• 左
  • 右

硅球/亚铁氰化铜钾复合物固定床选择性去除污染水体中的Cs+及其影响因素

唐潇逸, 张致慧, 孙健, 王百荣, 李子杰, 王宏青, 石伟群

唐潇逸, 张致慧, 孙健, 王百荣, 李子杰, 王宏青, 石伟群. 硅球/亚铁氰化铜钾复合物固定床选择性去除污染水体中的Cs+及其影响因素[J]. 核化学与放射化学, 2023, 45(3): 240-249. DOI: 10.7538/hhx.2023.45.03.0240
引用本文: 唐潇逸, 张致慧, 孙健, 王百荣, 李子杰, 王宏青, 石伟群. 硅球/亚铁氰化铜钾复合物固定床选择性去除污染水体中的Cs+及其影响因素[J]. 核化学与放射化学, 2023, 45(3): 240-249. DOI: 10.7538/hhx.2023.45.03.0240
TANG Xiao-yi, ZHANG Zhi-hui, SUN Jian, WANG Bai-rong, LI Zi-jie, WANG Hong-qing, SHI Wei-qun. Selective Removal of Cs+ From Contaminated Water Using Silicon Bead/Potassium Copper Ferrocyanide Composites in Fixed-Bed Column[J]. Journal of Nuclear and Radiochemistry, 2023, 45(3): 240-249. DOI: 10.7538/hhx.2023.45.03.0240
Citation: TANG Xiao-yi, ZHANG Zhi-hui, SUN Jian, WANG Bai-rong, LI Zi-jie, WANG Hong-qing, SHI Wei-qun. Selective Removal of Cs+ From Contaminated Water Using Silicon Bead/Potassium Copper Ferrocyanide Composites in Fixed-Bed Column[J]. Journal of Nuclear and Radiochemistry, 2023, 45(3): 240-249. DOI: 10.7538/hhx.2023.45.03.0240

硅球/亚铁氰化铜钾复合物固定床选择性去除污染水体中的Cs+及其影响因素

Selective Removal of Cs+ From Contaminated Water Using Silicon Bead/Potassium Copper Ferrocyanide Composites in Fixed-Bed Column

  • 摘要: 采用柱上淋洗方式,在硅球(SiO2)填料上原位负载亚铁氰化铜钾(Cu-PBA),制得SiO2/Cu-PBA复合材料固定床吸附柱。采用扫描电镜-能谱(SEM-EDS)、红外光谱(FTIR)、粉末X射线衍射(XRD)和N2吸附等温测试等手段对材料进行表征,证实了Cu-PBA的成功负载。通过批式法吸附实验,明确了SiO2/Cu-PBA在模拟地下水中对Cs+的最大吸附容量约为4.0 mg/g,30 min内达吸附平衡。进而系统研究了该材料在固定床系统中对Cs+的吸附行为,包括柱床高、柱内径、进水流速和进水Cs+浓度的影响。在最优固定床实验条件下,对比了SiO2/Cu-PBA和阳离子交换树脂、在模拟地下水及模拟海水中保留Cs+及其他共存碱金属及碱土金属离子(K+、Na+、Ca2+和Mg2+)性能,结果表明,SiO2/Cu-PBA拥有优异的Cs+选择性和吸附性能,而树脂柱则在高盐分条件下失效。综上所述,SiO2/Cu-PBA复合物在环境污染水体中选择性去除Cs+方面具有很好的应用前景。
    Abstract: By using a column elution method, potassium copper ferrocyanide(Cu-PBA) was in situ loaded on silicon bead(SiO2) column packing, thereby yielding a SiO2/Cu-PBA fixed bed column. The characterizations of SiO2/Cu-PBA by SEM-EDS, FTIR, XRD and N2 adsorption-desorption isotherm techniques confirms the successful loading of Cu-PBA on SiO2. In batch experiments, it is found that the maximum adsorption capacity of SiO2/Cu-PBA for Cs+ is around 4.0 mg/g, and it needs 30 min to reach equilibrium adsorption. Then, the adsorpion behavior of Cs+ by the SiO2/Cu-PBA fixed bed was systematically studied, including the impacts of various operating parameters such as bed depth, bed diameter, flow rate, and influent Cs+ concentration. In the optimized fixed bed system, the adsorption behaviors of Cs+ and coexisting metal ions(K+, Na+, Ca2+, and Mg2+) by SiO2/Cu-PBA and cation-exchanged resin were compared in both simulated groundwater and seawater. The efficient and highly selective removal of Cs+ by SiO2/Cu-PBA is addressed as well as the inefficiency of cation-exchanged resin in simulated seawater. Therefore, the SiO2/Cu-PBA composite will have great application prospects in the continuous removal of Cs+ from various Cs+-contaminated environmental water media.
  •   5747

  • [1] Awual M R, Suzuki S, Taguchi T, et al. Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents[J].  Chem Eng J, 2014, 242: 127-135.
    [2] Yang H, Li H, Zhai J, et al. In situ growth of Prussian blue nanocrystal within Fe3+ crosslinking PAA resin for radiocesium highly efficient and rapid separation from water[J].  Chem Eng J, 2015, 277: 40-47.
    [3] Turgis R, Arrachart G, Delchet C, et al.  An original “Click and Bind” approach for immobilizing copper hexacyanoferrate nanoparticles on mesoporous silica[J].  Chem Mater, 2013, 25(21): 4447-4453.
    [4] Ayrault S, Jimenez B, Garnier E, et al.  Sorption mechanisms of cesium on CuII2FeII(CN)6 and CuII3[FeIII(CN)6]hexacyanoferrates and their relation to the crystalline structure[J].  J Solid State Chem, 1998, 141(2): 475-485.
    [5] Zong Y, Zhang Y, Lin X, et al.  Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes[J].  RSC Advances, 2017, 7(50): 31352-31364.
    [6] Attallah M F, Abd-Elhamid A I, Ahmed I M, et al.  Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste[J].  J Molecular Liquids, 2018, 261: 379-386.
    [7] Kim Y, Eom H H, Kim Y K, et al.  Effective removal of cesium from wastewater via adsorptive filtration with potassium copper hexacyanoferrate-immobilized and polyethyleneimine-grafted graphene oxide[J].  Chemosphere, 2020, 250: 126262-126269.
    [8] Cabaud C, Barré Y, De Windt L, et al.  Linking the multiscale porous structure of hexacyanoferrate-loaded silica monoliths to their hydrodynamic and cesium sorption properties[J].  Sep Purif Technol, 2019, 229: 115796-115805.
    [9] Michel C, Barré Y, Ben Guiza M, et al.  Breakthrough studies of the adsorption of Cs from freshwater using a mesoporous silica material containing ferrocyanide[J].  Chem Eng J, 2018, 339: 288-295.
    [10] Li Z J, Wang L, Yuan L Y, et al.  Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite[J].  J Hazard Mater, 2015, 290: 26-33.
    [11] Luo W, Xiao G, Tian F, et al.  Engineering robust metal-phenolic network membranes for uranium extraction from seawater[J].  Energy Envir Sci, 2019, 12(2): 607-614.
    [12] Nayl A A, Ahmed I M, Abd-Elhamid A I, et al.  Selective sorption of 134Cs and 60Co radioisotopes using synthetic nanocopper ferrocyanide-SiO2 materials[J].  Sep Purif Technol, 2020, 234: 116060-116069.
    [13] Tang X, Wang S, Zhang Z, et al.  Graphene oxide/chitosan/potassium copper hexacyanoferrate(Ⅱ) composite aerogel for efficient removal of cesium[J].  Chem Eng J, 2022, 444: 136397-136407.
    [14] Darder M, González-Alfaro Y, Aranda P, et al.  Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake[J].  RSC Advances, 2014, 4(67): 35415-35421.
    [15] Loos-Neskovic C, Ayrault S, Badillo V, et al.  Structure of copper-potassium hexacyanoferrate(Ⅱ) and sorption mechanisms of cesium[J].  J Solid State Chem, 2004, 177(6): 1817-1828.
    [16] 邓悦,张瑞娜,周涛,等.732型阳离子交换树脂对渗滤液中Ca2+、Mg2+的去除[J].环境污染与防治,2017,39(2):179-190.
图(1)
计量
  • 文章访问数:  418
  • HTML全文浏览量:  2
  • PDF下载量:  816
  • 被引次数: 0
出版历程
  • 刊出日期:  2023-06-19

目录

    /

    返回文章
    返回