[1] |
阂茂中.放射性废物处置原理[M].北京:中国原子能出版社,1998.
|
[2] |
Weber W J, Navrotsky A, Stefanovsky S, et al. Materials science of high-level nuclear waste immobilization[J]. MRS Bulletin, 2009, 34(1): 46-53.
|
[3] |
Sengupta P. A review on immobilization of phosphate containing high level nuclear wases within glass matrix-present status and future challenges[J]. J Hazard Mater, 2012, 235: 17-28.
|
[4] |
Stewart D. Geochemical aspects of radioactive waste disposal[M]. Springer Verlag, 1984.
|
[5] |
Chick L, Lokken R, Thomas L. Basalt glass ceramics for the immobilization of transuranic nuclear waste[J]. Bull Am Ceram Soc, 1983, 62(4): 505-516.
|
[6] |
Chun K S, Kim S S, Kang C H. Release of boron and cesium or uranium from simulated borosilicate waste glasses through a compacted Ca-bentonite layer[J]. J Nucl Mater, 2001, 298: 150-154.
|
[7] |
Mccloy J S, Riley B J, Goel A, et al. Rhenium solubility in borosilicate nuclear waste glass: implications for the processing and immobilization of technetium-99[J]. Environ Sci Technol, 2012, 46(22): 12616-12622.
|
[8] |
McKeown D A, Muller I S, Matlack K S, et al. X-ray absorption studies of vanadium valence and local environment in borosilicate waste glasses using vanadium sulfide, silicate, and oxide standards[J]. J Non Cryst Solids, 2002, 298(2-3): 160-175.
|
[9] |
Connelly A J, Travis K P, Hand R J, et al. Composition-structure relationships in simplified nuclear waste glasses: mixed alkali borosilicate glasses[J]. J Am Ceram Soc, 2011, 94(1): 151-159.
|
[10] |
Hatch L P. Ultimate disposal of radioactive wastes[J]. Sci Am, 1953, 41(3): 410-421.
|
[11] |
McMaster S A, Ram R, Faris N, et al. Radionuclide disposal using the pyrochlore supergroup of minerals as a host matrix: a review[J]. J Hazard Mater, 2018, 260: 257-269.
|
[12] |
Foxhall H R, Travis K P, Owens S L. Effect of plutonium doping on radiation damage in zirconolite: a computer simulation study[J]. J Nucl Mater, 2014, 444(1-3): 220-228.
|
[13] |
Kusiak M A, Williams I S, Dunkley D J, et al. Monazite to the rescue: U-Th-Pb dating of the intrusive history of the composite Karkonosze pluton, Bohemian Massif[J]. Chem Geol, 2014, 364(1): 76-92.
|
[14] |
Wang S X, Begg B D, Wang L M, et al. Radiation stability of gadolinium zirconate: a waste form for plutonium disposition[J]. J Mater Res, 1999, 14(12): 4470-4473.
|
[15] |
Lian J, Zu X T, Kutty K V G, et al. Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore[J]. Phys Rev B, 2002, 66(5): 054108.
|
[16] |
Lang M, Zhang F, Zhang J, et al. Review of A2B2O7 pyrochlore response to irradiation and pressure[J]. Nucl Instrum Methods Phys Res, Sect B, 2010, 268(19): 2951-2959.
|
[17] |
Weber W J, Ewing R C. Plutonium immobilization and radiation effects[J]. Science, 2000, 289(5487): 2051-2062.
|
[18] |
Sickafus K E, Minervini L, Grimes R W, et al. Radiation tolerance of complex oxides[J]. Science, 2000, 289(5480): 748-751.
|
[19] |
Kholghy M, Kharatyan S, Edris H. SHS/PHIP of ceramic composites using ilmenite concentrate[J]. J Alloys Compd, 2010, 502(2): 491-494.
|
[20] |
Wang J, Wang J X, Zhang Y B, et al. Order-disorder phase structure, microstructure and aqueous durability of (Gd, Sm)2(Zr, Ce)2O7 ceramics for immobilizing actinides[J]. Ceram Int, 2019, 45(14): 17898-17904.
|
[21] |
国家环境保护局.GB 7023-86放射性废物固化体长期浸出实验[S].北京:中国标准出版社,1986.
|
[22] |
Lu X R, Fan L, Shu X Y, et al. Phase evolution and chemical durability of co-doped Gd2Zr2O7 ceramics for nuclear waste forms[J]. Ceram Int, 2015, 41(5): 6344-6349.
|
[23] |
Peng L, Zhang K, Yin D, et al. Self-propagating synthesis, mechanical property and aqueous durability of Gd2Ti2O7 pyrochlore[J]. Ceram Int, 2016, 42(16): 18907-18913.
|
[24] |
Lian J, Wang L, Chen J, et al. The order-disorder transition in ion-irradiated pyrochlore[J]. Acta Mater, 2003, 51(5): 1493-1502.
|
[25] |
Teng Z, Zhu L, Tan Y, et al. Synthesis and structures of high-entropy pyrochlore oxides[J]. J Europ Ceram Soc, 2020, 40(4): 1639-1643.
|
[26] |
Vegard L. Die konstitution der mischkristalle und die raumfüllung der atome[J]. Z Med Phys, 1921, 5(1): 17-26.
|
[27] |
Garbout A, Taazayet I B, Férid M. Structural, FT-IR, XRD and Raman scattering of new rare-earth-titanate pyrochlore-type oxides LnEuTi2O7 (Ln=Gd, Dy)[J]. J Alloy Compd, 2013, 573: 43-52.
|
[28] |
Nandi S, Jana Y M, Gupta H C. Lattice dynamical investigation of the Raman and infrared wavenumbers and heat capacity properties of the pyrochlores R2Zr2O7 (R=La, Nd, Sm, Eu)[J]. J Phys Chem Solids, 2018, 115: 347-354.
|
[29] |
Liu K, Zhang K, Deng T, et al. Preparation of Gd2Zr2O7 nanoceramics from two-step thermal treatment and the aqueous durability analysis[J]. Ceram Int, 2020, 46(9): 13040-13046.
|
[30] |
Xu C, Wang L, Bai B, et al. Rapid synthesis of Gd2Zr2O7 ceramics by flash sintering and its aqueous durability[J]. J Eur Ceram Soc, 2020, 40(4): 1620-1625.
|
[31] |
Hu Q, Zeng J, Wang L, et al. Helium ion irradiation effects on neodymium and cerium co-doped Gd2Zr2O7 pyrochlore ceramic[J]. J Rare Earths, 2018, 36(4): 398-403.
|
[32] |
Brown I D. Bond valence theory[J]. Struct Bond, 2014, 158: 11-58.
|
[33] |
Ewing R C, Weber W J, Lian J. Nuclear waste disposal-pyrochlore (A2B2O7): nuclear waste form for the immobilization of plutonium and “minor” actinides[J]. J Appl Phys, 2004, 95(11): 5949-5971.
|
[34] |
Chen S, Liu X, Shu X, et al. Rapid synthesis and chemical durability of Gd2Zr2-xCexO7 via SPS for nuclear waste forms[J]. Ceram Int, 2018, 44(16): 20306-20310.
|
[35] |
Zhang K, He Z, Peng L, et al. Self-propagating synthesis of Y2-xNdxTi2O7 pyrochlore and its aqueous durability as nuclear waste form[J]. Scripta Mater, 2018, 146: 300-303.
|
[36] |
Donald I W, Metcalfe B L, Taylor R. The immobilization of high-level radioactive wastes using ceramics and glasses[J]. J Mater Sci, 1997, 32(22): 5851-5887.
|