**文章编号:**0253-9950(2007)03-0184-05

# 乙二胺改性壳聚糖磁性微球吸附 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup>

# 周利民<sup>1,2</sup>,王一平<sup>2</sup>,黄群武<sup>2</sup>

1. 东华理工大学 核资源与环境教育部重点实验室,江西 抚州 344000;
 2. 天津大学 化工学院,天津 300072

摘要:采用化学交联-种子溶胀法制得乙二胺改性壳聚糖磁性微球(EMCS),考察了其对水溶液中 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup> 的吸附性能。结果表明,EMCS 粒径为 50~80  $\mu$ m,氧化铁质量分数(w)为 16%,该吸附剂在 pH<2.5 时可选择 性吸附 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup>,吸附容量 随 pH 升高而增加;其吸附等温线用 Langmuir 方程拟合为: $c_{eq}/Q_{eq} = 0.4405 c_{eq}/Q_m + 0.5840(Hg^{2+}, r = 0.9960), c_{eq}/Q_{eq} = 0.5256 c_{eq}/Q_m + 1.3434(UO_2^{2+}, r = 0.9906);饱和吸$ 附容量 Q<sub>m</sub>分别为 2.27,1.90 mmol/g,高于磁性壳聚糖微球 MCS 和壳聚糖微球 CS;其吸附动力学可用 Lagerg $ren 方程拟合为:<math>lg(Q_{eq} - Q) = 0.3612 - 0.0155t(Hg^{2+}, r = 0.9821), lg(Q_{eq} - Q) = 0.3027 - 0.0112t(UO_2^{2+}, r = 0.9925);对 Hg^{2+}, UO_2^{2+}的吸附速率常数(k_{ad})分别为 0.036, 0.026 min<sup>-1</sup>; EMCS 可用 1 mol/L$ H<sub>2</sub>SO<sub>4</sub> 再生,脱附率大于 90%,有良好的重复使用性。

关键词:改性壳聚糖;磁性微球;Hg<sup>2+</sup>;UO<sup>2+</sup>
 中图分类号:O646.8 文献标识码:A

# Adsorption of Hg<sup>2+</sup> and UO<sub>2</sub><sup>2+</sup> by Ethylenediamine Modified Chitosan Magnetic Microspheres

ZHOU Li-min<sup>1,2</sup>, WANG Yi-ping<sup>2</sup>, HUANG Qun-wu<sup>2</sup>

 Key Laboratory of Nuclear Resources and Environment (Ministry of Education), East China Institute of Technology, Fuzhou 344000, China;

2. School of Chemistry and Chemical Engineering, Tianjin University, Tianjin 300072, China

Abstract: A novel chitosan magnetic adsorbent was prepared with chemical cross linking and seed swelling method. The adsorption performance of the adsorbent for Hg<sup>2+</sup> and UO<sub>2</sub><sup>2+</sup> was investigated. The results show that the diameter of the magnetic adsorbent is 50-80  $\mu$ m and the mass fraction of ferric oxide is about 16%. Selective separation of Hg<sup>2+</sup> and UO<sub>2</sub><sup>2+</sup> is achieved at pH<2.5. The adsorption capacity increase with pH increase. The adsorption isotherm data are analyzed by the Langmuir equations as:  $c_{eq}/Q_{eq} = 0.440$  5  $c_{eq}/Q_m + 0.584$  0 (Hg<sup>2+</sup>, r = 0.996 0);  $c_{eq}/Q_{eq} = 0.525$  6  $c_{eq}/Q_m + 1.343$  4 (UO<sub>2</sub><sup>2+</sup>, r = 0.990 6). The values of maximum adsorption capacity ( $Q_m$ ) are 2.27 mmol/g for Hg<sup>2+</sup> and 1.90 mmol/g for UO<sub>2</sub><sup>2+</sup>. The adsorption kinetic data are fitted by the Lagergren equations as:  $lg(Q_{eq} - Q) = 0.361$  2 - 0.015 5t (Hg<sup>2+</sup>, r = 0.982 1);  $lg(Q_{eq} - Q) = 0.302$  7 - 0.011 2 t (UO<sub>2</sub><sup>2+</sup>, r = 0.992 5). The values of

**收稿日期:**2006-10-13; 修订日期:2007-04-17

基金项目:江西省自然科学基金资助项目(050002);东华理工大学核资源与环境工程技术中心开放测试基金资助项目(051107) 作者简介:周利民(1970—),男,湖南邵阳邵东人,博士,副教授,主要从事磁性高分子材料的研究。

the adsorption rate constants  $(k_{ad})$  are 0.036 min<sup>-1</sup> for Hg<sup>2+</sup> and 0.026 min<sup>-1</sup> for UO<sub>2</sub><sup>2+</sup>. Regeneration of the adsorbent is achieved using 1 mol/L H<sub>2</sub>SO<sub>4</sub> with the desorption efficiency of more than 90%. The reproductive performance of the adsorbent is excellent. Key words: modified chitosan; magnetic microsphere; Hg<sup>2+</sup>; UO<sub>2</sub><sup>2+</sup>

吸附技术不仅可以回收重金属或放射性核 素,还可同时治理污染,净化环境。磁性吸附具有 传质速率高、固液接触好、压降低的优点,并且吸 附剂易于通过外加磁场分离,因此受到关注<sup>[1]</sup>。 磁性吸附应用很广泛,如加速生物污泥团聚、吸附 牛奶中的放射性核素、吸附印染废水中的有机污 染物等<sup>[2-5]</sup>。

壳聚糖的基本组成是 2-胺基葡萄糖, 以 β-(1,4)-糖苷键相互连接。壳聚糖分子中含有的羟 基(—OH)和氨基(—NH<sub>2</sub>)有良好的反应活性, 可以方便地进行功能基接枝和改性。壳聚糖具有 亲水性、生物相容性和可降解性,是一种良好的吸 附剂。壳聚糖对金属离子(如  $Hg^{2+}$ , $Pd^{2+}$ , $Pt^{2+}$ ) 的吸附机制包括质子化氨基与金属配阴离子通过 静电引力吸引、离子交换机制或通过功能基 (—OH和—NH<sub>2</sub>)与金属离子配合<sup>[6-7]</sup>。

本工作拟采用化学交联-种子溶胀法制备氧 化铁-壳聚糖磁性吸附剂,并通过乙二胺改性增加 氨基(功能基)含量,以改善吸附剂对 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup> 的吸附性能。

1 实验部分

1.1 试剂

低粘度壳聚糖(相对分子质量  $1.3 \times 10^5$ ,脱 乙酰度 90%),上海国药集团化学试剂有限公司; 氯化铁(FeC1<sub>3</sub> • 6H<sub>2</sub>O)和氯化亚铁(FeC1<sub>2</sub> • 4H<sub>2</sub>O),天津市福晨化学试剂厂,分析纯;氨水 (NH<sub>3</sub> • H<sub>2</sub>O,体积分数  $25\% \sim 28\%$ ),南昌鑫光 精细化工厂,分析纯;戊二醛(质量分数 25%)和 环氧氯丙烷,中国上海试剂总厂,均为分析纯;乙 二胺,天津市大茂化学试剂厂,分析纯;水为去离 子水,其它试剂均为分析纯。Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup> 溶液 用相应的氯化物加去离子水溶解后,再稀释定容 至所需浓度。

1.2 仪器

JEM 1200EX 型扫描电镜,日本电子光学公 司;Malvern 3000Hs 型电位仪,英国 Malvern 公 司;Perkin-Elmer550S光谱仪,美国 Perkin Elmer 公司;Shimadzu TGA-50H 热天平测定仪,日本 Shimadzu 公司,氮气气氛,升温速度 20 ℃/min; JDM-13 型振动样品磁强计,日本理学公司。

1.3 改性磁性壳聚糖微球的制备

1.3.1 壳聚糖微球(CS)的制备 5g壳聚糖溶 于 250 mL 2%的醋酸溶液中,用细针管将壳聚糖 溶液逐滴加至 0.2 mol/L NaOH 溶液中,形成凝 胶状壳聚糖微珠,过滤、水洗至中性后,加入 100 mL 甲醇及 1.2 mL 25%戊二醛水溶液,于室温下 搅拌 4 h,再于 60 ℃反应 5 h,产物过滤、洗涤。

1.3.2 磁性売聚糖微球(MCS)的制备 将上述 制得的 CS 悬浮于一定浓度的 Fe<sup>3+</sup>和 Fe<sup>2+</sup>的混 合液中(总铁离子浓度为 0.3 mol/L,Fe<sup>3+</sup>/Fe<sup>2+</sup> 摩尔比为 2:1),充分溶胀 1.5 h,氮气保护下加 NH<sub>3</sub>・H<sub>2</sub>O,使微球成黑色,于 60 °C 继续反应 1 h,产物过滤、洗涤。

1.3.3 乙二胺改性磁性壳聚糖微球(EMCS)的 制备 将上述制得的 MCS 悬浮于 70 mL 异丙醇 中,加入 5 mL 环氧氯丙烷(溶于体积比为 1 : 1 的 100 mL 丙酮-水混合液中),混合物于 60 ℃搅 拌反应 24 h。分离后的固相产物转入体积比为 1 : 1的 100 mL 乙醇-水混合液中,加入 5 mL 乙 二胺,混合物于 60 ℃搅拌反应 12 h,产物过滤、洗 涤、真空干燥。合成路线示于图 1。



图 1 EMCS 的制备 Fig. 1 Preparation of EMCS

### 1.4 EMCS 中氨基含量的测定

采用体积法将 0.1 g EMCS 加入 20 mL 0.5 mol/L HCl 中,静置 48 h 至反应平衡。溶液中最 终 HCl 浓度用 0.05 mol/L NaOH 溶液滴定。氨 基含量可由下式计算:

 $c(NH_2) = (c(HCl)_0 - c(HCl)_1) \times 20/0.1$ 。 式中, $c(NH_2)$ 为氨基质量摩尔浓度, mmol/g;  $c(HCl)_0$ 和  $c(HCl)_1$ 分别为 HCl 初始浓度和最终 浓度, mol/L。

1.5 吸附实验

吸附条件:温度 25 °C。加 0.1 mol/L HCl 或 0.1 mol/L NaOH 调节  $pH = 1 \sim 6$ ,选用 Sørensen 缓冲液。实验时除特别说明外,以 100 mL 5 mmol/L 金属离子溶液中加入 0.1 g 吸附 剂,以 150 r/min 下振荡吸附 2 h,磁铁分离吸附 剂。Hg<sup>2+</sup>浓度通过 EDTA 络合滴定<sup>[6]</sup>测定,  $UO_2^{2+}$ 浓度通过重铬酸钾氧化还原滴定<sup>[8]</sup>测定。 吸附容量按下式计算:

$$Q = \frac{c_0 - c_{eq}}{m} \times V_{\circ}$$

式中,Q为吸附容量,mmol/g; $c_0$ 和 $c_{eq}$ 分别为吸 附前、后的金属离子浓度,mmol/L;V为溶液体 积,L;m为吸附剂用量,g。

2 结果和讨论

2.1 吸附剂表征

经测定, EMCS 和 MCS 中氨基的质量浓度 分别为 6.05 mmol/g 和 3.56 mmol/g, 说明乙二 肢改性后氨基含量明显提高。EMCS 的形貌示于 图 2。由图 2 可看出, EMCS 为球形, 主要粒径为 50~80  $\mu$ m。600 ℃ 热重分析表明, CS 残重 w(CS) = 1.4%, 而 EMCS 残重 w(EMCS) =17.6%, 表明 EMCS 中氧化铁含量约 16%。IR 分析显示, 3 404, 1 661, 1 456 cm<sup>-1</sup>分别对应  $\nu$ NH,  $\delta$ NH 及  $\nu$ C—N 的特征峰, 440, 582 cm<sup>-1</sup> 处 的吸收带由 Fe<sub>3</sub>O<sub>4</sub> 中的 Fe—O 键产生, 表明 EMCS 中存在—NH<sub>2</sub> 和 Fe<sub>3</sub>O<sub>4</sub>。磁性测试表明, EMCS 的比饱和磁化强度为 8.5×10<sup>-7</sup> A·m<sup>2</sup>/ kg。

#### 2.2 Zeta 电位

在 0.1 mol/L KCl 溶液中测试 MCS 和 EMCS(均为 0.2 g/L)的 Zeta 电位,结果示于图 3。MCS 和 EMCS 的 Zeta 电位均为负值,表明微 球由于—NH<sub>2</sub> 存在而呈碱性。EMCS 比 MCS 的



图 2 EMCS 的 SEM 图 Fig. 2 SEM diagram of EMCS



图 3 不同 pH 值下 MCS 和 EMCS 的 Zeta 电位 Fig. 3 Zeta potentials of MCS and EMCS at different pH

Zeta 电位更负,这是由于 MCS 经乙二胺改性 后— $NH_2$ 的质量浓度明显提高的缘故。同时,随 着 pH值的增加,— $NH_2$ 质子化程度逐渐减弱, 造成 Zeta 电位更负。

#### 2.3 pH 对吸附容量的影响

25 ℃、金属离子初始浓度 5 mmol/L、吸附剂 用量 1 g/L 时, pH 对 EMCS 吸附  $Hg^{2+}$ ,  $UO_2^{2+}$ 的影响示于图 4(忽略铁离子溶出对吸附的影 响)。由图 4 看出,随 pH 升高,吸附容量增加。 pH>5 时吸附容量快速增加,这是由于形成金属 氢氧化物沉淀的缘故。pH<2.5时,EMCS对  $UO_2^{2+}$  几乎无吸附,而对  $Hg^{2+}$  吸附容量仍较高, 因此可选择性分离  $Hg^{2+}$  和  $UO_2^{2+}$ 。铀离子的存 在形态有  $UO_2^{2+}$ ,  $UO_2$  (OH)<sup>+</sup>,  $UO_2$  (OH)<sub>2</sub>,  $(UO_2)_2 (OH)_2^{2+}, (UO_2)_3 (OH)_5^+, (UO_2)_3$  $(OH)_7^-$ 及 $(UO_2)_4(OH)_7^+$ 。pH 影响金属离子 在溶液的存在形态, pH < 5 时, 铀离子以  $UO_2^{2+}$ 和  $UO_2(OH)^+$ 为主要存在形态; pH < 2.5 时,则 以 UO<sup>2+</sup> 为主要存在形态<sup>[8]</sup>。此外, pH 值还影 响吸附剂的表面电荷, pH<2.5 时, EMCS 表面 由于功能基 $(-NH_2)$ 质子化而带正电,与 $UO_2^{2+}$ 阳离子产生电荷排斥,不利于 UO<sup>2+</sup> 吸附:此外,

 $UO_2^{2^+}$ 与  $Cl^-$ 生成的配阴离子 $(UO_2Cl_6^{-})$ 呈六角 双锥构型的立体结构,在吸附时位阻较大,造成其 吸附困难,因此  $UO_2^{2^+}$  吸附容量相对较低。 $Hg^{2^+}$ 在强酸性介质及高  $Cl^-$ 浓度下,主要以离子交换 机制进行吸附:

$$R-NH_{2}+HCl \Longrightarrow R-NH_{3}+Cl^{-},$$

$$HgCl_{2}+Cl^{-} \Longrightarrow HgCl_{3}^{-},$$

$$R-NH_{3}+Cl^{-}+HgCl_{3}^{-} \Longrightarrow$$

$$R-NH_{3}+HgCl_{3}^{-}+Cl^{-}.$$



图 4 pH 对 EMCS 吸附 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup>的影响 Fig. 4 Effect of pH on Hg<sup>2+</sup> and UO<sub>2</sub><sup>2+</sup> adsorption by EMCS

### 2.4 吸附等温线

25 C, pH = 5.0, EMCS 用量为 1 g/L 时,EMCS 对  $Hg^{2+}$ 和  $UO_2^{2+}$ 的吸附以配合反应机理 为主<sup>[9]</sup>,形成 4 个五元环结构(图 5)。用 Langmuir 吸附方程式拟合(图 6),即:

$$\frac{c_{\rm eq}}{Q_{\rm eq}} = \frac{1}{KQ_{\rm m}} + \frac{c_{\rm eq}}{Q_{\rm m}} \,.$$

式中, $Q_m$  为饱和吸附容量,mmol/g; $c_m$ 和  $Q_m$ 分别 为溶液中金属离子平衡浓度(mmol/L)和对应的 吸附容量 (mmol/g); K 为吸附平衡常数,  $L/mmol_{eq}/Q_{eq}-c_{eq}$  呈线性,拟合方程为:  $c_{eq}/$  $Q_{eq} = 0.4405 c_{eq}/Q_{m} + 0.5840 (Hg^{2+}, r = 0.9960);$  $c_{\rm eq}/Q_{\rm eq} = 0.525$  6  $c_{\rm eq}/Q_{\rm m} + 1.343$  4 (UO<sub>2</sub><sup>2+</sup>, r= 0.990 6)。由此可求出 EMCS 对 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup> 的  $Q_m$  分别为 2.27 和 1.90 mmol/g, K 分别为 0.75,0.39 L/mmol。 $Hg^{2+}$ 的 K 值比  $UO_2^{2+}$  的 高,说明 HgCl<sub>3</sub> (Lewis 碱)与质子化氨基(Lewis 酸)之间存在更强的 Lewis 酸碱作用。相同测试 条件下, MCS 对  $Hg^{2+}$  和  $UO_2^{2+}$  的饱和吸附容量  $Q_{\rm m}$  分别为 1.4,1.1 mmol/g,CS 对 Hg<sup>2+</sup> 和  $UO_2^{2+}$ 的  $Q_m$  为 1.6,1.2 mmol/g (测试方法与 EMCS吸附时相同,见1.5节)。因此,就吸附容 量而言,EMCS 的吸附性能优于 MCS 和 CS。



图 5 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup> 与 EMCS 形成的配合物结构 Fig. 5 Complex structure of Hg<sup>2+</sup> and UO<sub>2</sub><sup>2+</sup> with EMCS



图 6 EMCS 吸附 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup>的 Langmuir 模型拟合曲线 Fig. 6 Langmuir curves for Hg<sup>2+</sup> and UO<sub>2</sub><sup>2+</sup> adsorption by EMCS

#### 2.5 吸附动力学

实验结果表明,吸附 90 min 后基本达到平 衡。25 ℃,pH=5,金属离子初始浓度 5 mmol/L 时,用 Lagergren 方程拟合(图 7):

lg  $(Q_{eq} - Q) = \log Q_{eq} - (k_{ad}/2.303) t$ 。 式中,t 为吸附时间,min; $Q_{eq}$ 和 Q 分别为吸附平 衡时和吸附时间为 t 时的吸附容量,mmol/g; $k_{ad}$ , 吸附速率常数,min<sup>-1</sup>。由图 7 可见,lg $(Q_{eq} - Q) - t$ 2 线性。拟合方程为:lg  $(Q_{eq} - Q) = 0.361 2 - 0.015 5 t (Hg^{2+}, r = 0.982 1); lg(Q_{eq} - Q) = 0.302 7 - 0.011 2 t (UO_2^{2+}, r = 0.992 5)$ 。由直 线斜率可计算出 EMCS 对 Hg<sup>2+</sup> 和 UO<sub>2</sub><sup>2+</sup> 的  $k_{ad}$ 为 0.036,0.026 min<sup>-1</sup>。Hg<sup>2+</sup> 的  $k_{ad}$ 比 UO<sub>2</sub><sup>2+</sup> 的 大,因此 Hg<sup>2+</sup> 的吸附速率较快。

### 2.6 吸附剂的再生和重复使用

于 pH=5条件下吸附  $Hg^{2+}$ 或  $UO_2^{2+}$ 饱和后的 EMCS,经真空干燥后取 0.1 g 分别与 1 mol/L  $H_2SO_4$  混合,振荡 1.5 h 至平衡。试验结果表明, 1 mol/L  $H_2SO_4$  对  $Hg^{2+}$ 或  $UO_2^{2+}$ 的脱附率分别



为 90.5%和 92.7%。 $UO_2^{2+}$ 还可用 2 mol/L HCl 脱附,脱附率为 91.2%。 $Hg^{2+}$ 不能用盐酸脱附, 因为  $Hg^{2+}$ 易与 Cl<sup>-</sup>形成配阴离子( $HgCl_3^-$ ),以离 子交换机理发生吸附(见 2.2节)。EMCS 重复使 用 5 次后,对  $Hg^{2+}$ 或  $UO_2^{2+}$ 的饱和吸附容量仅约 下降 10%,说明 EMCS 有良好的重复使用性。

## 3 结 论

(1) 采用化学交联-种子溶胀法制得球形磁 性吸附剂 EMCS,粒径为 50~80 μm。IR 表明 EMCS 中存在—NH<sub>2</sub> 和 Fe<sub>3</sub>O<sub>4</sub>。热重分析表明 EMCS 中氧化铁质量分数为 16%。比饱和磁化 强度为 8.5×10<sup>-7</sup> A・m<sup>2</sup>/kg。

(2) EMCS 对 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup> 有较好的吸附
性能。吸附容量随 pH 升高而增加。EMCS 对
Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup> 的饱和吸附容量 Q<sub>m</sub> 分别为 2.27,
1.90 mmol/g,高于 MCS 和 CS。

(3) 采用 Lagergren 方程拟合, EMCS 对
 Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup> 的吸附速率常数分别为 0.036,
 0.026 min<sup>-1</sup>。

(4) Hg<sup>2+</sup>和 UO<sub>2</sub><sup>2+</sup> 可用 1 mol/L H<sub>2</sub>SO<sub>4</sub> 脱
 附,UO<sub>2</sub><sup>2+</sup>也可用 2 mol/L HCl 脱附,脱附率大于

90%,EMCS有良好的重复使用性。

#### 参考文献:

- [1] 杨超雄,吴锦远,杜光军.磁性树脂的研究:纤维 素基聚氨肟树脂[J].离子交换与吸附,1994,10 (6):523-537.
- [2] Oliveira L C A, Petkowicz D I, Smaniotto A, et al. Magnetic Zeolites: a New Adsorbent for Removal of Metallic Contaminants From Water[J]. Water Research, 2004, 38(17): 3 699-3 704.
- Booker N A, Keir D, Priestley A, et al. Sewage Clarification With Magnetite Particles [J]. Water Sci Technol, 1991, 23(7): 1 703-1 712.
- [4] Safarik I, Safarikova M, Buricova V. Sorption of Water Soluble Organic Dyes on Magnetic Poly (Oxy-2, 6-Dimethyl-1, 4-Phenylene) [J]. Collect Czech Chem Commun, 1995, 60(9): 1 448-1 456.
- [5] Oliveira L C A, Rachel V R A, Jose D, et al. Clay-Iron Oxide Magnetic Composites for the Adsorption of Contaminants in Water [J]. Applied Clay Science, 2003, 22(4): 169-177.
- [6] Jeon C, Holl W H. Chemical Modification of Chitosan and Equilibrium Study for Mercury Ion Removal[J]. Water Research, 2003, 37(19): 4 770-4 780.
- [7] Chassary P, Vincent T, Marcano J S, et al. Palladium and Platinum Recovery From Bicomponent Mixtures Using Chitosan Derivatives [J]. Hydrometallurgy, 2005, 76(1-2): 131-147.
- [8] Hennig C, Reich T, Dahn R, et al. Structure of Uranium Sorption Complexes at Montmorillonite Edge Sites[J]. Radiochimica Acta, 2002, 90 (9-11): 653-657.
- [9] Vieira R S, Beppu M M. Interaction of Natural and Crosslinked Chitosan Membranes With Hg(II) Ions
   [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2006, 279 (1-3): 196-207.