文章编号:0253-9950(2007)01-0015-08

Ru³⁺和[RuNO]³⁺的速差动力学分析方法

乔亚华,吴继宗

中国原子能科学研究院 放射化学研究所,北京 102413

摘要:建立了用速差动力学分光光度法分析同一体系中 $Ru^{3+} n[RuNO]^{3+}$ 的方法。在盐酸羟胺存在下,测定 了 $Ru^{3+} n[RuNO]^{3+}$ 与 bipy 的反应表观速率常数、浓度级次及反应平衡常数。通过测量反应产物 $Ru(bipy)_{3}^{2+}$ 的起 始反应速率和平衡时的浓度,由建立的相关线性方程组计算出 $Ru^{3+} n[RuNO]^{3+}$ 的浓度。 $Ru^{3+} n[RuNO]^{3+}$ 的回收率分别为 96%~105%和 95%~106%。加入 EDTA 能较好地掩蔽常见金属离子的干扰。

关键词: 速差动力学分析; 钌; 亚硝酰钌

中图分类号: O614.821 文献标识码: A

Rate Differential Kinetic Analytical Method of Ru³⁺ and [RuNO]³⁺

QIAO Ya-hua, WU Ji-zong

China Institute of Atomic Energy, P.O. Box 275(88), Beijing 102413, China

Abstract: A differential kinetic spectrophotometric method for simultaneous determination of Ru^{3+} and $[RuNO]^{3+}$ in the same system was developed. The initial apparent rate constant, reaction order in term of Ru^{3+} or $[RuNO]^{3+}$ concentration, equilibrium constant for the reaction of bipyridyl and Ru^{3+} or $[RuNO]^{3+}$ in the presence of hydroxylamine hydrogenchloride were determined. By measurement of the initial formation rate and the equilibrium concentration of the product $Ru(bipy)_{3}^{2+}$ the concentrations of Ru^{3+} and $[RuNO]^{3+}$ were easily calculated by solving the linear simultaneous equations. The recovery of Ru^{3+} and $[RuNO]^{3+}$ is found to be 96% ~ 105% and 95% ~ 106%, respectively. The interference of several common metal ions is substantially eliminated by addition of EDTA as a masking agent. Key words: rate differential kinetic; ruthenium; nitrosyl ruthenium

在裂片元素中,产额较高、寿命较长,对后处 理和三废处理影响较大的元素主要有钌、锝、锆、 铌等,在共去污循环中,它们都比较难除去。因此 在乏燃料后处理厂,监测裂片核素具有重要意义, 这既是检测和控制裂片去污的必要手段,又是辐 射安全监测和控制的重要环节。在后处理过程 中,乏燃料一旦溶于硝酸溶液,钌主要形成的是 $[RuNO]^{3+}$ 配合物和少量的 $Ru^{3+[1]}$ 。 Ru^{3+} 和 $[RuNO]^{3+}$ 在 TBP-煤油和水相中的分配行为差 异很大,现有的方法仅能测定钌的总浓度,如分光 光度法^[2-4]、荧光法^[5]、示波极谱法^[6]、原子吸收 法^[7]、ICP-AES^[8]、ICP-MS^[9]及低压汞灯法^[10-11] 等方法,但这些分析方法都不能实现同时分析 Ru^{3+} 和 $[RuNO]^{3+}$,仅能对单组分体系进行分析。 本文拟采用速差动力学分光光度法,建立在同一体系中同时测定 Ru³⁺和[RuNO]³⁺总浓度和各自组分的方法,为研究钌在后处理过程的化学行为提供一种手段。

1 方法原理

速差动力学分析是指两个或多个组分同时存 在时,利用各组分之间反应速度的差别来测定每 个组分^[12]。即选择一定的条件,让反应物和试剂 溶液迅速混合,同时用仪器测量与反应物或生成 物浓度成正比的某一参数(如吸光度、溶液的电 导、电位、极谱扩散电流等)随时间的变化,经过数 学处理求出各组分的含量。

分光光度法具有简单、响应快、灵敏度高等特点,是常用的检测方法。近年来,该法与速差动力 学方法相结合被广泛用于各种分析领域^[13-18]。其 原理如下:

(1) 在一定条件下,不同物质 M,ML 同时与 同一配位剂 R 反应生成有色配合物:

$$M + R \xrightarrow{k_1} P_1, \qquad (1)$$

$$ML + R \xrightarrow{\kappa_2} P_2 \,. \tag{2}$$

配位反应的速率方程为:

$$\left(\frac{\mathrm{d}c(\mathbf{P}_1)}{\mathrm{d}t}\right)_{t=0} = k_1 c^{n_1} (\mathbf{M})_0, \qquad (3)$$

$$\left(\frac{\mathrm{d}c(\mathbf{P}_2)}{\mathrm{d}t}\right)_{t=0} = k_2 c^{n_2} (\mathrm{ML})_0 \,. \tag{4}$$

式中, $c(M)_0$, $c(ML)_0$ 为 M, ML 的初始浓度, $\left(\frac{dc(P_1)}{dt}\right)_{t=0}$, $\left(\frac{dc(P_2)}{dt}\right)_{t=0}$ 为反应产物 P₁,P₂在初 始时刻的生成速率。 k_1 , k_2 为表观速率常数, n_1 , n_2 为浓度级次。

当 P_1 , P_2 为同一产物时, 且各反应都遵从独 立共存性原理, 则有:

$$\left(\frac{\mathrm{d}c(\mathbf{P})}{\mathrm{d}t}\right)_{t=0} = k_1 c^{n_1} (\mathbf{M})_0 + k_2 c^{n_2} (\mathbf{ML})_0 \, . \, (5)$$

$$\mathbf{M} + m_1 \mathbf{R} \stackrel{K_1}{\longleftrightarrow} \mathbf{P}_1, \qquad (6)$$

$$\mathrm{ML} + m_2 \mathrm{R} \stackrel{\mathrm{M2}}{=} \mathrm{P}_2 + \mathrm{L} \uparrow \circ \qquad (7)$$

 K_1, K_2 为平衡反应的配合平衡常数, m_1, m_2 为反应化学计量系数。

$$K_{1} = \frac{c(P_{1})_{eq}}{c(M)_{eq} \cdot c^{m_{1}}(R)_{eq}},$$
 (8)

$$K_2 = \frac{c(\mathbf{P}_2)_{eq} \cdot c(\mathbf{L})_{eq}}{c(\mathbf{ML})_{eq} \cdot c^{m_2}(\mathbf{R})_{eq}}, \qquad (9)$$

$$K'_{2} = K_{2}/c(L) = \frac{c(P_{2})_{eq}}{c(ML)_{eq} \cdot c^{m_{2}}(R)_{eq}} \circ (10)$$

式中,配位平衡时产物浓度 $c(P)_{eq}$ 可测量求得。

$$c(\mathbf{M})_{eq} = c(\mathbf{M})_0 - c(\mathbf{P}_1)_{eq},$$

$$c(\mathbf{M}\mathbf{L})_{eq} = c(\mathbf{M}\mathbf{L})_0 - c(\mathbf{P}_2)_{eq}$$

当两配位反应在同一体系中进行且达到平衡 时,若 $m_1 = m_2 = m$,则其产物为同一产物P,此 时, $c(R)_{eq} = c(R)_0 - mc(P)_{eq}$ 。其中, $c(R)_0$ 为配 位剂 R 的起始浓度。

$$c(\mathbf{P})_{eq} = c(\mathbf{P}_1)_{eq} + c(\mathbf{P}_2)_{eq},$$
 (11)

$$c_0 = c(M)_0 + c(ML)_0$$
, (12)

$$\frac{c(P)_{eq}}{c_0} = \frac{Kc^m(R)_{eq}}{1 + Kc^m(R)_{eq}},$$
 (13)

其中, $K = \frac{K_1 \cdot K'_2}{K_1 + K'_2}$ 。 (14)

因为反应中 $c(\mathbf{R})_0 \gg c(\mathbf{M})_0$,所以 $c^m(\mathbf{R})_{eq} \approx c^m(\mathbf{R})_0$,代入式(13)可得:

$$\frac{c(\mathbf{P})_{eq}}{c_0} = \frac{Kc^m(\mathbf{R})_0}{1 + Kc^m(\mathbf{R})_0} \,. \tag{15}$$

如果测定配位平衡常数 K_1 , K'_2 及反应平衡 时产物的浓度 $c(P)_{eq}$,由式(12),(14),(15)可求 得反应物 M 和 ML 的总浓度 c_0 。

因此,在测定各反应的参数 k_1, k_2, n_1, n_2 , K_1, K'_2 及产物平衡时的浓度 $c(P)_{eq}$ 求出总浓度 之后,测定反应的起始速率 $\left(\frac{dc(P)}{dt}\right)_{t=0}$,联立式 (5)和(15)便可求得 M, ML 的初始浓度 $c(M)_0$, $c(ML)_0$ 。

如反应体系为单组分体系,测定反应的参数 和起始速率之后,可由公式(3),(4)直接求出各自 的浓度 $c(M)_0$ 和 $c(ML)_0$ 。

利用分光光度计测量平衡时配位产物 2 min 和平衡时的吸光度 A,根据比尔定律 $A = \kappa c L$ (κ 为摩尔吸光系数,c 为待测物浓度,L 为待测溶 液厚度)可以求出配位产物 2 min 时的浓度和 $c(P)_{eq}$,由此代入公式推算出起始速率和总浓度。

2 实验部分

2.1 试剂与仪器

LabTechUV-2000/2001 型紫外可见分光光 度计,北京莱伯泰科有限公司。

标准钌溶液,国家标准物质 GSBG62036-90, 国家钢铁材料测试中心提供,不确定度为 0.3%; 标准亚硝酰钌溶液,美国 Strem chemicals, Inc. 公司;联吡啶,EDTA,盐酸羟胺,分析纯,均为北 京化学试剂公司;无水醋酸钠,分析纯,北京益利 精细化学品有限公司。

2.2 实验步骤

取一定量的钌标准溶液于 5 mL 比色管中, 加入 10 mmol/L 2,2'-联吡啶溶液 0.3 mL, 0.1 mol/L EDTA 溶液 0.2 mL,10%盐酸羟胺溶 液 0.5 mL,1 mol/L 的醋酸钠溶液 3 mL,稀释至 刻度,在沸水浴中加热,冷却至室温,定容至刻度, 用 1 cm 比色皿,以试剂空白作参比,于 452 nm 处 分别在 2 min 和反应平衡时测量吸光度。

3 结果和讨论

3.1 条件实验的优化选择

3.1.1 测定波长的选择 三联吡啶钌的光谱图 示于图 1。从图 1 看出,三联吡啶钌的吸收峰在 452 nm 处,而其它试剂在 452 nm 处无吸收峰,这 与文献[19]报道三联吡啶钌在 450~470 nm 处有 一吸收峰非常吻合。因此,本实验选用 452 nm 作 为测量波长。

3.1.2 反应温度的选择 反应温度是影响配合 反应的重要因素之一。实验表明,反应物在室温 下放置一周无明显反应,温度达到 95 ℃时反应开 始,在 95~100 ℃时吸光度保持不变,所以选用沸 水浴加热。

3.1.3 反应酸度和缓冲剂的选择 实验表明, $pH=4\sim6$ 时,吸光度稳定,因此需要一种缓冲能 力强、缓冲容量大的缓冲体系。实验选用 HAc-NaAc 体系作为缓冲体系。研究表明,1 mol/L NaAc 用量在 $2\sim4$ mL 时配合物吸光度保持不 变,试验选用 1 mol/L 的 NaAc 加入量为 3 mL。 3.1.4 还原剂及其用量的选择 实验所选用的 钌为三价,但只有二价三联吡啶钌才能发光稳定, 因此需将其还原为二价。选用性质比较温和的盐 酸羟胺和甲基肼作还原剂时,实验发现,盐酸羟胺 作还原剂时吸光度稳定,因此选用它作还原剂。 改变盐酸羟胺用量对配合物吸光度 A 的影响示 于图 2。实验结果表明,盐酸羟胺对配合物有较 大的影响。配合物的吸光度随着盐酸羟胺(10%) 加入量的增加而不断增大,实验中准确加入盐酸 羟胺 0.5 mL。

图 2 还原剂加入量对吸光度的影响 Fig. 2 Dependance of the absorbency upon the added reductant amount

3.1.5 显色剂用量及络合物的稳定性 实验表 明,0.01 mol/L 联吡啶加入量为 $0.25 \sim 0.4$ mL 时吸光度稳定。为了确保得到较好的显色效果, 实验采用 0.01 mol/L 联吡啶的加入量为 0.3mL。为确定配合物的稳定程度,对配合物的吸光 度进行稳定性测试。结果表明,配合物在 7 d 内 吸光度保持稳定,说明反应产物的稳定性是良好 的。

3.1.6 掩蔽剂及其用量的选择 在分光光度分 析中,共存离子的干扰是影响分析结果准确性的 重要因素之一,必须采用适当的方法消除干扰。 EDTA 是一种人们广泛使用的掩蔽剂,与多种金 属离子均能形成稳定配合物。本实验选其作掩蔽 剂。结果表明,0.1 mol/L EDTA 加入量在 0.2~ 0.4 mL时吸光度稳定。实验选用 EDTA 的加入 量为 0.3 mL。

3.1.7 速差最大点的选择 速差动力学分析的 关键就是找到速率差最大的时间点去测量分析。 配制相同浓度的钌和亚硝酰钌的反应液,分别取 不同的时间点测定其速率并示于图 3。从图 3 看 出,取样时间越短速率差越大,但取样时间太短误 差比较大。2 min 时发光较稳定,速率差为 4.6

图 3 速率随时间的变化

倍,达到速差动力学分析所需的至少 3~4 倍速差 比要求^[12],所以试验选用2 min作为测量点。

3.2 配位反应参数测定

3.2.1 钌与联吡啶配合反应参数测定

(1)钌与联吡啶反应物组成的确定。由文献 [20]可知,钌的六配位八面体结构最稳定,只有与 3 个联吡啶结合才能形成这种稳定结构。三联吡 啶钌在 240,280,324,352 nm 和 450~470 nm 处 均有吸收峰。三联吡啶钌标准谱图和钌与联吡啶 反应物的吸收谱图示于图 4。由图 4 可见,钌与 联吡啶反应物的谱图和标准三联吡啶钌的谱图吸 收峰的峰形、峰位完全一致,初步判定反应物为三 联吡啶钌。

(2) 钌与联吡啶配合反应平衡常数 K₁和计量 系数 m₁的测定。配位平衡时间直接影响着配合 物是否生成完全。实验表明,配合反应在 2.0 h

内可以达到平衡,并在较长时间内保持稳定。本 实验选用配合反应平衡测定时间为 2.5 h。

由前面实验可初步判定钌与联吡啶的配位比 为1:3,则钌与联吡啶的配合平衡反应为:

$$Ru^{3+} + 3bipy \xrightarrow{K_1} Ru(bipy)^{2+}_3$$

由式(8)可得:

$$\ln \frac{c(\operatorname{Ru}(\operatorname{bipy})_{3}^{2+})_{eq}}{c(\operatorname{Ru})_{0} - c(\operatorname{Ru}(\operatorname{bipy})_{3}^{2+})_{eq}} = m_{1}\ln(c(\operatorname{bipy})_{0} - m_{1}c(\operatorname{Ru}(\operatorname{bipy})_{3}^{2+})_{eq}) + \ln K_{1}.$$
(17)

如联吡啶与钌以三分子结合,则有:

$$\ln \frac{c(\operatorname{Ru}(\operatorname{bipy})_{3}^{2^{+}})_{eq}}{c(\operatorname{Ru})_{0} - c(\operatorname{Ru}(\operatorname{bipy})_{3}^{2^{+}})_{eq}} = m_{1}\ln(c(\operatorname{bipy})_{0} - 3c(\operatorname{Ru}(\operatorname{bipy})_{3}^{2^{+}})_{eq}) + \ln K_{1}.$$

(18)

取不同浓度的钌标准溶液,测定其平衡时产物的浓度,作线性回归处理后示于图 5。由图 5 可知, $m_1 = 3$, $K_1 = 8$.93×10¹⁰ (mol/L)⁻³。由此 进一步证明钌与联吡啶的配位比为 1:3。

(3) 钌与联吡啶反应表观速率常数与浓度级次的测定。由钌与联吡啶的反应式得到:

$$\left(\frac{dc(\operatorname{Ru}(\operatorname{bipy})_{3})}{dt}\right)_{t=0} = k_{1}c^{n_{1}}(\operatorname{Ru})_{0},$$

$$\mathbf{R} \overrightarrow{\mathbf{M}} \underbrace{\operatorname{Ru}}_{2} \ln \left[\frac{dc(\operatorname{Ru}(\operatorname{bipy})_{3})}{dt}\right]_{t=0} = \lim_{t \to 0} k_{1} + n_{1}\ln c(\operatorname{Ru})_{0}.$$
(19)

取不同浓度的钌标准溶液,在 2 min 时测定 其起始速率,进行线性回归求得速率常数和浓度 级次,结果示于图 6。由图 6 求得, $k_1 = 0.131$ min⁻¹, $n_1 = 1.0$ 。

 $\left(\frac{\mathrm{d}c(\mathrm{Ru}(\mathrm{bipy})_{3})}{\mathrm{d}t}\right)_{t=0} = 0.131c(\mathrm{Ru})_{0} \,. (20)$

3.2.2 亚硝酰钌与联吡啶配合反应参数的测定

(1) 亚硝酰钌与联吡啶反应物组成的确定。 三联吡啶钌中 Ru—N 键长为 205.6 pm^[20],亚硝 酰钌中 Ru—N 键长为 215.4 pm^[21],没有三联吡 啶钌中的 Ru—N 稳定。图 7 为亚硝酰钌与联吡 啶的反应物和标准三联吡啶钌吸收谱图的比较, 两个谱图非常吻合,由此可初步判定反应产物为 三联吡啶钌。

(2)亚硝酰钌与联吡啶配位反应平衡常数 K_2 和计量系数 m_2 的测定。由于亚硝酰钌与联吡啶 反应需先断裂 Ru—NO 键,因此其反应达到平衡 需要的时间较长,需 3 h 才能平衡。试验选用 3.5 h 作为反应平衡测定时间。

(Nitrosyl ruthenium and 2,2'-bipyridine reactant spectrum)

如前所述,若亚硝酰钌与3个联吡啶反应,则 亚硝酰钌与联吡啶的配合平衡反应为:

[RuNO]³⁺+3bipy <u>K₂</u> **正**原剂 Ru(bipy)²⁺₃+NO ↑。 由式(10)可得: $\ln \frac{c(\operatorname{Ru}(\operatorname{bipy})^{2+}_{3})_{eq}}{c([\operatorname{Ru}NO]^{3+})_{0} - c(\operatorname{Ru}(\operatorname{bipy})^{2+}_{3})_{eq}} =$

$$m_2 \ln[c(\operatorname{bipy})_0 - 3c(\operatorname{Ru}(\operatorname{bipy})_3^{2+})_{eq}] + \ln K'_2$$
(21)

取不同浓度的亚硝酰钌标准溶液,测定其平衡时 产物的浓度,作线性回归处理后示于图 8。由图 8 求得, $m_2 = 3$, $K'_2 = 1$. $39 \times 10^{11} (\text{mol/L})^{-3}$ 。由此 可进一步证明亚硝酰钌是与 3 个联吡啶反应的。

(3)亚硝酰钌与联吡啶反应表观速率常数与 浓度级次的测定。由亚硝酰钌与联吡啶的反应式 得到:

$$\left(\frac{\mathrm{d}c(\mathrm{Ru}(\mathrm{bipy})_{3})}{\mathrm{d}t}\right)_{t=0} = k_{2} \cdot c^{n_{2}}(\mathrm{RuNO})_{0},$$
(22)

两边取对数可得:

$$\ln\left[\frac{\mathrm{d}c(\mathrm{Ru}(\mathrm{bipy})_{3})}{\mathrm{d}t}\right]_{t=0} = \ln k_{2} + n_{2}\ln c(\mathrm{RuNO})_{0} \,.$$
(23)

取不同浓度的亚硝酰钌标准溶液,在 2 min 时测定其起始速率,进行线性回归求得速率常数 和浓度级次,结果示于图 9。由图 9 求得, k_2 = 3.7×10⁻³ (mol/L)^{0.214} • min⁻¹, n_2 = 0.786。则 有方程:

$$\left(\frac{\mathrm{d}c(\mathrm{Ru}(\mathrm{bipy})_{3})}{\mathrm{d}t}\right)_{t=0} =$$
3. 7×10⁻³c^{0.786} (RuNO)₀ . (24)

通过以上实验可得,钌与联吡啶配位反应平 衡常数 $K_1 = 8.93 \times 10^{10} (\text{mol/L})^{-3}$,计量系数 $m_1 = 3$;反应速率常数 $k_1 = 0.131 \text{ min}^{-1}$,浓度级 次 $n_1 = 1.0$ 。亚硝酰钌与联吡啶反应配位平衡常 数 $K'_2 = 1.39 \times 10^{11} (\text{mol/L})^{-3}$,计量系数 $m_2 = 3$; 反应速率常数 $k_2 = 3.7 \times 10^{-3} (\text{mol/L})^{0.214}$ • min⁻¹,浓度级次 $n_2 = 0.786$ 。将式(20),(24)联 立可得如下方程组:

$$\left(\frac{dc(\mathrm{Ru}(\mathrm{bipy})_{3})}{dt}\right)_{t=0} = 0.131c(\mathrm{Ru})_{0} + 3.7 \times 10^{-3} c^{0.786} (\mathrm{RuNO})_{0}, \qquad (25)$$
$$c_{0} = c(\mathrm{Ru})_{0} + c(\mathrm{RuNO})_{0}.$$

通过测定反应的初始速率和产物平衡浓度, 由此方程组可求得反应物的组分和总浓度。

3.3 样品分析

3.3.1 单组分钌测定及重加回收实验 取不同体积的钌标准溶液,按以上步骤操作,用式(20)进行计算,结果列入表1。由表1看出,单组分钌的回收率在96%~105%。

3.3.2 单组分亚硝酰钌测定及重加回收实验 取不同体积的亚硝酰钌标准溶液,按以上步骤操 作,用式(24)计算,结果列入表 2。由表 2 看出, 亚硝酰钌的回收率为 95%~106%。

3.3.3 钉与亚硝酰钌混合物的测定 分别配置
 3 组不同浓度的样品分别在 2 min 和 3.5 h 进行
 测量验证。

(1)混合样品总浓度的分析。由已测得配合 平衡常数代入式(14),测出平衡时三联吡啶钌的 浓度即可算出钌和亚硝酰钌混合物的总浓度并列 入表 3 中。

(2)混合样品组分的分析。由以上求得的总 浓度通过式(25)即可求出混合样品中的组分,但 由于亚硝酰钌反应的浓度级次是非整数的,所以 进行编程计算,结果列入表 4。

3.3.4 共存离子干扰 对一些常见的离子进行 了干扰实验,结果列入表5。从表5可以看出, EDTA 能够较好地掩蔽干扰离子,但 Fe 仍有一

表1 单组分钌重加回收率

Table 1 Coefficient of recovery of monocomponent ruth	enium
---	-------

$c(\mathrm{Ru})_{\mathrm{add}}/(\mu\mathrm{mol}\cdot\mathrm{L}^{-1})$	$c(\mathrm{Ru})_{\mathrm{mea}}/(\mu\mathrm{mol}\cdot\mathrm{L}^{-1})$	Y/%	$c(\mathrm{Ru})_{\mathrm{add}}/(\mu\mathrm{mol}\cdot\mathrm{L}^{-1})$	$c(\mathrm{Ru})_{\mathrm{mea}}/(\mu\mathrm{mol}\cdot\mathrm{L}^{-1})$	Y/ %
12.5	12.1	96.0	98.0	101	103
29.0	28.7	99.0	102.5	104	101
32.0	31.4	98.0	135	142	105
56.0	54.9	98.0			

表 2 单组分亚硝酰钌重加回收率

Table 2 Coefficient of recovery of monocomponent nitrosyl ruthenium

$c([RuNO]^{3+})_{add}$ $/(\mu mol \cdot L^{-1})$	$c([RuNO]^{3+})_{mea}$ /(μ mol • L ⁻¹)	$Y/rac{9}{0}$	$c([RuNO]^{3+})_{add}$ /(μ mol • L ⁻¹)	$c([RuNO]^{3+})_{mea}$ /(μ mol • L ⁻¹)	Y/%
10.5	9.9	95.0	95.0	97.9	103
19.5	19.3	99.0	115	121	105
37.0	36.3	98.0	146	155	106
65.0	64.4	99.0			

Table 3 Analysis of total concentration of mixture sample						
$c(\mathrm{Ru})_t$ /($\mu\mathrm{mol} \cdot \mathrm{L}^{-1}$)	$c([RuNO]^{3+})_{add}/$ $(\mu mol \cdot L^{-1})$	$c(\mathrm{Ru})_{\mathrm{add}}/$ $(\mu\mathrm{mol} \cdot \mathrm{L}^{-1})$	$c(\operatorname{Ru}(\operatorname{bipy})_3)_{\operatorname{eq.mea}}/$ $(\mu \operatorname{mol} \cdot \operatorname{L}^{-1})$	$c(\mathrm{Ru})_{\mathrm{cal}}/$ ($\mu\mathrm{mol} \cdot \mathrm{L}^{-1}$)	相对误差 (Relation error)/%	
	1.5	19.8	20.5	21.2	-0.47	
21.3	11.4	9.9	18.4	19.3	-9.3	
	17.3	4.0	18.1	19.0	-10.7	
	30.3	49.5	78.5	84.8	6.2	
79.8	40.5	39.3	75.9	77.7	-2.6	
	60.0	19.8	76.2	73.4	-8.0	
	39.5	99.3	102.3	139.2	0.29	
138.8	69.2	69.6	99.5	124.3	-10.4	
	89.0	49.8	95.0	119.6	-13.8	

表 3 混合样品总浓度分析

表 4 混合样品组分分析结果

Table 4 Analysis of mixing proportion in mixture sample

$c([RuNO]^{3+})_{add}/$ (µmol • L ⁻¹)	$c(\mathrm{Ru})_{\mathrm{add}}/$ (µmol • L ⁻¹)	$\left(\frac{\mathrm{d}\rho}{\mathrm{d}t}\right)_{2\mathrm{min}}/(\mu\mathrm{mol}\cdot\mathrm{L}^{-1})$	$\frac{c([RuNO]^{3+})_{mea}}{c_{T}}$	$\frac{c([RuNO]^{3+})_{cal}}{c_{T}}$ / %	相对误差 (Relation error)/%
1.5	19.8	2.69	7.04	7.4	0.51
11.4	9.9	1.79	53.5	53.4	-0.18
17.3	3.9	1.39	81.2	74.2	-0.86
30.3	49.5	6.7	38.0	36.3	-4.4
40.5	39.3	6.0	50.8	55.5	9.2
60.0	19.8	4.5	75.2	74.1	-1.4
49.0	89.1	14.1	35.5	32.1	-9.5
68.9	69.3	10.9	49.9	52.0	4.2
99.5	39.6	6.7	71.5	78.0	9.0

定的干扰。由表 1-4 数据可以看出,在进行单组 分重加回收实验时,回收率较好,但分析混合样品 时,误差较大,存在系统偏差。分析原因可能有以 下几点:

(1) 起始速率测定不准。实验测定的起始速 率是以 2 min 时的平均速率代替起始速率。在测 定 2 min 时的产物浓度时,由于吸光度有误差,从 而使起始速率的测定不准,带入系统误差。由于 起始速率不准,表观速率常数 k 和浓度级次 n 的 测定值也会产生误差,而浓度级次与浓度是指数 关系,这势必会给分析结果带来较大的误差。

(2) 计算引入的误差。本工作主要是由方程 计算得出结果,这种方法本身就会带来误差,进而 引起分析结果的误差。为了消除这种系统误差, 今后需要作进一步的研究工作,如改变实验条件, 采用流动注射法测准起始速率,或使用联机技术 减小整个分析和计算过程中带来的误差。

4 结 论

本工作选择了速差动力学分析钌形态的最佳 条件,选用联吡啶作为配位剂和显色剂,在 pH= $4 \sim 6.5$ 下, 沸水浴中, 以 HAc-NaAc 作为缓冲体 系,0.2 mL 0.1 mol/L EDTA 为掩蔽剂,0.5 mL 10%(m/m)盐酸羟胺为还原剂,波长 452 nm 处 测量,选用 $2 \min$ 作为最佳速率测量点。

建立了简便、准确、选择性好的速差动力学的 钌形态分析方法。钌浓度在 $1.5 \times 10^{-6} \sim 1.3 \times$ 10⁻⁴ mol/L 范围内均可测定。分别对单组分和 混合组分中钌的形态进行了分析,样品重加回收 率在 $95\% \sim 106\%$, Ca²⁺, Ba²⁺, Zr⁴⁺, Ni²⁺, Co²⁺, Cu^{2+} , Mg^{2+} , Cd^{2+} 等离子对钌的测定无干扰, 但 Fe^{3+} 有一定干扰。

表 5 共存离子干扰

第 29 卷

Table 5Interference of coexisting ion							
离子 (Ion)	$ ho/(g \cdot L^{-1})$	$c([RuNO]^{3+})$ $/c_{T}/\%$	未加 EDTA 时误差 (Error, free EDTA)/%	干扰 (Interference)	加入 EDTA 时误差 (Error,add EDTA)/%	干扰 (Interference)	
Ca ²⁺	1.4	53	0.4	_	1.2	_	
Ba^{2+}	1.0	53	0.3	_	0.5	_	
Zr^{4+}	2×10^{-2}	53	6.4	+	2.4	_	
Ni^{2+}	2×10^{-2}	53	7.9	+	4.8	_	
Co^{2+}	2×10^{-3}	53	8.2	+	4.6	_	
Cu^{2+}	4×10^{-3}	53	6.5	+	1.3	—	
Fe^{3+}	4×10^{-3}	53	9.6	++	5.6	+	
Mg^{2+}	2×10^{-4}	53	3.2	_	2.3	—	
Cd^{2+}	8×10^{-2}	53	4.5	_	0.5	_	

参考文献:

- [1] 开小明. 2,2'-联吡啶光度法测定微量钌[J]. 分析 实验室, 1999, (3): 68-69.
- [2] 杨 武,高锦章,康敬万.光度分析的高灵敏反应 及方法[M].北京:科学出版社,2000:303-307.
- [3] 寇宗燕,刘锡林,陈兴国,等.三溴偶氮氯膦-Ru(Ⅲ)-KIO₄体系催化分光光度法测定钌[J]. 冶 金分析,1994,14(4):18-21.
- [4] 蔡亚歧. 流动注射催化分光光度法测定钌的研究[J]. 分析测试学报, 1996, 15(3): 85-89.
- [5] 李伸后,胡守坤. 钌(Ⅱ)-邻菲啰啉-十二烷基硫酸
 钠体系荧光光度法的研究[J]. 岩矿测试,1988,7
 (2):130-135.
- [6] 孽增荣,廖玲秀,吴群娣,等. 超痕量钌的催化反应——示波极谱法研究及应用[J]. 广西师范大学 学报,1994,12(1):60-63.
- [7] 阮锦强.原子吸收法测定放射性废物固化体中模拟 核素钌[J].南京化工大学学报,1997,19(2):89-91.
- [8] 杨 萍. 电感耦合等离子体-原子发射光谱法测定 贵金属——难溶金属涂布液中的铱和钌[J]. 分析 实验室,2000,19(2):56-60.
- [9] 靳新娣,朱和平. 电感耦合等离子体质谱法测定地 质样品中铂、钯、钌、铑、铱和金[J]. 分析化学研究 简报,2001,29(6):653-657.
- [10] 寇栓虎,郑志坚,郑成法.硝酸介质中亚硝酸钌配 合物的光分解反应动力学研究[J].核化学与放射 化学,1997,19(2):1-4.
- [11] Dian J J. The Behavior and Control of Ruthenium During Reprocessing, CEA-R-4813 [R]. Paris: CEA, 1977.
- [12] 陈四箴,吴淑琪. 实用动力学分析[M]. 北京:地 震出版社,1989:123-223.
- [13] Ballesteres L, Perez-Bendite D. Analytical Use of

the Kinetics of Complex Formation: Simultaneous Determination of Iron and Cobalt by Differential Kinetic Methods[J]. Analyst, 1983, 108: 443-445.

- [14] Ballesteres L, Perez-Bendite D. Analysis of Binary and Ternary Mixtures of Cobalt, Nickel and Copper by Differential Kinetic Methods Based on Ligand Substitution Reactions[J]. Anal Chim Acta, 1984, 182: 213-218.
- [15] Morene A. Simultaneous Spectrofluorimetric Determination of Iron and Manganese by a Differential Kinetic Catalytic Method [J]. Anal Chem Acta, 1984, 159:319-328.
- [16] Sato S. Differential Determination of Antimony(Ⅲ) and Antimony(V) by Solvent Extraction-Spectro-photometry With Mandelic Acid and Malachite Green, Based on the Difference in Reaction Rates [J]. Talanta, 1985, 32: 341-344.
- [17] Rios A, Valcarcel M. Simultaneous Kinetic Determination of Copper, Cobalt and Nickel by Means of C=N -Group Interchange Reactions [J]. Talanta, 1985, 32; 851-858.
- [18] Tahboub Y, Pardue H L. Kinetic Spectrophotometric Method for the Simultaneous Quantitation of Amino Acids in Two- and Three-Component Mixtures[J]. Anal Chim Acta, 1985, 173: 43-49.
- [19] 金斗满,朱文祥. 配位化学研究方法[M]. 北京:科 技出版社,1996:456-462.
- [20] Brandt W W, Smith G S. Polysubstituted 1, 10-Phenanthrolines and Bipyridines as Multiple Range Redox Indicators[J]. Anal Chem, 1949, 21: 1 313-1 319.
- [21] Richter-Addv G B, Legzdins D. Recent Organometallic Nitrosyl Chemistry[J]. Chem Rev, 1988, 88: 991-1 010.