• 左
  • 右

玻璃固化过程中硫酸盐对锝/铼挥发的影响

彭来康, 牛晨晨, 朱永昌, 杨德博, 崔竹, 徐凯

彭来康, 牛晨晨, 朱永昌, 杨德博, 崔竹, 徐凯. 玻璃固化过程中硫酸盐对锝/铼挥发的影响[J]. 核化学与放射化学, 2023, 45(1): 41-47. DOI: 10.7538/hhx.2023.45.01.0041
引用本文: 彭来康, 牛晨晨, 朱永昌, 杨德博, 崔竹, 徐凯. 玻璃固化过程中硫酸盐对锝/铼挥发的影响[J]. 核化学与放射化学, 2023, 45(1): 41-47. DOI: 10.7538/hhx.2023.45.01.0041
PENG Lai-kang, NIU Chen-chen, ZHU Yong-chang, YANG De-bo, CUI Zhu, XU Kai. Effect of Sulfate on Technetium/Rhenium Volatilization During Vitrification[J]. Journal of Nuclear and Radiochemistry, 2023, 45(1): 41-47. DOI: 10.7538/hhx.2023.45.01.0041
Citation: PENG Lai-kang, NIU Chen-chen, ZHU Yong-chang, YANG De-bo, CUI Zhu, XU Kai. Effect of Sulfate on Technetium/Rhenium Volatilization During Vitrification[J]. Journal of Nuclear and Radiochemistry, 2023, 45(1): 41-47. DOI: 10.7538/hhx.2023.45.01.0041

玻璃固化过程中硫酸盐对锝/铼挥发的影响

Effect of Sulfate on Technetium/Rhenium Volatilization During Vitrification

  • 摘要: 硫酸盐是核废液玻璃固化过程中影响Tc/Re挥发的关键无机盐组成,但其对Tc/Re挥发影响的作用机制尚不清晰。本工作通过设计简化组成体系(SiO2-KReO4-K2SO4),采用X射线衍射(XRD)、热重分析(TG-DSC)和电感耦合等离子体原子发射光谱(ICP-AES)等表征方法开展升温过程中硫酸盐对Re挥发的影响研究。研究结果表明,当Re与S质量比≥1.80时,硫酸盐对Re挥发基本无影响;而当Re与S质量比<1.80时,硫酸盐的存在可降低Re的挥发温度,并促进Re挥发。
    Abstract: Sulfate is quite crucial to influence Tc/Re volatilization during nuclear liquid waste vitrification, but the mechanism of the effect is not yet clear. In this paper, the simplified SiO2-KReO4-K2SO4 system was used to study the effect of sulfate on Re volatilization during vitrification, and the heat-treated samples were characterized with XRD, TG-DSC and ICP-AES. The results show that sulfate hardly effects Re volatilization, when the mass ratio of Re to S ≥1.80; whereas, when the mass ratio of Re to S <1.80, sulfate promotes Re volatilization and reduces the Re volatilization temperature.
  •   5724

  • [1] Icenhower J P, Qafoku N P, Zachara J M, et al. The biogeochemistry of technetium: a review of the behavior of an artificial element in the natural environment[J]. Am J Sci, 2010, 310: 721-752.
    [2] Li D, Kaplan D I, Knox A S, et al. Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents[J]. J Envir Radioact, 2014, 136: 56-63.
    [3] 孙雪杰,李润,杨军强,等.环境土壤样品中99Tc的分析方法研究进展[J].核化学与放射化学,2017,39:321-335.
    [4] Jin T, Kim D S, Tucker A E, et al. Reactions during melting of low-activity waste glasses and their effects on the retention of rhenium as a surrogate for technetium-99[J]. J Non-Cryst Solids, 2015, 425: 28-45.
    [5] Ojovan M I, Lee W E. Glassy waste forms for nuclear waste immobilization[J]. Metallurg Mater Trans, 2011, 42: 837-851.
    [6] 徐凯.核废料玻璃固化国际研究进展[J].中国材料进展,2016,35:481-488.
    [7] Matlack K S, Muller I S, Pegg I L, et al. Improved technetium retention in Hanford LAW glass-phase 1, VSL-10R1920-1[R]. Washington, DC: Vitreous State Laboratory, The Catholic University of America, 2010.
    [8] Matlack K S, Muller I S, Callow R A, et al. Improved technetium retention in Hanford LAW glass-phase 2, VSL-11R2260-1[R]. Washington, DC: Vitreous State Laboratory, The Catholic University of America, 2011.
    [9] Vienna J D, Kim D S, Muller I S, et al. Toward understanding the effect of low-activity waste glass composition on sulfur solubility[J]. J Am Ceramic Soc, 2014, 97: 3135-3142.
    [10] Kim D S, Soderquist C Z, Icenhower J P, et al. Tc reductant chemistry and crucible melting studies with simulated Hanford low-activity waste, PNNL-15131[R]. Richland, WA, US: Pacific Northwest National Laboratory, 2005.
    [11] Jin T, Kim D S, Tucker A E. Effects of sulfate on rhenium incorporation into low-activity waste glass[J]. J Non-Cryst Solids, 2019, 521: 119528-119540.
    [12] Riley B J, McCloy J S, Goel A, et al. Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass[J]. J Am Ceramic Soc, 2013, 96: 1150-1157.
    [13] Rodriguez C P, Chun J, Schweiger M J, et al. Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification[J]. Thermochim Acta, 2014, 592: 86-92.
    [14] Xu K, Hrma P, Rice J, et al. Conversion of nuclear waste to molten glass: cold-cap reactions in crucible tests[J]. J Am Ceramic Soc, 2016, 99: 2964-2969.
    [15] Kim D S, Kruger A A. Volatile species of technetium and rhenium during waste vitrification[J]. J Non-Cryst Solids, 2018, 481: 41-50.
    [16] Xu K, Pierce D A, Hrma P, et al. Rhenium volatilization in waste glass[J]. J Nucl Mater, 2015, 464: 382-388.
    [17] Wang Z, Yang W, Liu H, et al. Thermochemical behavior of three sulfates(CaSO4, K2SO4 and Na2SO4) blended with cement raw materials(CaO-SiO2-Al2O3-Fe2O3) at high temperature[J]. J Anal Appl Pyrol, 2019, 142: 104617-104626.
    [18] Rouschias G. Recent advances in the chemistry of rhenium[J]. Chem Rev, 1974, 74: 531-566.
    [19] Li J, Hong L, Li J, et al. Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite[J]. J Eur Ceramic Soc, 2009, 29: 2929-2936.
    [20] Darab J G, Smith P A. Chemistry of technetium and rhenium species during low level radioactive waste vitrification[J]. Chem Mater, 1996, 8: 1004-1021.
    [21] Levin E M, Benedict J T, Sciarello J P, et al. The system K2SO4-Cs2SO4[J]. J Am Ceramic Soc, 2010, 56: 427-430.
  • 期刊类型引用(0)

    其他类型引用(1)

图(1)
计量
  • 文章访问数:  708
  • HTML全文浏览量:  2
  • PDF下载量:  1031
  • 被引次数: 1
出版历程
  • 刊出日期:  2023-02-19

目录

    /

    返回文章
    返回