[1] |
刘学刚.乏燃料干法后处理技术研究进展[J].核化学与放射化学,2009,31(S1):35-44.
|
[2] |
Lafreniere P, Zhang Chao, Simpson M, et al. Lab scale electrochemical codeposition experiments for comparison to computational predictions[J]. Nucl Eng Technol, 2020, 52(9): 2025-2033.
|
[3] |
林如山,何辉,唐洪彬,等.我国干法后处理技术研究现状与发展[J].原子能科学技术,2020,54(增刊):115-125.
|
[4] |
唐浩,任一鸣,邵浪,等.熔盐电解法乏燃料干法后处理技术研究进展[J].核化学与放射化学,2017,39(6):385-396.
|
[5] |
Koyama T. Nuclear engineering for pyrochemical treatment of spent nuclear fuels[M]∥Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment. 2011: 269-310.
|
[6] |
Goff K M, Benedict R W, Howden K L, et al. Pyrochemical treatment of spent nuclear fuel[C]∥Proceedings of GLOBAL 2005, Tsukuba, Japan, Oct 9-13, 2005.
|
[7] |
Ackerman J P. Chemical basis for pyrochemical reprocessing of nuclear fuel[J]. Ind Eng Chem Res, 1991, 30(1): 141-145.
|
[8] |
Yoo T S, Fredrickson G L, Teske G M. Uranium exchange kinetics in a molten LiCl-KCl/Cd system at 500 ℃[J]. J Nucl Mater, 2018, 508: 521-529.
|
[9] |
Benedict R W, Krsul J R, Mariani R D, et al. Small-scale irradiated fuel electrorefining, W-31-109-ENG-37[R]. Idaho Falls, Idaho: Argonne National Laboratory West, 1993.
|
[10] |
Mcfarlane H F, Lineberry M J. The IFR fuel cycle demonstration[J]. Progress in Nuclear Energy, 1997, 31(1-2): 155-173.
|
[11] |
Yoo T S, Vaden D, Fredrickson G L, et al. Analysis of undissolved anode materials of Mark-Ⅳ electrorefiner[J]. J Nucl Mater, 2018, 510: 551-555.
|
[12] |
Vaden D. Fuel conditioning facility electrorefiner process model[J]. Sep Sci Technol, 2006, 41(10): 2003-2012.
|
[13] |
Vaden D. Fuel conditioning facility electrorefiner model predictions versus measurements[J]. Sep Sci Technol, 2008, 43(9-10): 2684-2694.
|
[14] |
Li S X, Simpson M F. Anodic process of electrorefining spent driver fuel in molten LiCl-KCl-UCl3/Cd system[J]. Mining Metall Explor, 2005, 22(4): 192-198.
|
[15] |
Yoo T S, Vaden D. A new inventory tracking method for Mark-Ⅴ electrorefiner[J]. Ann Nucl Energy, 2019, 128: 406-413.
|
[16] |
Ahluwalia R K, Hua T Q. Uranium transport in a high-throughput electrorefiner for EBR-Ⅱ blanket fuel[J]. Nucl Technol, 2004, 145(1): 67-81.
|
[17] |
Simpson S F. Developments of spent nuclear fuel pyroprocessing technology at Idaho National Laboratory, INL/EXT-12-25124[R]. Idaho Falls, USA: INL, 2012.
|
[18] |
Benedict R W, Solbrig C, Westphal B, et al. Pyroprocessing progress at Idaho National Laboratory, INL/CON-07-12983[R]. Idaho Falls, USA: INL, 2007.
|
[19] |
Figueroa J, Williamson M A, van Kleeck M A. Gtri progress in developing pyrochemical processes for recovery of fabrication scrap and reprocessing of monolithic U-Mo fuel[C]∥International Meeting on Reduced Enrichment for Research and Test Reactors, Santiago Chile, October 23-27, 2011.
|
[20] |
Lewis D, Graziano D, Miller J F, et al. Chemical technology division annual technical report 2003, ANL-04/06[R]. USA: Argonne National Laboratory, 2007.
|
[21] |
Yoo B U, Kim S H, Park S B, et al. Numerical analysis and experimental validation of planar electrorefiner for spent nuclear fuel treatment using a tertiary model[J]. J Nucl Sci Technol, 2016, 53(12): 2079-2089.
|
[22] |
Choi E Y, Jeong S M. Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology[J]. Progress in Natural Science: Materials International, 2015, 25(6): 572-582.
|
[23] |
Lee H, Park G, Lee J W, et al. Current status of pyroprocessing development at KAERI[J]. Sci Technol Nucl Ins, 2013(1): 1-11.
|
[24] |
Lee J H, Kang Y H, Hwang S C, et al. Assessment of a high-throughput electrorefining concept for a spent metallic nuclear fuel Ⅰ: computational fluid dynamics analysis[J]. Nucl Technol, 2008, 162: 107-116.
|
[25] |
Kim J G, Lee S J, Park S B. High-throughput electrorefining system with graphite cathodes and a bucket-type deposit retriever[J]. Procedia Chemistry, 2012, 7: 754-757.
|
[26] |
Kang Y H, Lee J H, Hwang S C. Electrodeposition characteristics of uranium by using a graphite cathode[J]. Carbon, 2006, 44(14): 3142-3145.
|
[27] |
Hijikata T, Koyama T. Development of high temperature molten salt transport technology for pyrometallurgical reprocessing[J]. Journal of Power Energy Systems, 2009, 3(1): 170-181.
|
[28] |
Hijikata T, Koyama T. Development of high-temperature transport technologies for liquid cadmium in pyrometallurgical reprocessing[J]. J Eng Gas Turb Power, 2009, 131(4): 130-137.
|
[29] |
Hijikata T, Kionoshita K, Uozumi K, et al. Development of transport technologies for high-temperature fluid in pyrometallurgical reprocessing[J]. Energy Procedia, 2013, 39: 127-140.
|
[30] |
Soucek P, Malmbeck R, Nourry C, et al. Pyrochemical reprocessing of spent fuel by electrochemical techniques using solid aluminium cathodes[J]. Energy Procedia, 2011, 7: 396-404.
|
[31] |
Serp J, Allibert M, Terrier A L, et al. Electro separation of actinides from lanthanides on solid aluminum electrode in LiCl-KCl eutectic melts[J]. J Electrochem Soc, 2005, 152(3): C167-C172.
|
[32] |
Cassayre L, Malmbeck R, Masset P, et al. Investigation of electrorefining of metallic alloy fuel onto solid Al cathodes[J]. J Nucl Mater, 2007, 360(1): 49-57.
|
[33] |
Nagarajan K, Subramanian T, Reddy B, et al. Current status of pyrochemical reprocessing research in India[J]. Nucl Technol, 2008, 162: 259-263.
|
[34] |
叶国安,郑卫芳,何辉,等.我国核燃料后处理技术现状和发展[J].原子能科学技术,2020,54(增刊):75-83.
|
[35] |
张志宏,梁行方,琚建勇,等.我国氟盐体系氧化钕电解制备金属钕技术现状及进展[J].有色冶炼,2001(2):23-25.
|
[36] |
龚斌,章立志,肖勇,等.一种制备稀土金属或稀土合金的方法:中国,202010339860.3[P].2021-05-18.
|
[37] |
杨庆山,陈建军,谢建秋,等.氟化物熔盐体系中电解制备镁-钕中间合金[J].稀有金属,2007,31(S1):45-49.
|