• 左
  • 右

超钚元素化合物共价性的理论研究进展

刘阳, 王聪芝, 吴王锁, 石伟群

刘阳, 王聪芝, 吴王锁, 石伟群. 超钚元素化合物共价性的理论研究进展[J]. 核化学与放射化学, 2023, 45(5): 397-407. DOI: 10.7538/hhx.2023.45.05.0397
引用本文: 刘阳, 王聪芝, 吴王锁, 石伟群. 超钚元素化合物共价性的理论研究进展[J]. 核化学与放射化学, 2023, 45(5): 397-407. DOI: 10.7538/hhx.2023.45.05.0397
LIU Yang, WANG Cong-zhi, WU Wang-suo, SHI Wei-qun. Recent Theoretical Advances in Bond Covalency of Transplutonium Compounds[J]. Journal of Nuclear and Radiochemistry, 2023, 45(5): 397-407. DOI: 10.7538/hhx.2023.45.05.0397
Citation: LIU Yang, WANG Cong-zhi, WU Wang-suo, SHI Wei-qun. Recent Theoretical Advances in Bond Covalency of Transplutonium Compounds[J]. Journal of Nuclear and Radiochemistry, 2023, 45(5): 397-407. DOI: 10.7538/hhx.2023.45.05.0397

超钚元素化合物共价性的理论研究进展

Recent Theoretical Advances in Bond Covalency of Transplutonium Compounds

  • 摘要: 超钚元素的物理化学性质十分相似,其相互分离极其困难。一般认为超钚元素的氧化态通常为+3,且性质接近镧系元素。然而近年来的相关研究发现,Bk、Cf元素化合物比Pu、Am、Cm化合物具有更强的共价相互作用。由于超钚元素毒性高、放射性强且大部分为短寿命核素,实验制备和表征十分困难,相关实验数据尤为匮乏。目前理论计算已成为了解超钚元素物理和化学性质的重要手段。本文主要介绍近年来超钚元素(主要为Am、Cm、Bk、Cf)化合物成键性质方面的理论研究进展。
    Abstract: The physical and chemical properties of transplutonium elements are very similar, and their in-group separation is extremely difficult. It is generally believed that the oxidation state of transplutonium elements is usually +3, and their properties are similar to lanthanides. However, related studies in recent years have found that some Bk, Cf compounds have stronger covalent interactions than Pu, Am, Cm compounds. Since transplutonium elements are high toxicity, strong radioactivity and mostly short-lived nuclides, experimental studies are very difficult, and relevant experimental data are particularly scarce. In recent years, theoretical calculations have become an important means to understand the physical and chemical properties of transplutonium elements. In this review, we summarize recent theoretical advances in the bonding nature of transplutonium(Am, Cm, Bk, Cf) compounds.
  •   5763

  • [1] Baumgartner F, Ertel D. The modern PUREX process and its analytical requirements[J]. J Radioanal Nucl Ch, 1980, 58(1-2): 11-28.
    [2] Kubota M, Fukase T. Formation of precipitate in high-level liquid waste from nuclear-fuel reprocessing[J]. J Nucl Sci Technol, 1980, 17(10): 783-790.
    [3] Runde W H, Schulz W W. Americium[M]∥Morss L R, Edelstein N M, Fuger J. The chemistry of the actinide and transactinide elements. The Netherlands: Springer, 2006, 2(8): 1265-1395.
    [4] Abergel R J, Ansoborlo E. Curious curium[J]. Nat Chem, 2016, 8(5): 516.
    [5] Hobart D E, Peterson J R. Berkelium[M]∥Morss L R, Edelstein N M, Fuger J. The chemistry of the actinide and transactinide elements. The Netherlands: Springer, 2006: 1444-1498.
    [6] Haire R G. Californium[M]∥Morss L R, Edelstein N M, Fuger J. The chemistry of the actinide and transactinide elements. The Netherlands: Springer, 2006: 1499-1576.
    [7] Seaborg G T. Place in periodic system and electronic structure of the heaviest elements[J]. Nucleonics, 1949, 5(5): 16-36.
    [8] Polinski M J, Garner E B, Maurice R, et al. Unusual structure, bonding and properties in a californium borate[J]. Nat Chem, 2014, 6(5): 387-392.
    [9] Kelley M P, Su J, Urban M, et al. On the origin of covalent bonding in heavy actinides[J]. J Am Chem Soc, 2017, 139(29): 9901-9908.
    [10] Neidig M L, Clark D L, Martin R L. Covalency in f-element complexes[J]. Coordin Chem Rev, 2013, 257(2): 394-406.
    [11] Prodan I D, Scuseria G E, Martin R L. Covalency in the actinide dioxides: systematic study of the electronic properties using screened hybrid density functional theory[J]. Phys Rev B, 2007, 76(3): 033101.
    [12] Kaltsoyannis N. Does covalency increase or decrease across the actinide series? implications for minor actinide partitioning[J]. Inorg Chem, 2013, 52(7): 3407-3413.
    [13] Minasian S G, Keith J M, Batista E R, et al. Determining relative f and d orbital contributions to M-Cl covalency in MCl2-6(M=Ti, Zr, Hf, U) and UOCl-5 using Cl K-edge X-ray absorption spectroscopy and time-dependent density functional theory[J]. J Am Chem Soc, 2012, 134(12): 5586-5597.
    [14] 王东琪,van Gunsteren W F.锕系计算化学进展[J].化学进展,2011,23(7):1566.
    [15] Runde W, Bean A C, Brodnax L F, et al. Synthesis and characterization of f-element iodate architectures with variable dimensionality, α- and β-Am(IO3)3[J]. Inorg Chem, 2006, 45(6): 2479-2482.
    [16] Sykora R E, Assefa Z, Haire R G, et al. Hydrothermal synthesis, structure, Raman spectroscopy, and self-irradiation studies of 248Cm(IO3)3[J]. J Solid State Chem, 2004, 177(12): 4413-4419.
    [17] Sykora R E, Assefa Z, Haire R G, et al. First structural determination of a trivalent californium compound with oxygen coordination[J]. Inorg Chem, 2006, 45(2): 475-477.
    [18] Sykora R E, Assefa Z, Haire R G, et al. Synthesis, structure, and spectroscopic properties of Am(IO3)3 and the photoluminescence behavior of Cm(IO3)3[J]. Inorg Chem, 2005, 44(16): 5667-5676.
    [19] Polinski M J, Villa E M, Albrecht-Schmitt T E. Oxoanion systems containing trivalent actinides[J]. Coordin Chem Rev, 2014, 266: 16-27.
    [20] Cross J N, Villa E M, Wang S, et al. Syntheses, structures, and spectroscopic properties of plutonium and americium phosphites and the redetermination of the ionic radii of Pu(Ⅲ) and Am(Ⅲ)[J]. Inorg Chem, 2012, 51(15): 8419-8424.
    [21] Polinski M J, Grant D J, Wang S, et al. Differentiating between trivalent lanthanides and actinides[J]. J Am Chem Soc, 2012, 134(25): 10682-10692.
    [22] Silver M A, Cary S K, Johnson J A, et al. Characterization of berkelium(Ⅲ) dipicolinate and borate compounds in solution and the solid state[J]. Science, 2016, 353(6302): aaf3762.
    [23] 高阳,赵岩岩,第五娟,等.新型锕系元素硼酸盐结构研究综述[J].核化学与放射化学,2014,36(1):1-16.
    [24] Polinski M J, Wang S, Alekseev E V, et al. Bonding changes in plutonium(Ⅲ) and americium(Ⅲ) borates[J]. Angew Chem Int Ed, 2011, 38(123): 9053-9056.
    [25] Polinski M J, Wang S, Alekseev E V, et al. Curium(Ⅲ) borate shows coordination environments of both plutonium(Ⅲ) and americium(Ⅲ) borates[J]. Angew Chem Int Ed, 2012, 124(8): 1905-1908.
    [26] Silver M A, Albrecht-Schmitt T E. Evaluation of f-element borate chemistry[J]. Coordin Chem Rev, 2016, 323: 36-51.
    [27] White F D, Dan D, Albrecht-Schmitt T E. Contemporary chemistry of berkelium and californium[J]. Chem Eur J, 2019, 25(44): 10251-10261.
    [28] Kelley M P, Bessen N P, Su J, et al. Revisiting complexation thermodynamics of transplutonium elements up to einsteinium[J]. Chem Commun, 2018, 54(75): 10578-10581.
    [29] Deblonde G J P, Kelley M P, Su J, et al. Spectroscopic and computational characterization of diethylenetriaminepentaacetic acid/transplutonium chelates: evidencing heterogeneity in the heavy actinide(Ⅲ) series[J]. Angew Chem Int Ed, 2018, 57(17): 4521-4526.
    [30] Sturzbecher-Hoehne M, Choi T A, Abergel R. Hydroxypyridinonate complex stability of group(Ⅳ) metals and tetravalent f-block elements: the key to the next generation of chelating agents for radiopharmaceuticals[J]. Inorg chem, 2015, 54(7): 3462-3468.
    [31] Deblonde G J, Sturzbecher-Hoehne M, Abergel R. Solution thermodynamic stability of complexes formed with the octadentate hydroxypyridinonate ligand 3, 4, 3-LI (1, 2-HOPO): a critical feature for efficient chelation of lanthanide(Ⅳ) and actinide(Ⅳ) ions[J]. Inorg Chem, 2013, 52(15): 8805-8811.
    [32] Kelley M P, Deblonde G JP, Su J, et al. Bond covalency and oxidation state of actinide ions complexed with therapeutic chelating agent 3, 4, 3-LI(1, 2-HOPO)[J]. Inorg Chem, 2018, 57(9): 5352-5363.
    [33] Chandrasekar A, Ghanty T K. Uncovering heavy actinide covalency: implications for minor actinide partitioning[J]. Inorg Chem, 2019, 58(6): 3744-3753.
    [34] Liu Y, Wang C Z, Wu Q Y, et al. Theoretical prediction of the potential applications of phenanthroline derivatives in separation of transplutonium elements[J]. Inorg Chem, 2020, 59(16): 11469-11480.
    [35] Liu Y, Wang C Z, Wu Q Y, et al. Theoretical insights into transplutonium element separation with electronically modulated phenanthroline-derived bis-triazine ligands[J]. Inorg Chem, 2021, 60(14): 10267-10279.
    [36] 沈兴海,张京晶,高嵩,等.典型超分子体系在放射化学领域的应用[J].化学进展,2011,23(7):1386.
    [37] Liu Y, Wang C Z, Wu Q Y, et al. Theoretical probing of size-selective crown ether macrocycle ligands for transplutonium element separation[J]. Inorg Chem, 2022, 61(10): 4404-4413.
图(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  1
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 刊出日期:  2023-10-19

目录

    /

    返回文章
    返回