 285: 170-173.
    [58] Cremer D, Kraka E. Chemical-bonds without bonding electron-density-does the difference electron-density analysis suffice for a description of the chemical-bond[J]. Angew Chem Int Edit, 1984, 23: 627-628.
    [59] Becke A D, Edgecombe K E. A simple measure of electron localization in atomic and molecular-systems[J]. J Chem Phys, 1990, 92: 5397-5403.
    [60] Savin A, Nesper R, Wengert S, et al. ELF: the electron localization function[J]. Angew Chem Int Edit, 1997, 36: 1808-1832.
    [61] Fagiani M R, Song X W, Petkov P, et al. Structure and fluxionality of B+13 probed by infrared photodissociation spectroscopy[J]. Angew Chem Int Edit, 2017, 56: 501-504.
  • 期刊类型引用(1)

    1. 张乃心,王聪芝,石伟群. 锕系金属掺杂硼团簇AnB_7(An=Ac、Th、Am、Cm)的理论研究. 核化学与放射化学. 2023(02): 160-169 . 本站查看

    其他类型引用(0)

图(1)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  0
  • PDF下载量:  1885
  • 被引次数: 1
出版历程
  • 刊出日期:  2022-10-19

目录

    /

    返回文章
    返回