[1] |
Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821.
|
[2] |
Yu J H, Xu R R. Rational approaches toward the design and synthesis of zeolitic inorganic open-framework materials[J]. Accounts Chem Res, 2010, 43(9): 1195-1204.
|
[3] |
Cheetham A K, Ferey G, Loiseau T. Open-framework inorganic materials[J]. Angew Chem Int Edit, 1999, 38(22): 3268-3292.
|
[4] |
Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 974.
|
[5] |
James S L. Metal-organic frameworks[J]. Chem Soc Rev, 2003, 32(5): 276-288.
|
[6] |
Ding S Y, Wang W. Covalent organic frameworks (COFs): from design to applications[J]. Chem Soc Rev, 2013, 42(2): 548-568.
|
[7] |
Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170.
|
[8] |
Feng X, Ding X S, Jiang D L. Covalent organic frameworks[J]. Chem Soc Rev, 2012, 41(18): 6010-6022.
|
[9] |
Lin R B, He Y B, Li P, et al. Multifunctional porous hydrogen-bonded organic framework materials[J]. Chem Soc Rev, 2019, 48(5): 1362-1389.
|
[10] |
Tozawa T, Jones J T A, Swamy S I, et al. Porous organic cages[J]. Nat Mater, 2009, 8(12): 973-978.
|
[11] |
Hasell T, Cooper A I. Porous organic cages: soluble, modular and molecular pores[J]. Nat Rev Mater, 2016, 1(9): 16053.
|
[12] |
Tranchemontagne D J L, Ni Z, O′Keeffe M, et al. Reticular chemistry of metal-organic polyhedra[J]. Angew Chem Int Edit, 2008, 47(28): 5136-5147.
|
[13] |
Su J, Chen J S. MOFs of uranium and the actinides[J]. Struct Bond, 2015, 163: 265-295.
|
[14] |
Dolgopolova E A, Rice A M, Shustova N B. Actinide-based MOFs: a middle ground in solution and solid-state structural motifs[J]. Chem Commun, 2018, 54(50): 6472-6483.
|
[15] |
Lv K, Fichter S, Gu M, et al. An updated status and trends in actinide metal-organic frameworks (An-MOFs): from synthesis to application[J]. Coordin Chem Rev, 2021, 446: 214011.
|
[16] |
Gilson S E, Li P, Szymanowski J E S, et al. In situ formation of unprecedented neptunium-oxide wheel clusters stabilized in a metal-organic framework[J]. J Am Chem Soc, 2019, 141(30): 11842-11846.
|
[17] |
Wang Y X, Yin X M, Liu W, et al. Emergence of uranium as a distinct metal center for building intrinsic X-ray scintillators[J]. Angew Chem Int Edit, 2018, 57(26): 7883-7887.
|
[18] |
Lu H J, Xie J, Wang X Y, et al. Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster[J]. Nat Commun, 2021, 12(1): 2798.
|
[19] |
Hu K Q, Jiang X, Wang C Z, et al. Solvent-dependent synthesis of porous anionic uranyl-organic frameworks featuring a highly symmetrical (3,4)-connected ctn or bor topology for selective dye adsorption[J]. Chem-Eur J, 2017, 23(3): 529-532.
|
[20] |
Mei L, Liu K, Wu S, et al. Metal-carboxyl helical chain secondary units supported ion-exchangeable anionic uranyl-organic framework[J]. Chem-Eur J, 2019, 25(44): 10309-10313.
|
[21] |
Hu K Q, Wu Q Y, Mei L, et al. Novel viologen derivative based uranyl coordination polymers featuring photochromic behaviors[J]. Chem-Eur J, 2017, 23(71): 18074-18083.
|
[22] |
Hu K Q, Qiu P X, Zeng L W, et al. Solar-driven nitrogen fixation catalyzed by stable radical-containing MOFs: improved efficiency induced by a structural transformation[J]. Angew Chem Int Edit, 2020, 59(46): 20666-20671.
|
[23] |
Wang S, Mei L, Yu J P, et al. Large-pore layered networks, polycatenated frameworks, and three-dimensional frameworks of uranyl tri(biphenyl)amine/tri(phenyl)amine tricarboxylate: solvent-/ligand-dependent dual regulation[J]. Cryst Growth Des, 2018, 18(8): 4347-4356.
|
[24] |
Xiong Y, Zhao Z, Zhao W J, et al. Designing efficient and ultralong pure organic room-temperature phosphorescent materials by structural isomerism[J]. Angew Chem Int Edit, 2018, 57(27): 7997-8001.
|
[25] |
Kong L D, Zou R Y, Bi W Z, et al. Selective adsorption of CO2/CH4 and CO2/N2 within a charged metal-organic framework[J]. J Mater Chem A, 2014, 2(42): 17771-17778.
|
[26] |
Krause S, Bon V, Stoeck U, et al. A stimuli-responsive zirconium metal-organic framework based on supermolecular design[J]. Angew Chem Int Edit, 2017, 56(36): 10676-10680.
|