• 左
  • 右

干法后处理流程中电解精炼设备研发进展

张金宇, 林如山, 张磊, 唐洪彬, 叶国安

张金宇, 林如山, 张磊, 唐洪彬, 叶国安. 干法后处理流程中电解精炼设备研发进展[J]. 核化学与放射化学, 2023, 45(2): 93-101. DOI: 10.7538/hhx.2023.YX.2021035
引用本文: 张金宇, 林如山, 张磊, 唐洪彬, 叶国安. 干法后处理流程中电解精炼设备研发进展[J]. 核化学与放射化学, 2023, 45(2): 93-101. DOI: 10.7538/hhx.2023.YX.2021035
ZHANG Jin-yu, LIN Ru-shan, ZHANG Lei, TANG Hong-bin, YE Guo-an. Progress and Development of Electrorefiner in Dry Reprocessing Process[J]. Journal of Nuclear and Radiochemistry, 2023, 45(2): 93-101. DOI: 10.7538/hhx.2023.YX.2021035
Citation: ZHANG Jin-yu, LIN Ru-shan, ZHANG Lei, TANG Hong-bin, YE Guo-an. Progress and Development of Electrorefiner in Dry Reprocessing Process[J]. Journal of Nuclear and Radiochemistry, 2023, 45(2): 93-101. DOI: 10.7538/hhx.2023.YX.2021035

干法后处理流程中电解精炼设备研发进展

Progress and Development of Electrorefiner in Dry Reprocessing Process

  • 摘要: 高燃耗快堆乏燃料具有高钚含量、强放射性、高释热率等特点。基于溶剂萃取原理的水法后处理工艺存在溶剂易辐解等问题,宜对高燃耗快堆乏燃料采用干法后处理工艺进行处理。熔盐电解干法工艺采用耐辐照的无机盐为介质,通过电化学方法分离回收锕系元素,是最具应用前景的干法后处理技术。在熔盐电解干法工艺流程中,承担锕系元素分离任务的电解精炼单元是核心环节。本文调研了乏燃料干法后处理过程中电解精炼设备的研发进展,分析了电解精炼设备关键技术和发展趋势,为我国快堆乏燃料电解精炼设备的研发提供了参考。
    Abstract: Fast reactor spent fuel with high burnup has the characteristics of high plutonium content, high radioactivity and high heat release rate. The aqueous reprocessing based on solvent extraction principle has the problem of solvent radiolysis. It is better to adopt the dry reprocessing. Dry reprocessing based molten salt electrolysis using irradiation-resistant inorganic salts as media, through electrochemical separation and recovery of actinide, is the most promising dry reprocessing technology. In the process of molten salt electrolytic dry reprocessing, the electrorefining unit is the core link which is responsible for the actinide separation. In this paper, the research and development progress of electrorefiner in the dry reprocessing of spent fuel is investigated, and the key technologies and development trend of electrorefiner are analyzed, which provides a reference for the research and development of fast reactor spent fuel reprocessing in China.
  •   5730

  • [1] 刘学刚.乏燃料干法后处理技术研究进展[J].核化学与放射化学,2009,31(S1):35-44.
    [2] Lafreniere P, Zhang Chao, Simpson M, et al. Lab scale electrochemical codeposition experiments for comparison to computational predictions[J]. Nucl Eng Technol, 2020, 52(9): 2025-2033.
    [3] 林如山,何辉,唐洪彬,等.我国干法后处理技术研究现状与发展[J].原子能科学技术,2020,54(增刊):115-125.
    [4] 唐浩,任一鸣,邵浪,等.熔盐电解法乏燃料干法后处理技术研究进展[J].核化学与放射化学,2017,39(6):385-396.
    [5] Koyama T. Nuclear engineering for pyrochemical treatment of spent nuclear fuels[M]∥Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment. 2011: 269-310.
    [6] Goff K M, Benedict R W, Howden K L, et al. Pyrochemical treatment of spent nuclear fuel[C]∥Proceedings of GLOBAL 2005, Tsukuba, Japan, Oct 9-13, 2005.
    [7] Ackerman J P. Chemical basis for pyrochemical reprocessing of nuclear fuel[J]. Ind Eng Chem Res, 1991, 30(1): 141-145.
    [8] Yoo T S, Fredrickson G L, Teske G M. Uranium exchange kinetics in a molten LiCl-KCl/Cd system at 500 ℃[J]. J Nucl Mater, 2018, 508: 521-529.
    [9] Benedict R W, Krsul J R, Mariani R D, et al. Small-scale irradiated fuel electrorefining, W-31-109-ENG-37[R]. Idaho Falls, Idaho: Argonne National Laboratory West, 1993.
    [10] Mcfarlane H F, Lineberry M J. The IFR fuel cycle demonstration[J]. Progress in Nuclear Energy, 1997, 31(1-2): 155-173.
    [11] Yoo T S, Vaden D, Fredrickson G L, et al. Analysis of undissolved anode materials of Mark-Ⅳ electrorefiner[J]. J Nucl Mater, 2018, 510: 551-555.
    [12] Vaden D. Fuel conditioning facility electrorefiner process model[J]. Sep Sci Technol, 2006, 41(10): 2003-2012.
    [13] Vaden D. Fuel conditioning facility electrorefiner model predictions versus measurements[J]. Sep Sci Technol, 2008, 43(9-10): 2684-2694.
    [14] Li S X, Simpson M F. Anodic process of electrorefining spent driver fuel in molten LiCl-KCl-UCl3/Cd system[J]. Mining Metall Explor, 2005, 22(4): 192-198.
    [15] Yoo T S, Vaden D. A new inventory tracking method for Mark-Ⅴ electrorefiner[J]. Ann Nucl Energy, 2019, 128: 406-413.
    [16] Ahluwalia R K, Hua T Q. Uranium transport in a high-throughput electrorefiner for EBR-Ⅱ blanket fuel[J]. Nucl Technol, 2004, 145(1): 67-81.
    [17] Simpson S F. Developments of spent nuclear fuel pyroprocessing technology at Idaho National Laboratory, INL/EXT-12-25124[R]. Idaho Falls, USA: INL, 2012.
    [18] Benedict R W, Solbrig C, Westphal B, et al. Pyroprocessing progress at Idaho National Laboratory, INL/CON-07-12983[R]. Idaho Falls, USA: INL, 2007.
    [19] Figueroa J, Williamson M A, van Kleeck M A. Gtri progress in developing pyrochemical processes for recovery of fabrication scrap and reprocessing of monolithic U-Mo fuel[C]∥International Meeting on Reduced Enrichment for Research and Test Reactors, Santiago Chile, October 23-27, 2011.
    [20] Lewis D, Graziano D, Miller J F, et al. Chemical technology division annual technical report 2003, ANL-04/06[R]. USA: Argonne National Laboratory, 2007.
    [21] Yoo B U,  Kim S H, Park S B, et al. Numerical analysis and experimental validation of planar electrorefiner for spent nuclear fuel treatment using a tertiary model[J]. J Nucl Sci Technol, 2016, 53(12): 2079-2089.
    [22] Choi E Y, Jeong S M. Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology[J]. Progress in Natural Science: Materials International, 2015, 25(6): 572-582.
    [23] Lee H, Park G, Lee J W, et al. Current status of pyroprocessing development at KAERI[J]. Sci Technol Nucl Ins, 2013(1): 1-11.
    [24] Lee J H, Kang Y H, Hwang S C, et al. Assessment of a high-throughput electrorefining concept for a spent metallic nuclear fuel Ⅰ: computational fluid dynamics analysis[J]. Nucl Technol, 2008, 162: 107-116.
    [25] Kim J G, Lee S J, Park S B. High-throughput electrorefining system with graphite cathodes and a bucket-type deposit retriever[J]. Procedia Chemistry, 2012, 7: 754-757.
    [26] Kang Y H, Lee J H, Hwang S C. Electrodeposition characteristics of uranium by using a graphite cathode[J]. Carbon, 2006, 44(14): 3142-3145.
    [27] Hijikata T, Koyama T. Development of high temperature molten salt transport technology for pyrometallurgical reprocessing[J]. Journal of Power Energy Systems, 2009, 3(1): 170-181.
    [28] Hijikata T, Koyama T. Development of high-temperature transport technologies for liquid cadmium in pyrometallurgical reprocessing[J]. J Eng Gas Turb Power, 2009, 131(4): 130-137.
    [29] Hijikata T, Kionoshita K, Uozumi K, et al. Development of transport technologies for high-temperature fluid in pyrometallurgical reprocessing[J]. Energy Procedia, 2013, 39: 127-140.
    [30] Soucek P, Malmbeck R, Nourry C, et al. Pyrochemical reprocessing of spent fuel by electrochemical techniques using solid aluminium cathodes[J]. Energy Procedia, 2011, 7: 396-404.
    [31] Serp J, Allibert M, Terrier A L, et al. Electro separation of actinides from lanthanides on solid aluminum electrode in LiCl-KCl eutectic melts[J]. J Electrochem Soc, 2005, 152(3): C167-C172.
    [32] Cassayre L, Malmbeck R, Masset P, et al. Investigation of electrorefining of metallic alloy fuel onto solid Al cathodes[J]. J Nucl Mater, 2007, 360(1): 49-57.
    [33] Nagarajan K, Subramanian T, Reddy B, et al. Current status of pyrochemical reprocessing research in India[J]. Nucl Technol, 2008, 162: 259-263.
    [34] 叶国安,郑卫芳,何辉,等.我国核燃料后处理技术现状和发展[J].原子能科学技术,2020,54(增刊):75-83.
    [35] 张志宏,梁行方,琚建勇,等.我国氟盐体系氧化钕电解制备金属钕技术现状及进展[J].有色冶炼,2001(2):23-25.
    [36] 龚斌,章立志,肖勇,等.一种制备稀土金属或稀土合金的方法:中国,202010339860.3[P].2021-05-18.
    [37] 杨庆山,陈建军,谢建秋,等.氟化物熔盐体系中电解制备镁-钕中间合金[J].稀有金属,2007,31(S1):45-49.
  • 期刊类型引用(2)

    1. 王有群,陈辉,林如山,宋鹏旺,刘云海. LiCl-KCl熔盐中PrCl_3在Mo电极上的电化学行为和热力学性质. 东华理工大学学报(自然科学版). 2025(01): 94-100 . 百度学术
    2. 林钦,王玉娇,程明,孙波,付海英,窦强,周金豪,周再春,刘秋华. 冷指结晶法去除LiCl熔盐中的碱土金属Sr、Ba. 核技术. 2024(03): 39-48 . 百度学术

    其他类型引用(0)

图(1)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  2
  • PDF下载量:  1175
  • 被引次数: 2
出版历程
  • 刊出日期:  2023-04-19

目录

    /

    返回文章
    返回