微生物对99Tc在土壤/矿物介质中还原-固定作用的影响

    Microbial Reduction and Immobilization of 99Tc in Soil/Mineral Systems

    • 摘要: 锝-99(99Tc)是核燃料循环中典型长寿命裂变产物,因以高溶解性和迁移性的\mathrmTcO_4^- (Tc(Ⅶ))形式存在而难以在天然介质中固定,是高放废物处置库长期安全性评估中的关键控制核素。微生物能够通过代谢活动将Tc(Ⅶ)还原为难溶的Tc(Ⅳ)沉淀,从而影响Tc的环境归趋。本研究选取本土的革兰氏阴性菌Klebsiella variicola X-21(以下简称K. variicola X-21)和革兰氏阳性菌Bacillus cereus X-68(以下简称B. cereus X-68),系统考察其在土壤、塔木素黏土及北山花岗岩三种典型环境介质中的Tc(Ⅶ)还原-固定作用及产物稳定性。静态实验结果显示:三种介质本身对Tc(Ⅶ)的吸附能力极弱,而细菌接种可显著促进Tc(Ⅶ)向Tc(Ⅳ)的转化沉积,还原效率随接种量增加而提高;其中,土壤体系因 \mathrmNO_3^- 的存在,还原-固定作用受到了明显抑制。动态柱实验表明,微生物作用可有效延缓Tc的突破与流出,预还原产物在450 h连续冲刷后仍保持较高滞留率(最高可达98%),不同体系中对还原Tc固滞能力的顺序为土壤>塔木素黏土>北山花岗岩。在有氧条件下,部分还原产物发生再氧化并重新迁移,其中K. variicola X-21生成的还原产物稳定性强于B. cereus X-68。研究表明,Tc的固定高度依赖于微生物诱导的还原过程,且受环境介质成分及氧化条件的显著影响,不同微生物控制的Tc稳定性存在差异。本研究为放射性Tc污染的环境治理及高放废物处置库长期安全性评估提供了实验依据与理论支撑。

       

      Abstract: Technetium-99(99Tc) is a long-lived fission product in the nuclear fuel cycle. Predominantly existing as the highly soluble and mobile pertechnetate anion(\mathrmTcO_4^-, Tc(Ⅶ)), it poses significant challenges for immobilization in natural environments and is considered a key radionuclide in the long-term safety assessment of high-level radioactive waste repositories. Microbial processes can reduce Tc(Ⅶ) to insoluble Tc(Ⅳ) precipitates, altering its environmental mobility. In this study, two indigenous microbial strains—Klebsiella variicola X-21(Gram-negative) and Bacillus cereus X-68(Gram-positive)—were systematically investigated for their capacity to reduce and immobilize Tc(Ⅶ) in three representative natural media: soil, Tamusu clay, and Beishan granite. Batch experiments revealed that abiotic media exhibited negligible sorption capacity, while microbial activity significantly enhanced Tc(Ⅶ) reduction, with efficiency positively correlated with inoculum concentration. However, \mathrmNO_3^- strongly inhibited Tc reduction in the soil system. Dynamic column tests show that microbial processes effectively delay Tc breakthrough and effluent release, with pre-reduced Tc products exhibiting high retention(up to 98%) over 450 h of continuous leaching. Under oxic conditions, partial reoxidation and remobilization are observed; nevertheless, Tc(Ⅳ) products generate by Klebsiella variicola X-21 displayed greater redox stability than those formed by Bacillus cereus X-68. Overall, the findings highlight that Tc immobilization in complex natural matrices is governed by microbially mediated reduction processes, strongly influenced by the composition of the matrix and prevailing redox conditions. This study provides new experimental insights into the biogeochemical mechanisms controlling Tc behavior in natural environments and offers a scientific basis for in situ bioremediation strategies, engineered barrier design, and safety assessment of geological repositories in China.

       

    /

    返回文章
    返回