• 左
  • 右

铀酰配位介导咔唑三羧酸超分子组装体的结构演变

王帅, 孟燎, 刘康, 于吉攀, 胡孔球, 梅雷

王帅, 孟燎, 刘康, 于吉攀, 胡孔球, 梅雷. 铀酰配位介导咔唑三羧酸超分子组装体的结构演变[J]. 核化学与放射化学, 2022, 44(2): 115-126. DOI: 10.7538/hhx.2022.YX.2021101
引用本文: 王帅, 孟燎, 刘康, 于吉攀, 胡孔球, 梅雷. 铀酰配位介导咔唑三羧酸超分子组装体的结构演变[J]. 核化学与放射化学, 2022, 44(2): 115-126. DOI: 10.7538/hhx.2022.YX.2021101
WANG Shuai, MENG Liao, LIU Kang, YU Ji-pan, HU Kong-qiu, MEI Lei. Uranyl Coordination Mediates Structure Evolution of Supramolecular Assemblies of Carbazole Tricarboxylic Acid[J]. Journal of Nuclear and Radiochemistry, 2022, 44(2): 115-126. DOI: 10.7538/hhx.2022.YX.2021101
Citation: WANG Shuai, MENG Liao, LIU Kang, YU Ji-pan, HU Kong-qiu, MEI Lei. Uranyl Coordination Mediates Structure Evolution of Supramolecular Assemblies of Carbazole Tricarboxylic Acid[J]. Journal of Nuclear and Radiochemistry, 2022, 44(2): 115-126. DOI: 10.7538/hhx.2022.YX.2021101

铀酰配位介导咔唑三羧酸超分子组装体的结构演变

Uranyl Coordination Mediates Structure Evolution of Supramolecular Assemblies of Carbazole Tricarboxylic Acid

  • 摘要: 作为一类典型的金属-有机框架材料(MOFs),基于锕系金属节点的MOFs具有其独特的锕系-配体键合方式。然而,这些配位相互作用如何参与并影响有机配体的晶格组装过程仍有待研究。在本工作中,以咔唑三羧酸有机配体与铀酰离子的配位组装为例,通过控制合成条件详细研究了铀酰配位作用对咔唑三羧酸配体晶格组装过程的调控。单晶结构分析表明,随着铀酰金属节点的引入,咔唑三羧酸超分子组装体实现了从氢键-有机网络结构向金属-有机网络结构的逐级演变。在这一调控过程中,不同咔唑三羧酸间的连接方式由羧基氢键对逐渐被铀酰配位作用取代,二维网络结构也从六重穿插非平面网络转变为平面超分子网络和金属-有机配位网络。相关转变过程主要表现在羧基不断参与铀酰中心的配位作用,这一过程也得到了红外光谱的证实。通过本工作的开展,成功揭示了铀酰-配体配位作用调控无机-有机多孔材料合成的分子机制及相关材料结构演变的详细过程。
    Abstract: As a class of typical metal-organic framework materials(MOFs), actinide-based MOFs feature their unique actinide-ligand bonds. However, how these coordination interactions participate in and affect the lattice assembly process of organic ligands remains less studied. In this work, the coordination assembly of carbazole tricarboxylic acid organic ligands and uranyl ions was taken as a showcase study, and the regulation of uranyl coordination on the assembly process of carbazole tricarboxylic acid in lattice by controlling the synthesis conditions was studied in detail. Single-crystal analyses show that with the introduction of uranyl metal nodes, the assembly of carbazole tricarboxylic acid has realized a gradual evolution from a hydrogen bond-organic framework structure to a metal-organic network. In this regulation process, the connection of hydrogen bonds between different carbazole tricarboxylic acids is gradually replaced by uranyl coordination. The two-dimensional network structure also changes from sextuple intercatenated non-planar network through planar supramolecular network to final coordination network. The related transformation process is mainly manifested in gradual participation of the carboxyl groups in the coordination of uranyl center, which has also been confirmed by infrared spectroscopy. This work reveals the molecular mechanism of the synthesis of inorganic-organic porous materials through uranyl-ligand coordination and the detailed process of material structure evolution.
  •   5666

  • [1] Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891): 813-821.
    [2] Yu J H, Xu R R. Rational approaches toward the design and synthesis of zeolitic inorganic open-framework materials[J]. Accounts Chem Res, 2010, 43(9): 1195-1204.
    [3] Cheetham A K, Ferey G, Loiseau T. Open-framework inorganic materials[J]. Angew Chem Int Edit, 1999, 38(22): 3268-3292.
    [4] Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 974.
    [5] James S L. Metal-organic frameworks[J]. Chem Soc Rev, 2003, 32(5): 276-288.
    [6] Ding S Y, Wang W. Covalent organic frameworks (COFs): from design to applications[J]. Chem Soc Rev, 2013, 42(2): 548-568.
    [7] Cote A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170.
    [8] Feng X, Ding X S, Jiang D L. Covalent organic frameworks[J]. Chem Soc Rev, 2012, 41(18): 6010-6022.
    [9] Lin R B, He Y B, Li P, et al. Multifunctional porous hydrogen-bonded organic framework materials[J]. Chem Soc Rev, 2019, 48(5): 1362-1389.
    [10] Tozawa T, Jones J T A, Swamy S I, et al. Porous organic cages[J]. Nat Mater, 2009, 8(12): 973-978.
    [11] Hasell T, Cooper A I. Porous organic cages: soluble, modular and molecular pores[J]. Nat Rev Mater, 2016, 1(9): 16053.
    [12] Tranchemontagne D J L, Ni Z, O′Keeffe M, et al. Reticular chemistry of metal-organic polyhedra[J]. Angew Chem Int Edit, 2008, 47(28): 5136-5147.
    [13] Su J, Chen J S. MOFs of uranium and the actinides[J]. Struct Bond, 2015, 163: 265-295.
    [14] Dolgopolova E A, Rice A M, Shustova N B. Actinide-based MOFs: a middle ground in solution and solid-state structural motifs[J]. Chem Commun, 2018, 54(50): 6472-6483.
    [15] Lv K, Fichter S, Gu M, et al. An updated status and trends in actinide metal-organic frameworks (An-MOFs): from synthesis to application[J]. Coordin Chem Rev, 2021, 446: 214011.
    [16] Gilson S E, Li P, Szymanowski J E S, et al. In situ formation of unprecedented neptunium-oxide wheel clusters stabilized in a metal-organic framework[J]. J Am Chem Soc, 2019, 141(30): 11842-11846.
    [17] Wang Y X, Yin X M, Liu W, et al. Emergence of uranium as a distinct metal center for building intrinsic X-ray scintillators[J]. Angew Chem Int Edit, 2018, 57(26): 7883-7887.
    [18] Lu H J, Xie J, Wang X Y, et al. Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster[J]. Nat Commun, 2021, 12(1): 2798.
    [19] Hu K Q, Jiang X, Wang C Z, et al. Solvent-dependent synthesis of porous anionic uranyl-organic frameworks featuring a highly symmetrical (3,4)-connected ctn or bor topology for selective dye adsorption[J]. Chem-Eur J, 2017, 23(3): 529-532.
    [20] Mei L, Liu K, Wu S, et al. Metal-carboxyl helical chain secondary units supported ion-exchangeable anionic uranyl-organic framework[J]. Chem-Eur J, 2019, 25(44): 10309-10313.
    [21] Hu K Q, Wu Q Y, Mei L, et al. Novel viologen derivative based uranyl coordination polymers featuring photochromic behaviors[J]. Chem-Eur J, 2017, 23(71): 18074-18083.
    [22] Hu K Q, Qiu P X, Zeng L W, et al. Solar-driven nitrogen fixation catalyzed by stable radical-containing MOFs: improved efficiency induced by a structural transformation[J]. Angew Chem Int Edit, 2020, 59(46): 20666-20671.
    [23] Wang S, Mei L, Yu J P, et al. Large-pore layered networks, polycatenated frameworks, and three-dimensional frameworks of uranyl tri(biphenyl)amine/tri(phenyl)amine tricarboxylate: solvent-/ligand-dependent dual regulation[J]. Cryst Growth Des, 2018, 18(8): 4347-4356.
    [24] Xiong Y, Zhao Z, Zhao W J, et al. Designing efficient and ultralong pure organic room-temperature phosphorescent materials by structural isomerism[J]. Angew Chem Int Edit, 2018, 57(27): 7997-8001.
    [25] Kong L D, Zou R Y, Bi W Z, et al. Selective adsorption of CO2/CH4 and CO2/N2 within a charged metal-organic framework[J]. J Mater Chem A, 2014, 2(42): 17771-17778.
    [26] Krause S, Bon V, Stoeck U, et al. A stimuli-responsive zirconium metal-organic framework based on supermolecular design[J]. Angew Chem Int Edit, 2017, 56(36): 10676-10680.
  • 期刊类型引用(2)

    1. 李星君,胡孔球,梅雷,于吉攀,张强,石伟群. 基于紫精配体的新型铀酰配位聚合物的合成、结构和光致变色性能. 核化学与放射化学. 2023(06): 541-549 . 本站查看
    2. 刘家芳,滕明刚,谢国旺,游辉,柴慧芳. 一种羧酸酯酶荧光探针的设计合成及表征. 山东化工. 2022(22): 36-39 . 百度学术

    其他类型引用(0)

图(1)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  6
  • PDF下载量:  2725
  • 被引次数: 2
出版历程
  • 刊出日期:  2022-04-19

目录

    /

    返回文章
    返回