[1] |
Icenhower J P, Qafoku N P, Zachara J M, et al. The biogeochemistry of technetium: a review of the behavior of an artificial element in the natural environment[J]. Am J Sci, 2010, 310: 721-752.
|
[2] |
Li D, Kaplan D I, Knox A S, et al. Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents[J]. J Envir Radioact, 2014, 136: 56-63.
|
[3] |
孙雪杰,李润,杨军强,等.环境土壤样品中99Tc的分析方法研究进展[J].核化学与放射化学,2017,39:321-335.
|
[4] |
Jin T, Kim D S, Tucker A E, et al. Reactions during melting of low-activity waste glasses and their effects on the retention of rhenium as a surrogate for technetium-99[J]. J Non-Cryst Solids, 2015, 425: 28-45.
|
[5] |
Ojovan M I, Lee W E. Glassy waste forms for nuclear waste immobilization[J]. Metallurg Mater Trans, 2011, 42: 837-851.
|
[6] |
徐凯.核废料玻璃固化国际研究进展[J].中国材料进展,2016,35:481-488.
|
[7] |
Matlack K S, Muller I S, Pegg I L, et al. Improved technetium retention in Hanford LAW glass-phase 1, VSL-10R1920-1[R]. Washington, DC: Vitreous State Laboratory, The Catholic University of America, 2010.
|
[8] |
Matlack K S, Muller I S, Callow R A, et al. Improved technetium retention in Hanford LAW glass-phase 2, VSL-11R2260-1[R]. Washington, DC: Vitreous State Laboratory, The Catholic University of America, 2011.
|
[9] |
Vienna J D, Kim D S, Muller I S, et al. Toward understanding the effect of low-activity waste glass composition on sulfur solubility[J]. J Am Ceramic Soc, 2014, 97: 3135-3142.
|
[10] |
Kim D S, Soderquist C Z, Icenhower J P, et al. Tc reductant chemistry and crucible melting studies with simulated Hanford low-activity waste, PNNL-15131[R]. Richland, WA, US: Pacific Northwest National Laboratory, 2005.
|
[11] |
Jin T, Kim D S, Tucker A E. Effects of sulfate on rhenium incorporation into low-activity waste glass[J]. J Non-Cryst Solids, 2019, 521: 119528-119540.
|
[12] |
Riley B J, McCloy J S, Goel A, et al. Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass[J]. J Am Ceramic Soc, 2013, 96: 1150-1157.
|
[13] |
Rodriguez C P, Chun J, Schweiger M J, et al. Application of evolved gas analysis to cold-cap reactions of melter feeds for nuclear waste vitrification[J]. Thermochim Acta, 2014, 592: 86-92.
|
[14] |
Xu K, Hrma P, Rice J, et al. Conversion of nuclear waste to molten glass: cold-cap reactions in crucible tests[J]. J Am Ceramic Soc, 2016, 99: 2964-2969.
|
[15] |
Kim D S, Kruger A A. Volatile species of technetium and rhenium during waste vitrification[J]. J Non-Cryst Solids, 2018, 481: 41-50.
|
[16] |
Xu K, Pierce D A, Hrma P, et al. Rhenium volatilization in waste glass[J]. J Nucl Mater, 2015, 464: 382-388.
|
[17] |
Wang Z, Yang W, Liu H, et al. Thermochemical behavior of three sulfates(CaSO4, K2SO4 and Na2SO4) blended with cement raw materials(CaO-SiO2-Al2O3-Fe2O3) at high temperature[J]. J Anal Appl Pyrol, 2019, 142: 104617-104626.
|
[18] |
Rouschias G. Recent advances in the chemistry of rhenium[J]. Chem Rev, 1974, 74: 531-566.
|
[19] |
Li J, Hong L, Li J, et al. Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite[J]. J Eur Ceramic Soc, 2009, 29: 2929-2936.
|
[20] |
Darab J G, Smith P A. Chemistry of technetium and rhenium species during low level radioactive waste vitrification[J]. Chem Mater, 1996, 8: 1004-1021.
|
[21] |
Levin E M, Benedict J T, Sciarello J P, et al. The system K2SO4-Cs2SO4[J]. J Am Ceramic Soc, 2010, 56: 427-430.
|