[1] |
Baumgartner F, Ertel D. The modern PUREX process and its analytical requirements[J]. J Radioanal Nucl Ch, 1980, 58(1-2): 11-28.
|
[2] |
Kubota M, Fukase T. Formation of precipitate in high-level liquid waste from nuclear-fuel reprocessing[J]. J Nucl Sci Technol, 1980, 17(10): 783-790.
|
[3] |
Runde W H, Schulz W W. Americium[M]∥Morss L R, Edelstein N M, Fuger J. The chemistry of the actinide and transactinide elements. The Netherlands: Springer, 2006, 2(8): 1265-1395.
|
[4] |
Abergel R J, Ansoborlo E. Curious curium[J]. Nat Chem, 2016, 8(5): 516.
|
[5] |
Hobart D E, Peterson J R. Berkelium[M]∥Morss L R, Edelstein N M, Fuger J. The chemistry of the actinide and transactinide elements. The Netherlands: Springer, 2006: 1444-1498.
|
[6] |
Haire R G. Californium[M]∥Morss L R, Edelstein N M, Fuger J. The chemistry of the actinide and transactinide elements. The Netherlands: Springer, 2006: 1499-1576.
|
[7] |
Seaborg G T. Place in periodic system and electronic structure of the heaviest elements[J]. Nucleonics, 1949, 5(5): 16-36.
|
[8] |
Polinski M J, Garner E B, Maurice R, et al. Unusual structure, bonding and properties in a californium borate[J]. Nat Chem, 2014, 6(5): 387-392.
|
[9] |
Kelley M P, Su J, Urban M, et al. On the origin of covalent bonding in heavy actinides[J]. J Am Chem Soc, 2017, 139(29): 9901-9908.
|
[10] |
Neidig M L, Clark D L, Martin R L. Covalency in f-element complexes[J]. Coordin Chem Rev, 2013, 257(2): 394-406.
|
[11] |
Prodan I D, Scuseria G E, Martin R L. Covalency in the actinide dioxides: systematic study of the electronic properties using screened hybrid density functional theory[J]. Phys Rev B, 2007, 76(3): 033101.
|
[12] |
Kaltsoyannis N. Does covalency increase or decrease across the actinide series? implications for minor actinide partitioning[J]. Inorg Chem, 2013, 52(7): 3407-3413.
|
[13] |
Minasian S G, Keith J M, Batista E R, et al. Determining relative f and d orbital contributions to M-Cl covalency in MCl2-6(M=Ti, Zr, Hf, U) and UOCl-5 using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory[J]. J Am Chem Soc, 2012, 134(12): 5586-5597.
|
[14] |
王东琪,van Gunsteren W F.锕系计算化学进展[J].化学进展,2011,23(7):1566.
|
[15] |
Runde W, Bean A C, Brodnax L F, et al. Synthesis and characterization of f-element iodate architectures with variable dimensionality, α- and β-Am(IO3)3[J]. Inorg Chem, 2006, 45(6): 2479-2482.
|
[16] |
Sykora R E, Assefa Z, Haire R G, et al. Hydrothermal synthesis, structure, Raman spectroscopy, and self-irradiation studies of 248Cm(IO3)3[J]. J Solid State Chem, 2004, 177(12): 4413-4419.
|
[17] |
Sykora R E, Assefa Z, Haire R G, et al. First structural determination of a trivalent californium compound with oxygen coordination[J]. Inorg Chem, 2006, 45(2): 475-477.
|
[18] |
Sykora R E, Assefa Z, Haire R G, et al. Synthesis, structure, and spectroscopic properties of Am(IO3)3 and the photoluminescence behavior of Cm(IO3)3[J]. Inorg Chem, 2005, 44(16): 5667-5676.
|
[19] |
Polinski M J, Villa E M, Albrecht-Schmitt T E. Oxoanion systems containing trivalent actinides[J]. Coordin Chem Rev, 2014, 266: 16-27.
|
[20] |
Cross J N, Villa E M, Wang S, et al. Syntheses, structures, and spectroscopic properties of plutonium and americium phosphites and the redetermination of the ionic radii of Pu(Ⅲ) and Am(Ⅲ)[J]. Inorg Chem, 2012, 51(15): 8419-8424.
|
[21] |
Polinski M J, Grant D J, Wang S, et al. Differentiating between trivalent lanthanides and actinides[J]. J Am Chem Soc, 2012, 134(25): 10682-10692.
|
[22] |
Silver M A, Cary S K, Johnson J A, et al. Characterization of berkelium(Ⅲ) dipicolinate and borate compounds in solution and the solid state[J]. Science, 2016, 353(6302): aaf3762.
|
[23] |
高阳,赵岩岩,第五娟,等.新型锕系元素硼酸盐结构研究综述[J].核化学与放射化学,2014,36(1):1-16.
|
[24] |
Polinski M J, Wang S, Alekseev E V, et al. Bonding changes in plutonium(Ⅲ) and americium(Ⅲ) borates[J]. Angew Chem Int Ed, 2011, 38(123): 9053-9056.
|
[25] |
Polinski M J, Wang S, Alekseev E V, et al. Curium(Ⅲ) borate shows coordination environments of both plutonium(Ⅲ) and americium(Ⅲ) borates[J]. Angew Chem Int Ed, 2012, 124(8): 1905-1908.
|
[26] |
Silver M A, Albrecht-Schmitt T E. Evaluation of f-element borate chemistry[J]. Coordin Chem Rev, 2016, 323: 36-51.
|
[27] |
White F D, Dan D, Albrecht-Schmitt T E. Contemporary chemistry of berkelium and californium[J]. Chem Eur J, 2019, 25(44): 10251-10261.
|
[28] |
Kelley M P, Bessen N P, Su J, et al. Revisiting complexation thermodynamics of transplutonium elements up to einsteinium[J]. Chem Commun, 2018, 54(75): 10578-10581.
|
[29] |
Deblonde G J P, Kelley M P, Su J, et al. Spectroscopic and computational characterization of diethylenetriaminepentaacetic acid/transplutonium chelates: evidencing heterogeneity in the heavy actinide(Ⅲ) series[J]. Angew Chem Int Ed, 2018, 57(17): 4521-4526.
|
[30] |
Sturzbecher-Hoehne M, Choi T A, Abergel R. Hydroxypyridinonate complex stability of group(Ⅳ) metals and tetravalent f-block elements: the key to the next generation of chelating agents for radiopharmaceuticals[J]. Inorg chem, 2015, 54(7): 3462-3468.
|
[31] |
Deblonde G J, Sturzbecher-Hoehne M, Abergel R. Solution thermodynamic stability of complexes formed with the octadentate hydroxypyridinonate ligand 3, 4, 3-LI (1, 2-HOPO): a critical feature for efficient chelation of lanthanide(Ⅳ) and actinide(Ⅳ) ions[J]. Inorg Chem, 2013, 52(15): 8805-8811.
|
[32] |
Kelley M P, Deblonde G JP, Su J, et al. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3, 4, 3-LI(1, 2-HOPO)[J]. Inorg Chem, 2018, 57(9): 5352-5363.
|
[33] |
Chandrasekar A, Ghanty T K. Uncovering heavy actinide covalency: implications for minor actinide partitioning[J]. Inorg Chem, 2019, 58(6): 3744-3753.
|
[34] |
Liu Y, Wang C Z, Wu Q Y, et al. Theoretical prediction of the potential applications of phenanthroline derivatives in separation of transplutonium elements[J]. Inorg Chem, 2020, 59(16): 11469-11480.
|
[35] |
Liu Y, Wang C Z, Wu Q Y, et al. Theoretical insights into transplutonium element separation with electronically modulated phenanthroline-derived bis-triazine ligands[J]. Inorg Chem, 2021, 60(14): 10267-10279.
|
[36] |
沈兴海,张京晶,高嵩,等.典型超分子体系在放射化学领域的应用[J].化学进展,2011,23(7):1386.
|
[37] |
Liu Y, Wang C Z, Wu Q Y, et al. Theoretical probing of size-selective crown ether macrocycle ligands for transplutonium element separation[J]. Inorg Chem, 2022, 61(10): 4404-4413.
|