[1] |
Awual M R, Suzuki S, Taguchi T, et al. Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents[J]. Chem Eng J, 2014, 242: 127-135.
|
[2] |
Yang H, Li H, Zhai J, et al. In situ growth of Prussian blue nanocrystal within Fe3+ crosslinking PAA resin for radiocesium highly efficient and rapid separation from water[J]. Chem Eng J, 2015, 277: 40-47.
|
[3] |
Turgis R, Arrachart G, Delchet C, et al. An original “Click and Bind” approach for immobilizing copper hexacyanoferrate nanoparticles on mesoporous silica[J]. Chem Mater, 2013, 25(21): 4447-4453.
|
[4] |
Ayrault S, Jimenez B, Garnier E, et al. Sorption mechanisms of cesium on CuII2FeII(CN)6 and CuII3[FeIII(CN)6]2 hexacyanoferrates and their relation to the crystalline structure[J]. J Solid State Chem, 1998, 141(2): 475-485.
|
[5] |
Zong Y, Zhang Y, Lin X, et al. Facile synthesis of potassium copper ferrocyanide composite particles for selective cesium removal from wastewater in the batch and continuous processes[J]. RSC Advances, 2017, 7(50): 31352-31364.
|
[6] |
Attallah M F, Abd-Elhamid A I, Ahmed I M, et al. Possible use of synthesized nano silica functionalized by Prussian blue as sorbent for removal of certain radionuclides from liquid radioactive waste[J]. J Molecular Liquids, 2018, 261: 379-386.
|
[7] |
Kim Y, Eom H H, Kim Y K, et al. Effective removal of cesium from wastewater via adsorptive filtration with potassium copper hexacyanoferrate-immobilized and polyethyleneimine-grafted graphene oxide[J]. Chemosphere, 2020, 250: 126262-126269.
|
[8] |
Cabaud C, Barré Y, De Windt L, et al. Linking the multiscale porous structure of hexacyanoferrate-loaded silica monoliths to their hydrodynamic and cesium sorption properties[J]. Sep Purif Technol, 2019, 229: 115796-115805.
|
[9] |
Michel C, Barré Y, Ben Guiza M, et al. Breakthrough studies of the adsorption of Cs from freshwater using a mesoporous silica material containing ferrocyanide[J]. Chem Eng J, 2018, 339: 288-295.
|
[10] |
Li Z J, Wang L, Yuan L Y, et al. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite[J]. J Hazard Mater, 2015, 290: 26-33.
|
[11] |
Luo W, Xiao G, Tian F, et al. Engineering robust metal-phenolic network membranes for uranium extraction from seawater[J]. Energy Envir Sci, 2019, 12(2): 607-614.
|
[12] |
Nayl A A, Ahmed I M, Abd-Elhamid A I, et al. Selective sorption of 134Cs and 60Co radioisotopes using synthetic nanocopper ferrocyanide-SiO2 materials[J]. Sep Purif Technol, 2020, 234: 116060-116069.
|
[13] |
Tang X, Wang S, Zhang Z, et al. Graphene oxide/chitosan/potassium copper hexacyanoferrate(Ⅱ) composite aerogel for efficient removal of cesium[J]. Chem Eng J, 2022, 444: 136397-136407.
|
[14] |
Darder M, González-Alfaro Y, Aranda P, et al. Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake[J]. RSC Advances, 2014, 4(67): 35415-35421.
|
[15] |
Loos-Neskovic C, Ayrault S, Badillo V, et al. Structure of copper-potassium hexacyanoferrate(Ⅱ) and sorption mechanisms of cesium[J]. J Solid State Chem, 2004, 177(6): 1817-1828.
|
[16] |
邓悦,张瑞娜,周涛,等.732型阳离子交换树脂对渗滤液中Ca2+、Mg2+的去除[J].环境污染与防治,2017,39(2):179-190.
|