Abstract:
There are few effective means to detect and analyze nanomaterials, therefore, adionuclide labeling and tracing techniques play an important role in the studies of interaction between nanoparticles and living systems. This paper briefly summarizes the main results from the application of radionuclide tracer techniques in the studies of interaction between carbon nanoparticles (fullerenes, carbon nanotubes and nano-carbon blacks) and animals and mammalian cells, cites the experimental information on absorption, distribution, metabolism and excretion of nanomaterials, and indicates the signification of these information in the drug development and bio-safety studies of nanomaterials. Based on the novel properties of carbon nanoparticles, the superiority of radionuclide tracer techniques over fluorescent labeling techniques is stressed. It is expected that the radionuclide tracer techniques have an increasing application prospect in the interdisciplinary fields of nano-science and life science.