Extraction Performance and Radiation Stability of Phosphorus-Containing Extractants
-
摘要: 目前乏燃料后处理技术的研究特别是溶剂萃取方面,即利用含萃取剂的有机稀释剂萃取分离水溶液中的放射性核素,受到广泛关注。本文对近十多年来乏燃料后处理(溶剂萃取)中含磷类萃取剂特别是中性膦类萃取剂的萃取性能及辐射稳定性等进行了综述与讨论。对于中性膦类萃取剂而言,萃取性能及辐射稳定性受自身结构、稀释剂类型等其他因素的影响,萃取剂中P—O键数目的减少会提升萃取性能,烷基链长度的增加或支链(如甲基、乙基及苯基)的引入均能提高辐射稳定性。此外,采用离子液体作为稀释剂可以减小有机相的辐解。因此,研究含磷类萃取剂结构与萃取性能及辐射稳定性的关系,不仅有利于筛选出适用于乏燃料后处理过程的萃取剂,对于选择兼具优异萃取性能和辐射稳定性的结构从而指导新型含磷类萃取剂的合成同样具有重要意义。Abstract: At present, the research on spent fuel reprocessing technology, especially the research on solvent extraction technology has been paid more and more attention. The radionuclides in aqueous solution were extracted with organic diluent containing extractant. This paper aims to review and discuss the extraction performance and radiation stability of phosphorus-containing extractants, especially neutral phosphorus extractants, used in spent fuel reprocessing(solvent extraction) in the past decade. For neutral phosphine extractants, the extraction performance and radiation stability are affected by other factors such as its own structure, diluent type, etc. The decrease of the number of P—O bonds in the extractant would improve the extraction performance. The increase of alkyl chain length or the introduction of branched chain(such as methyl, ethyl and phenyl) can improve the radiation stability. In addition, the organic phase with ionic liquid as diluent can reduce the irradiation of the organic phase. Therefore, the study of the relationship between the structure of phosphorus-containing extractants and their extraction performance and radiation stability are conducive to select the extractant suitable for spent fuel reprocessing. It is also of great significance to select the structure with excellent extraction performance and radiation stability to guide the synthesis of new phosphorus-containing extractants.
-
-
[1] 肖雨生.中国核电发展与乏燃料贮存及后处理的关系[J].电工技术,2020(18):24-25. [2] 刘海军,陈晓丽.国内外乏燃料后处理技术研究现状[J].节能技术,2021,39(4):358-362. [3] 顾忠茂.我国先进核燃料循环技术发展战略的一些思考[J].核化学与放射化学,2006,28(1):1-10. [4] 林如山,何辉,唐洪彬,等.我国乏燃料干法后处理技术研究现状与发展[J].原子能科学技术,2020,54(S01):115-125. [5] 张生栋,严叔衡.乏燃料后处理湿法工艺技术基础研究发展现状[J].核化学与放射化学,2015,37(5):266-275. [6] Basualto C, Valenzuela F, Molina L, et al. Study of the solvent extraction of the lighter lanthanide metal ions by means of organophosphorus extractants[J]. J Chil Chem Soc, 2013, 58(2): 1785-1789.
[7] Alyapyshev M Y, Babain V A, Ustynyuk Y A. Recovery of minor actinides from high-level wastes: modern trends[J]. Russ Chem Rev, 2016, 85(9): 943.
[8] Chen X Y, Chen Q, Guo F L, et al. Extraction behaviors of rare earths in the mixed sulfur-phosphorus acid leaching solutions of scheelite[J]. Hydrometallurgy, 2018, 175: 326-332.
[9] Veliscek-Carolan J. Separation of actinides from spent nuclear fuel: a review[J]. J Hazard, 2016, 318: 266-281.
[10] Mincher B J, Modolo G, Mezyk S P. The effects of radiation chemistry on solvent extraction 1: conditions in acidic solution and a review of TBP radiolysis[J]. Solvent Extr Ion Exc, 2009, 27(1): 1-25.
[11] Mincher B J, Modolo G, Mezyk S P. The effects of radiation chemistry on solvent extraction 3: a review of actinide and lanthanide extraction[J]. Solvent Extr Ion Exc, 2009, 27(5-6): 579-606.
[12] Mincher B J, Modolo G, Mezyk S P. The effects of radiation chemistry on solvent extraction 4: separation of the trivalent actinides and considerations for radiation-resistant solvent systems[J]. Solvent Extr Ion Exc, 2010, 28(4): 415-436.
[13] Nilsson M, Nash K L. A review of the development and operational characteristics of the TALSPEAK process[J]. Solvent Extr Ion Exc, 2007, 25(6): 665-701.
[14] 汤嘉,翁汉钦,何辉,等.乏燃料后处理中的辐射化学问题Ⅱ:水溶液和稀释剂的辐射分解[J].核化学与放射化学,2020,42(1):1-12. [15] 汤嘉,翁汉钦,何辉,等.乏燃料后处理中的辐射化学问题Ⅰ:萃取剂的辐射稳定性[J].核化学与放射化学,2019,41(1):115-132. [16] Alibrahim M, Shlewit H. Solvent extraction of uranium(Ⅵ) by tributyl phosphate/dodecane from nitric acid medium[J]. Periodica Polytech Chem Eng, 2007, 51(2): 57-60.
[17] Pearson J, Nilsson M. Radiolysis of tributyl phosphate by particles of high linear energy transfer[J]. Solvent Extr Ion Exc, 2014, 32(6): 584-600.
[18] Gao Y, Zheng W F, Cao X M, et al. Studies on 238Pu induced alpha radiolysis of the solvent TBP[J]. J Radioanal Nucl Chem, 2015, 303(1): 377-383.
[19] Suresh A, Srinivasan T G, Vasudeva Rao P R, et al. U/Th separation by counter-current liquid-liquid extraction with tri-sec butyl phosphate by using an ejector mixer-settler[J]. Sep Sci Technol, 2005, 39(10): 2477-2496.
[20] Chandrasekar A, Suresh A, Joshi M, et al. Highly selective separations of U(Ⅵ) from a Th(Ⅳ) matrix by branched butyl phosphates: insights from solvent extraction, chromatography and quantum chemical calculations[J]. Sep Purif Technol, 2019, 210: 182-194.
[21] Chandrasekar A, Suresh A, Sivaraman N. Third phase formation in the extraction of Th(NO3)4 by tri-sec-butyl phosphate: a comparison with tri-n-butyl phosphate[J]. Radiochim Acta, 2017, 105(4): 321-328.
[22] 盛怀禹,李方琳,向才立.萃取剂的辐射稳定性研究Ⅳ:磷酸三异丁酯和磷酸三仲丁酯辐解产物的研究[J].原子能科学技术,1965(8):692-698. [23] Suresh A, Srinivasan T G, Vasudeva Rao P R. The effect of the structure of trialkyl phosphates on their physicochemical properties and extraction behavior[J]. Solvent Extr Ion Exc, 2009, 27(2): 258-294.
[24] Sreenivasulu B, Suresh A, Sivaraman N, et al. Co-extraction and co-stripping of U(Ⅵ) and Pu(Ⅳ) using tri-iso-amyl phosphate and tri-n-butyl phosphate in n-dodecane from nitric acid media under high loading conditions[J]. Radiochim Acta, 2016, 104(4): 227-237.
[25] Rakesh K B, Suresh A, Vasudeva Rao P R. Extraction and stripping behaviour of tri-iso-amyl phosphate and tri-n-butyl phosphate in n-dodecane with U(Ⅵ) in nitric acid media[J]. Radiochim Acta, 2014, 102(7): 619-628.
[26] Sen N, Saswani K, Singh K K, et al. Extraction of uranium(Ⅵ) by tri-iso-amyl phosphate(TiAP) in ionic liquids[J]. J Radioanal Nucl Chem, 2017, 312(2): 255-262.
[27] Sreenivasulu B, Suresh A, Rajeswari S, et al. Physicochemical properties and radiolytic degradation studies on tri-iso-amyl phosphate(TiAP)[J]. Radiochim Acta, 2017, 105(3): 249-261.
[28] Li R F, Cao X J, Zhao H G, et al. Radiolysis products and degradation mechanism studies on tri-isoamyl phosphate(TiAP)[J]. Radiochim Acta, 2018, 106(3): 239-247.
[29] Mincher B J, Martin L R, Schmitt N C. Tributylphosphate extraction behavior of bismuthate-oxidized americium[J]. Inorg Chem, 2008, 47(15): 6984-6989.
[30] Martin L, Mincher B, Schmitt N. Extraction of americium(Ⅵ) by a neutral phosphonate ligand[J]. J Radioanal Nucl Chem, 2009, 282(2): 523-526.
[31] Brahmmananda Rao C V S, Srinivasan T G, Vasudeva Rao P R. Studies on the extraction of actinides by diamylamyl phosphonate[J]. Solvent Extr Ion Exc, 2007, 25(6): 771-789.
[32] Tan M L, Huang C, Ding S D, et al. Highly efficient extraction separation of uranium(Ⅵ) and thorium(Ⅳ) from nitric acid solution with di(1-methyl-heptyl) methyl phosphonate[J]. Sep Purif Technol, 2015, 146: 192-198.
[33] Li R F, Liu C X, Zhao H G, et al. Di-1-methyl heptyl methylphosphonate(DMHMP): a promising extractant in Th-based fuel reprocessing[J]. Sep Purif Technol, 2017, 173: 105-112.
[34] Li R F, Zhao H G, Liu C X, et al. The recovery of uranium from irradiated thorium by extraction with di-1-methyl heptyl methylphosphonate(DMHMP)/n-dodecane[J]. Sep Purif Technol, 2017, 188: 219-227.
[35] Xiao Z, Li F F, Wang Y L, et al. Extraction of neptunium(Ⅵ) from nitric acid solution with di(1-methyl-heptyl)methyl phosphonate[J]. J Radioanal Nucl Chem, 2022, 331(2): 975-984.
[36] Li R F, Cao X J, Zhao H G, et al. Radiolysis products and degradation mechanism studies on di-1-methyl heptyl methyl phosphonate[J]. J Radioanal Nucl Chem, 2017, 314(3): 1715-1725.
[37] Kumbhare L B, Prabhu D R, Mahajan G R. Development of the diamex process for treating PHWR high-level liquid waste[J]. Nucl Technol, 2002, 139(3): 253-262.
[38] Zhu Y J, Jiao R Z. Chinese experience in the removal of actinides from highly active waste by trialkylphosphine-oxide extraction[J]. Nucl Technol, 1994, 108: 3(3): 361-369.
[39] Sengupta A, Arijit S M, Shenoy K T. Understanding the complexation of the Eu3+ ion with TODGA, CMPO, TOPO and DMDBTDMA: extraction, luminescence and theoretical investigation[J]. Polyhedron: The International Journal for Inorganic and Organometallic Chemistry, 2016, 117: 612-622.
[40] Mahan C, Bonchin S, Figg D, et al. Chromatographic extraction of plutonium and inorganic impurity analysis using ICP-MS and ICP-AES[J]. J Anal At Spectrom, 2000, 15(8): 929-935.
[41] Malhotra R K, Satyanarayana K. Estimation of trace impurities in reactor-grade uranium using ICP-AES[J]. Talanta, 1999, 50(3): 601-608.
[42] Adya V C, Sengupta A, Thulasidas S K, et al. Development of CCD based ICP-AES method for the direct determination of phosphorous and sulphur in U, Th and Zr matrices[J]. J Radioanal Nucl Chem, 2016, 307(2): 1489-1497.
[43] Sengupta A, Thulasidas S K, Natarajan V. Trace level determination of precious metals in aqueous medium, U, Th and Zr based nuclear materials by ICP-AES and EDXRF: a comparative study[J]. J Radioanal Nucl Chem, 2015, 303(3): 2421-2429.
[44] Sengupta A, Ippili T, Jayabun S, et al. ICP-AES determination of trace metallic constituents in thorium matrix after preferential extraction of thorium using TBP, TOPO and DHOA: a comparative study[J]. J Radioanal Nucl Chem, 2016, 310(1): 59-67.
[45] Du Y K, Wu J L, Li F M, et al. A pulse radiolysis study on energy transfer mechanism in trioctylphosphineoxide-cyclohexane and tributylphosphate-cyclohexane systems by using benzophenone as a probe[J]. Radiat Phys Chem, 1999, 54(5): 455-461.
[46] Wang J C, Song C L. Hot test of trialkyl phosphine oxide(TRPO)for removing actinides from highly saline high-level liquid waste(HLLW)[J]. Solvent Extr Ion Exc, 2001, 19(2): 231-242.
[47] 陈靖,王建晨.从高放废液中去除锕系元素的TRPO流程发展三十年[J].化学进展,2011,23(7):1366-1371. [48] Liu X G, Liang J F, Xu J M. Simplified Chinese TRPO process to extract and recover transuranium elements from high-level liquid were waste[J]. Solvent Extr Ion Exc, 2004, 22(2): 163-173.
[49] 章燕,浦宁,夏良树,等.三烷基氧膦对硝酸介质中钌的萃取行为[J].核化学与放射化学,2018,40(2):105-111. [50] 郑华铃,周顺利.γ辐射对30%TRPO-煤油萃取性能及物理参数的影响[J].中国核科技报告,1988(S2): 35. [51] Zhang P, Song C L, Liang J F, et al. Extraction and retention of plutonium with γ-irradiated 30% trialkylphosphine oxide-kerosene solution[J]. Solvent Extr Ion Exc, 2001, 19(1): 79-89.
[52] Leggett C J, Liu G, Jensen M P. Do aqueous ternary complexes influence the TALSPEAK process[J]. Solvent Extr Ion Exc, 2010, 28(3): 313-334.
[53] Lumetta G J, Gelis A V, Vandegrift G F. Solvent systems combining neutral and acidic extractants for separating trivalent lanthanides from the transuranic elements[J]. Solvent Extr Ion Exc, 2010, 28(3): 287-312.
[54] Matsumura T, Inaba Y, Mori A, et al. Am/Eu separation with a new ligand, N, N, N', N'-tetrakis ((4-butoxypyridin-2-yl)methyl)ethylenediamine(TBPEN), a hydrophobic derivative of TPEN[J]. J Nucl Sci Technol, 2010, 47(2): 123-126.
[55] Suneesh A S, Venkatesan K A, Syamala K V, et al. Mutual separation of americium(Ⅲ) and europium(Ⅲ) using glycolamic acid and thioglycolamic acid[J]. Radiochim Acta, 2012, 100(7): 425-430.
[56] Zhang Y, Yang S, Yuan X, et al. Separating lanthanides and actinides from nitric acid solutions by using N, N-di(2-ethylhexyl)-diglycolamic acid(HDEHDGA)[J]. Chem Commun, 2017, 53(48): 6421-6423.
[57] Rout A, Karmakar S, Venkatesan K A, et al. Room temperature ionic liquid diluent for the mutual separation of europium(Ⅲ) from americium(Ⅲ)[J]. Sep Purif Technol, 2011, 81(2): 109-115.
[58] Wagner R M, Farrand R. Radiation stability of organic liquids[R]. Semi-Annual Report, 1960.
[59] Kuzin I A, Semushin A M, Romanovskii V N. Stability of di(2-ethylhexyl)hydrogen phosphate against radiation[R]. Leningrad: Lensovet TechInst, 1969.
[60] Vladimirova M V, Kulikov I A, Milovanova A S. Radiation-chemical behavior of the system D2EHPA in paraffin 3M HNO3 with alpha-radiolysis and gamma-radiolysis[J]. Soviet Radiochem, 1979, 21(6): 789-791.
[61] Mathur J N, Murali M S, Nash K L. Actinide partitioning: a review[J]. Solvent Extr Ion Exc, 2001, 19(3): 357-390.
[62] Christiansen B, Apostolidis C, Carlos R, et al. Advanced aqueous reprocessing in P&T strategies: process demonstrations on genuine fuels and targets[J]. Radiochim Acta, 2004, 92(8): 475-480.
[63] Morita Y, Kubota M. Extraction of pentavalent neptunium with di-isodecyl phosphoric acid[J]. J Nucl Sci Technol, 1987, 24(3): 227-232.
[64] Shirahashi K, Morita Y, Kubota M. Extraction behavior of moybdenum and zirconium with diisodecylphosphoric acid from nitric acid solution[J]. J Radioanal Nucl Chem, 1994, 185(1): 173-182.
[65] Biswas S, Singh D K, Hareendran K N, et al. Extraction behavior of U(Ⅳ) from nitric acid medium using di-isodecyl phosphoric acid dissolved in dodecane[J]. J Radioanal Nucl Chem, 2010, 284(1): 201-205.
[66] Holbrey J D, Turner M B, Reichert W M, et al. New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide[J]. Green Chem, 2003, 5(6): 731-736.
[67] Kogelnig D, Stojanovic A, Galanski M, et al. Greener synthesis of new ammonium ionic liquids and their potential as extracting agents[J]. Tetrahedron Lett, 2008, 49(17): 2782-2785.
[68] Mudring A V, Tang S. Ionic liquids for lanthanide and actinide chemistry[J]. Eur J Inorg Chem, 2010, 2010(18): 2569-2581.
[69] Ternova D, Ouadi A, Mazan V, et al. New ionic liquid based on the CMPO pattern for the sequential extraction of U(Ⅵ), Am(Ⅲ) and Eu(Ⅲ)[J]. J Solution Chem, 2018, 47(8): 1309-1325.
[70] Tabata C, Nakase M, Harigai M, et al. Hydrofluorocarbon diluent for CMPO without third phase formation: extraction of uranium(Ⅵ) and lanthanide(Ⅲ) ions[J]. Sep Sci Technol, 2022, 57(7): 1097-1110.
[71] Wang C Z, Lan J H, Zhao Y L, et al. Density functional theory studies of UO22+ and NpO2+ complexes with carbamoylmethylphosphine oxide ligands[J]. Inorg Chem, 2013, 52(1): 196-203.
[72] Groenewold G S, Elias G, Mincher B J, et al. Characterization of CMPO and its radiolysis products by direct infusion ESI-MS[J]. Talanta, 2012, 99: 909-917.
[73] Mincher B J, Mezyk S P, Elias G, et al. The radiation chemistry of CMPO: part 1: gamma radiolysis[J]. Solvent Extr Ion Exc, 2013, 31(7): 715-730.
[74] Mincher B J, Mezyk S P, Elias G, et al. The radiation chemistry of CMPO: part 2: alpha radiolysis[J]. Solvent Extr Ion Exc, 2014, 32(2): 167-178.
计量
- 文章访问数: 55
- HTML全文浏览量: 3
- PDF下载量: 18