Abstract:
Extracting uranium from seawater is an important guarantee for the sustainable development of nuclear energy. Rapid uranium extraction material has short adsorption cycle, which can reduce biofouling and aging to give long service life. Therefore, optimizing adsorption cycle can obtain higher uranium extraction efficiency and economic benefits. Herein, a conjugated mesoporous polymer(CMPAO) was developed for monitorable rapid uranium extraction from seawater using aggregationinduced emissionactive triphenylamine and amidoxime modified fluorene moieties. Uranyl ions can be captured by amidoxime group to enhance the electrochemiluminescence(ECL) signal of CMPAO via resonance energy transfer mechanism, which can be applied in uranyl adsorption monitoring to improve adsorption process. The adsorption of CMPAO in uranyl solution(5×10-5 mol/L) can reach equilibrium within 20 minutes with a capacity of 1825 mg/g. In real seawater, the adsorption process can be completed in 3 days, and the adsorption capacity for U reaches 16 mg/g. As the uranium adsorption increases, the ECL signal can be enhanced gradually, which can be employed in monitoring the adsorption process rapidly.