文章编号:0253-9950(2002)01-0042-09

锝化学研究

.⁹⁹ Te^m-配合物的溶剂化自由能与其脑吸收值的关系

贾红梅¹, 刘伯里¹, 孟昭兴¹, 金海光¹, 王祥云²

1. 北京师范大学 化学系,北京 100875; 2. 北京大学 应用化学系,北京 100871

摘要:利用 G98W 程序,采用 Hartree Fock 方法和赝势基组 LANL2DZ,首先在真空状态下对 Tc-配合物进行构型 优化,然后根据极化连续体模型(PCM)计算了 Tc-配合物在水溶液和甲醇溶液中的溶剂化自由能。结果发现, 其中 CPCM 模型和 IEFPCM 模型计算的⁹⁹ Tc^m-配合物在溶液中的溶剂化自由能不仅可以更灵敏地反映其脂溶 性的大小,而且是影响脑吸收值的重要因素。

关键词: 锝;脑放射性药物;溶剂化自由能;CPCM模型; IEFPCM模型 中图分类号: O614.712 文献标识码: A

近 20 年来,⁹⁹ Tc^m标记的脑放射性药物得到 了迅猛发展。功能性脑显像剂不仅用于诊断脑血 流疾病,而且在诊断与脑内受体有关的疾病以及 研究脑功能、脑内信息传递等方面具有广阔的应 用前景。在理论研究方面,得配合物的结构-稳定 性规律,⁹⁹ Tc^m标记的脑显像剂的吸收、滞留机理 等结构-活性关系也取得了一定进展,为有目的地 设计⁹⁹ Tc^m标记的脑放射性药物提供了理论依据。 但是,上述构效关系的研究大多采用晶体结构数 据,没有考虑环境因素对⁹⁹ Tc^m-配合物性质的影 响。由于⁹⁹ Tc^m-配合物的生物分布性质与其在体 内环境中的性质密切相关,为了进一步探讨药物 在体内的作用机制,阐明⁹⁹ Tc^m放射性药物的结构 -功能关系,必须考虑环境因素的影响。

对于功能性脑显像剂,它必须穿过完整血脑 屏障才能进行脑功能的显像,因此⁹⁹Te^m标记的脑 显像剂必须具有一定的脑吸收值和较长的滞留时 间。实验表明,⁹⁹Te^m-配合物的结构对其脑吸收值 影响很大^[1~3]。如⁹⁹Te^mO-ECD 的脑吸收值很高, 而其等电子体配合物⁹⁹Te^mN-ECD 的脑吸收值几

乎为零。 99 Tc^mO-N₂S₂ 类四齿配合物中,含有两个 胺基的⁹⁹Tc^mO-BAT类与相应的含有一个胺基和一 个酰胺基的⁹⁹Tc^mO-MAMA 类配合物的脂水分配系 数相近,但前者的脑吸收值随配合物的脂溶性的 增大而升高,而后者的脑吸收值很低(<0.14%)。 此外,对于 99 Tc^m标记的中枢神经系统(CNS)受体 放射性药物,引入的⁹⁹Tc^m-螯合基团对其脑吸收值 影响也很大,如具有临床应用前景的⁹⁹Tc^m-TRO-DAT-1 的脑吸收值为 0.43 % (大鼠静脉注射后 2 min).若使⁹⁹Tc^m-螯合基团带有一个酰胺基.则脑 吸收值降为 0.11 % (大鼠静脉注射后 2 min)。研 究⁹⁹Tc^m-配合物的结构对其脑吸收值的影响,可以 为设计脑吸收值较高的⁹⁹Tc^m标记的功能性脑显 像剂提供理论依据。因此,本文拟在⁹⁹Tc^m-配合物 晶体结构的基础上,采用 ab initio MO 方法,通过 ⁹⁹Tc^mO-ECD 和⁹⁹Tc^mN-ECD, ⁹⁹Tc^mN-BAT 类, ⁹⁹Tc^mO-BAT 类和⁹⁹Tc^mO-MAMA 类配合物在真空状态下和 溶液中性质的比较研究,以找出影响⁹⁹Te^m-配合物 脑吸收值的更符合体内实际的主要因素。

收稿日期:2001-05-08; 修订日期:2001-07-24 基金项目:国家自然科学基金资助项目(29731020) 作者简介:贾红梅(1971-),女,河北邯郸人,讲师,博士,从事放射性药物化学研究。

计算方法和结果 1

1.1 真空状态下 Tc-配合物的几何构型优化

对于⁹⁹Tc^mO-N₂S₂ 类四齿配合物,与Tc 直接配 位的两个 N 原子中,一个为 sp³ 杂化, N 原子上连 接一个 H 原子或取代基,另一个为 sp² 杂化。根 据 sp^3 杂化的 N 原子上的取代基(或 H 原子) 相对 于 Tc == O 的空间取向,可能存在 syn(两者都位于 N_2S_2 近似平面的同侧)和 anti (两者位于 N_2S_2 平 面的异侧)两种异构体。TcO-BAT类配合物的 X-衍射晶体结构表明,N上H原子与Tc=O在空间 的取向相同,都位于 N_2S_2 近似平面的同侧(syn)。

而 TcO-MAMA 类配合物的晶体结构却发现 .N 原 子上连接的取代基可能与Tc == O位于 N₂S₂ 平面 同侧,也可能位于 N₂S₂ 平面异侧,因此存在 svn 和 anti 两种异构体。对于 TcO-N₂S₂ 类配合物的 syn(或 anti)异构体,由于与 Tc 直接配位的两个 N 原子带有 H(或取代基) 的几率相同, syn(或 anti)异构体也存在两个异构体(见图 1)。对于 TcN-N₂S₂ 类配合物,两个配位 N 原子上都含有 H 原 子,若两个 H 的取向与 Tc =O 相同,都位于 N₂S₂ 近似平面的同侧,则为(syn,syn)异构体;若两个 H的取向相反,则为(syn, anti)或(anti, syn)异构 体;若两个 H 的取向都与Tc ==O相反,则为(anti, anti)异构体。

TcO-BAT类配合物中两种 syn 异构体 图 1 Fig. 1 Structures of the syn isomers of the TcO-BAT complexes

本文采用 Gaussian 98 for Windows (简称 G98W)程序,利用 Hartree-Fock 方法和赝势基组 LANL2DZ.首先在真空状态下对 3 个 TcO-BAT 类 (图 3 中 4~6)配合物和 3 个 TcO-MAMA 类(见图 2 中 1~3) 配合物(每个配合物包括两种 syn 异构 体,见图 1),TcN-BAT 配合物的(syn, anti) 异构体 (见图 4 中 8) 和(anti, anti) 异构体(8), TcO-L, L- ECD(见图3中7)以及TeN-L, L-ECD(见图4中9)配合物进行几何构型优化,收敛标准取缺省值。 TCO-BAT.TCO-MAMA 和 TCN-BAT 类配合物的晶体 结构与真空状态下优化的构型结果列入表 1。99 Tc^{m} -配合物(见图 2~4 中 1~9)的脑吸收值和真 空状态下的偶极矩列入表 2。

Fig. 2 Structures of the TcO-MAMA complexes

Table 1 Comparison of some selected bond lengths and bond angles between

	the	X-ray	crystallography	and the	optimized	geometry	in	vacuo for	Tc com	plexes
--	-----	-------	-----------------	---------	-----------	----------	----	-----------	--------	--------

	TcO-	BAT	TcO-M	/IAMA	TcN-BAT	
1c-配合物(1c complex)	$l_{\rm cal}^{1)}$ / pm	$l_{\exp}^{2)}/\mathrm{pm}$	$l_{\rm cal}^{3)}$ / pm	$l_{\exp}^{4)}$ / pm	$l_{\rm cal}^{\rm 5)}/{ m pm}$	$l_{\rm cal}^{6)}$ / pm
Tc=O	166.0	167.1	164.8	168.3	_	_
Tc N	—	_	_	_	160.1	160.2
Tc —N	192.3	192.0	197.3	197.8	216.8	217.7
	219.0	212.7	218.2	218.2	223.4	217.7
Tc — S	242.0	229.7	239.5	226.2	248.7	247.1
	239.9	228.3	240.4	227.0	247.8	247.1
	TcO-BAT		TcO-MAMA		TcN-BAT	
Tc-配合物(Tc complex)	$_{cal}^{1)}$ °	$l_{\exp}^{2)}$ °	3) o	4) o exp/	5) o	$_{\rm cal}^{6)}$ °
O=Tc−S	119.4	116.5	116.2	114.6	_	_
	108.0	110. 1	108.6	106.9		
O = Tc - N	117.9	117.2	115.5	118.6	_	_
	99.1	99.2	103.2	101.9		
N Tc —S	—	—	_	—	118.5	109.9
					105.5	109.9
N Tc —N	—	_	_	_	108.9	106.1
					99.9	106.1
S —Tc —S	87.1	88.3	85.4	88.4	94.6	97.8
N —Tc —N	80.1	79.6	80.1	79.6	80.7	76.3

注(Notes):1) 配合物 4 的 syn a 构型(syn a configuration for complex 4);

2) 引自参考文献[4] (quoted from reference[4]);

3) 配合物 1 的 syn a 构型(syn a configuration for complex 1);

4) N-benzyl-MAMA-Re(V)-oxo 配合物的 syn 构型(syn configuration for N-benzyl-MAMA-Re(V)-oxo complex);引自参考文献[5] (quoted from reference[5]);

5) 配合物 TcN-BAT(8) 的(syn, anti) 构型((syn, anti) configuration for TcN-BAT(8));

6) 配合物 TcN-BAT(8)的(anti, anti)构型((anti, anti) configuration for TcN-BAT(8))

第4期

1.2 Tc-配合物在水溶液中的偶极矩和溶剂化自 由能

根据自洽反应场(SCRF)理论、Onsager 能模 型、PCM 模型、IPCM 模型、和 SCIPCM 模型都能计 算溶剂效应对化合物性质的影响。其中,PCM模 型(极化连续体模型, Polarizable Continuum Model) 可以计算化合物的溶剂化自由能,因此本文采用 了 PCM 模型(包括介电极化连续体模型 DPCM、导 体极化连续体模型 CPCM 和积分方程形式极化连 续体模型 IEFPCM)。对于水和甲醇等极性溶剂, 发现采用 DPCM 方法时,计算的 Tc-配合物的核表 观极化电荷和电子极化电荷的误差较大,而采用 CPCM 和 IEFPCM 模型计算的误差较小,且后两种 方法计算结果相近,因此,以下采用 CPCM 和 IEF-PCM 模型计算 Tc-配合物的溶剂化自由能和其它 性质,其计算原理见文献[6~11]。简言之,Tc-配 合物的溶剂化自由能 G_{sol}等于其静电自由能和 非静电自由能之和:

> $G_{\rm sol} = G_{\rm ele} + G_{\rm non \ ele}$ = $G_{\rm ele} + G_{\rm cav} + G_{\rm dis} + G_{\rm rep \ o}$ (1)

式中, G_{ele} 是静电(electrostatic)自由能; G_{cav} 是空腔(cavitation)自由能; G_{dis} 是色散(dispersion)自由能; G_{rep} 是排斥(repulsion)自由能。

利用真空状态下优化的 Tc-配合物的几何构 型,仍采用 Hartree-Fock 方法和 赝势基组 LANL2DZ,采用 UAHF(united atom for Hartree-Fock) 模型建立分子空腔,每个原子球(如 CH₂,CH₃,Tc, O等)表面分成 60 或 100 个小区域(tesserae,缺省 值为 60),分别利用 SCRF 理论的 CPCM 模型和 IEFPCM 模型,计算图 2~4 中 Tc-配合物在水溶液 中的性质(G98W 程序中,所有 Tc-配合物均忽略 了 Tc 原子的色散自由能和排斥自由能)。以上方 法计算的 Tc-配合物在水溶液中的偶极矩列入表 2。Tc-配合物在水溶液中的溶剂化自由能(又称 水化能)列入表 3 和表 4。表中 TSNUM 代表小区 域(tesserae)的数目。

1.3 Tc-配合物在甲醇溶液中的溶剂化自由能

根据真空中优化的 Tc-配合物的几何构型,采 用 IEFPCM 模型计算的 Tc-配合物(图 2,3 中 1 ~ 6)在甲醇溶液中的溶剂化自由能列入表 5。

			陈四收店 , or	偶极矩(Dipole moment)/10 ⁻²⁹ C m			
Tc-酉	已合物(Tc complexes)				水溶液(Water)		
			(Brain uptake)	具空(Vacuo)	CPCM ¹⁾	IEFPCM ¹⁾	
	99 Tc ^m O-MAMA	1	0.04	2.248	3.270	3.279	
		2	0.08	2.099	3.167	3.162	
_		3	0.14	2.150	3.124	3.204	
syn a	99Tc ^m O-BAT	4	0.46	3.354	4.720	4.714	
		5	0.73	3.262	4.669	4.663	
		6	1.96	3.178	4.651	4.641	
	99Tc ^m O-MAMA	1	0.04	2.336	3.379	3.375	
		2	0.08	2.214	3.281	3.274	
. –		3	0.14	2.262	3.331	3.321	
syn D	⁹⁹ Tc ^m O-BAT	4	0.46	3.318	4.680	4.671	
		5	0.73	3.233	4.630	4.619	
		6	1.96	3.135	4.602	4.592	
	⁹⁹ Tc ^m O-ECD	7	1.2	3. 177	4.592	4. 578	
	⁹⁹ Tc ^m N-BAT	8	_	4. 518	6. 183	6.174	
syn a		8	_	4. 514	6. 183	6.174	
	⁹⁹ Tc ^m N-ECD	9	0.1	4. 337	6.081	6.063	

表 2 ⁹⁹Tc^m-配合物的脑吸收值和偶极矩 Table 2 Brain uptakes and dipole moments *in vacuo* of ⁹⁹Tc^m complexes

注(Note):1) TSNUM = 60,表示每个球分成 60 个小区域(TSNUM represents the number of tesserae)

Tc-配合物(Tc complex)		$G_{ m ele}$ / (k	J mol ⁻¹)	$G_{\rm non \ ele}/\ ({\rm kJ \ mol}^{-1})$		$G_{\rm sol}/({\rm kJ} {\rm mol}^{-1})$		
			60 ¹⁾	100 ²⁾	60	100	60	100
	TcO-MAMA	1	- 129.9	- 131.4	18.6	18.4	- 111.3	- 113.0
		2	- 129.0	- 119.5	24.6	24.5	- 104.3	- 95.0
		3	- 119.8	- 122.1	30.0	29.6	- 89.8	- 92.5
syn a	TcO-BAT	4	- 109.9	- 109.5	14.4	14.2	- 95.4	- 95.4
		5	- 107.0	- 107.9	20.2	20.1	- 86.8	- 87.8
		6	- 101.0	- 102.1	25.6	25.3	- 75.5	- 76.8
	TcO-MAMA	1	- 134.1	- 135.9	18.3	18.8	- 115.8	- 117.1
		2	- 131.2	- 131.4	25.4	25.4	- 105.8	- 106.1
		3	- 123.3	- 124.2	30.9	30.7	- 92.5	- 93.5
syn b	TcO-BAT	4	- 111.5	- 110.6	14.4	14.3	- 97.2	- 96.3
		5	- 106.5	- 107.8	21.1	21.2	- 85.4	- 86.6
		6	- 102.5	- 102.6	26.5	26.4	- 76.0	- 76.1
syn a	TcO-ECD	7	- 136.7	- 136.5	46.6	46.9	- 90.1	- 89.6
	TcN-BAT	8	- 162.7	- 162.5	15.8	15.8	- 146.9	- 146.7
		8	- 164.5	- 164.3	15.4	15.5	- 149.1	- 148.8
	TcN-ECD	9	- 200.9	- 203.8	45.6	46.0	- 155.3	- 157.8

表 3 CPCM 方法计算的 Tc-配合物在水溶液中的溶剂化自由能 Table 3 Solvation free energies for Tc complexes in water with CPCM method

注(Notes):1) TSNUM = 60;

2) TSNUM = 100

表 4 IEFPCM 方法计算的 Tc-配合物在水溶液中的溶剂化自由能 Table 4 Solvation free energies for Tc complexes in water with IEFPCM method

Tc-配合物(Tc complex)		G_{ele} (kJ mol ⁻¹)		$G_{\rm non \ ele}/ \ ({\rm kJ \ mol}^{-1})$		$G_{\rm sol}$ (kJ mol ⁻¹)		
			60 ¹⁾	100 ²⁾	60	100	60	100
	TcO-MAMA	1	- 129.5	- 130.7	18.6	18.4	- 111.0	- 112.3
		2	- 128.3	- 127.6	24.6	24.5	- 103.6	- 103.1
		3	- 120.3	- 121.2	30.0	29.6	- 90.3	- 91.6
syn a	TcO-BAT	4	- 109.3	- 109.7	14.4	14.2	- 94.9	- 95.4
		5	- 106.4	- 107.3	20.2	20.1	- 86.2	- 87.2
		6	- 100.2	- 101.2	25.6	25.3	- 74.7	- 75.9
	TcO-MAMA	1	- 133.5	- 135.4	18.3	18.8	- 115.2	- 116.5
		2	- 130.5	- 130.1	25.4	25.4	- 105.0	- 104.8
		3	- 122.3	- 123.3	30.9	30.7	- 91.5	- 92.5
syn b	TcO-BAT	4	- 110.8	- 110.2	14.4	14.3	- 96.4	- 95.9
		5	- 105.8	- 107.0	21.1	21.2	- 84.8	- 85.8
		6	- 101.8	- 101.6	26.5	26.4	- 75.3	- 75.2
syn a	TcO- ECD	7	- 135.5	- 132.8	46.6	46.9	- 88.9	- 85.9
	TcN-BAT	8	- 162.0	- 161.6	15.8	15.8	- 146.1	- 145.9
		8	- 163.6	- 163.2	15.4	15.5	- 148.2	- 147.7
	TcN- ECD	9	- 199.4	- 202.0	45.6	46.0	- 153.8	- 156.1

注(Notes):1)TSNUM=60;

2) TSNUM = 100

	Table 5	Solvatio	on free energie	es for Tc comple	xes $(1 \sim 6)$ in	methanol with	IEFPCM method	1
Te 配合物(Te complex)			G_{ele} (kJ mol ⁻¹)		$G_{\rm non~ele}$ (kJ mol ⁻¹)	$G_{\rm sol}/({\rm kJ} {\rm mol}^{-1})$	
			60 ¹⁾	100 ²⁾	60	100	60	100
	TcO-MAMA	1	- 125.2	- 126.0	0.5	0.4	- 124.7	- 125.6
		2	- 123.3	- 123.6	3.2	3.0	- 120.1	- 120.6
		3	- 115.5	- 116.3	5.3	5.0	- 110.2	- 111.3
syn a	TcO-BAT	4	- 105.7	- 104.8	- 2.7	- 2.8	- 108.4	- 107.7
		5	- 102.4	- 103.1	- 0.3	- 0.3	- 102.7	- 103.4
		6	- 95.8	- 96.9	2.0	1.7	- 93.8	- 95.1
	TcO-MAMA	1	- 129.1	- 130.5	0.3	0.6	- 128.8	- 129.9
		2	- 125.4	- 125.3	3.8	3.8	- 121.6	- 121.5
1		3	- 117.0	- 117.5	6.1	6.0	- 110.9	- 111.5
syn b	TcO-BAT	4	- 106.9	- 106.6	- 2.8	- 2.8	- 109.7	- 109.5
		5	- 101.8	- 103.1	0.4	0.6	- 101.3	- 102.5
		6	- 97.5	- 97.6	2.6	2.6	- 94.9	- 95.0

表 5 IEFPCM 方法计算的 Tc-配合物(1~6)在甲醇溶液中的溶剂化自由能

 Ξ (Notes):1) TSNUM = 60;

2) TSNUM = 100

1.4 ⁹⁹ Te^m-配合物的溶剂化自由能与其脂溶性的 关系

尽管⁹⁹Tc^mO-BAT 类配合物和相应的⁹⁹Tc^mO-MAMA 类配合物的脂水分配系数相近,但是前者 在反相 HPLC 的滞留时间远大于后者,以上配合 物在反相 HPLC 上的滞留时间(取自文献[2])与 该类配合物在甲醇溶液中的溶剂化自由能(IEF-PCM 模型,TSNUM = 100)的关系示于图 5,与该类 配合物在水溶液中的溶剂化自由能(IEFPCM 模 型,TSNUM = 100)的关系示于图 6。

图 5 ⁹⁹ Tc^mO 配合物 (1~6) 在反相 HPLC 上的滞留时间与其在甲醇溶液中的溶剂 化自由能的关系

Fig. 5 Correlation between retention times in reversed phase HPLC and solvation free energies in methanol of ⁹⁹Tc^mO-complexes

1.5 ⁹⁹ Te^m-配合物的溶剂化自由能与脑吸收值的 关系

一般而言,⁹⁹ Tc^m-配合物的脂溶性、体积和电 性是影响其脑吸收值的重要因素。由图 5 和图 6 可知,⁹⁹ Tc^m-配合物的溶剂化自由能在一定条件下 与其脂溶性成正相关,说明⁹⁹ Tc^m-配合物的溶剂化 自由能也是影响其脑吸收值的因素。配合物(1~ 6) 在水溶液中的溶剂化自由能(IEFPCM 模型, TSNUM = 100) 与其脑吸收值的关系见图 7。

图 6 ⁹⁹ Te^mO 配合物 (1 ~ 6) 在反相 HPLC 上的滞留时间与其在水溶液中的溶剂化 自由能的关系

Fig. 6 Correlation between retention times in reversed phase HPLC and solvation free energies in water of ⁹⁹Tc^mO complexes

图 7 ⁹⁹Tc^mO·配合物(1~6)脑吸收值的对数与 其在水溶液中的溶剂化自由能(IEFPCM)的关系 Fig. 7 Correlation between the logarithm of brain uptakes and the solvation free energies in water (IEFPCM)

2 讨 论

2.1 ⁹⁹ Tc^m-配合物的偶极短与其脑吸收值的关系 在探索脑灌注显像剂的过程中,人们对 ⁹⁹ Tc^mO-N₂S₂ 类配合物进行了大量研究,积累了丰 富的实验数据。TcO³⁺和 TcN²⁺是等电子体,随着 TcN²⁺制备方法的不断完善,人们试图通过大量 合成⁹⁹ Tc^mN-N₂S₂ 类配合物,以获得性质更好的脑 灌注显像剂。为了验证这种思路的可行性,王祥 云等^[12]利用量子化学方法研究了⁹⁹ Tc^mO-L, L-ECD 和⁹⁹ Tc^mN-L, L-ECD 在真空状态的结构性质 与其生物分布性质的关系。结果发现,⁹⁹ Tc^mN-L, L-ECD 的偶极矩比⁹⁹ Tc^mO-L, L-ECD 的偶极矩大 76.4%。另外,⁹⁹ Tc^mN-L, L-ECD 有两个 N—H,而 ⁹⁰ Tc^mO-L, L-ECD 只有一个 N—H,前者与水分子 的氢键作用比后者强。因此,预测⁹⁹ Tc^mN-L, L-ECD 的水化程度比⁹⁹ Tc^mO-L, L-ECD 高。

对于⁹⁹Tc^mO-N₂S₂ 类配合物,OYA 等^[2]报道含 有两个胺基的⁹⁹Tc^mO-BAT 类配合物的脑吸收值比 相应的含有一个胺基和一个酰胺基的⁹⁹Tc^mO-MA-MA 类配合物的脑吸收值高。为了解释这两类配 合物脑吸收值的差异,本文采用 *ab initio* MO 方 法,利用 O98W 程序,首先计算了这两类配合物在 真空状态下的偶极矩。从表 2 可以看出,⁹⁹Tc^mO-BAT 类配合物的偶极矩都比相应的⁹⁹Tc^mO-MAMA 类配合物的偶极矩高。说明真空状态下,⁹⁹Tc^mO-配合物的偶极矩的大小不能解释这两类配合物脑 吸收值的差异。

由于⁹⁹Tc^m-配合物的物理化学性质和生物分

布都是在一定条件下测得的,因此,又计算了 ⁹⁹Tc^m-配合物在溶液中的各种性质。从表2可以 看出,水溶液中⁹⁹Tc^m-配合物的偶极矩高于其在真 空状态下的⁹⁹Tc^m-配合物的偶极矩,说明⁹⁹Tc^m-配 合物与水分子之间的相互作用提高了水溶液中 ⁹⁹Tc^m-配合物的极性。对于⁹⁹Tc^mO-N₂S₂类配合物, ⁹⁹Tc^mO-MAMA 类配合物的偶极矩小于其相应的⁹⁹ Tc^mO-MAMA 类配合物的偶极矩小于其相应的⁹⁹ Tc^mO-BAT 类配合物,但前者的脑吸收值很低。而 对于⁹⁹Tc^mO-L,L-ECD 和⁹⁹Tc^mN-L,L-ECD 配合物, 前者的偶极矩小于后者的偶极矩,后者的脑吸收 值很低。因此,⁹⁹Tc^m-配合物偶极矩的大小无法解 释以上配合物脑吸收值的差别。

2.2 ⁹⁹ Tc^m-配合物的溶剂化自由能与脂溶性的关系

对于脂水分配系数差别较大的⁹⁹ Tc^mO-*L*, *L*-ECD (lg P = 1.20) 和⁹⁹ Tc^mN-*L*, *L*-ECD (lg P =- 0.35) 配合物,发现其在水溶液中的溶剂化自由 能的差别也较大(见表 3 和表 4)。对于相同配 体,TcN²⁺核配合物比相应的 TcO³⁺核配合物在水 溶液中的溶剂化自由能之差大于41.84 kJ/mol,前 者的溶剂化自由能更小,这与王祥云等^[12]预测的 ⁹⁹ Tc^mN-*L*, *L*-ECD 比⁹⁹ Tc^mO-*L*, *L*-ECD 的水化程度 高是一致的。对于脂水分配系数相近的⁹⁹ Tc^mO-BAT 和⁹⁹ Tc^mO-MAMA 类配合物,发现⁹⁹ Tc^mO-BAT 类配合物在水溶液中的静电自由能和溶剂化自由 能都比相应的⁹⁹ Tc^mO-MAMA 类配合物小 8 kJ/mol 以上,说明后者比前者的亲水性高。

一般而言,在相同条件下,⁹⁹Tc^m-配合物在反相 HPLC上的滞留时间可以反映其脂溶性的大小,⁹⁹Tc^mO-配合物(1~6)在反相 HPLC上的滞留时间与其在甲醇和水溶液中的溶剂化自由能存在线性关系,表明⁹⁹Tc^mO-配合物在水溶液中的溶剂化自由能可以反映其脂溶性的大小,水化能越小, 亲水程度越高,脂溶性越小,反之亦然。

2.3 ⁹⁹ Te^m-配合物在水溶液中的溶剂化自由能对 其脑吸收值的影响

对于⁹⁹Tc^mO-N₂S₂ 类配合物,大量实验事实表 明该类配合物的脑吸收值与其脂溶性呈抛物线关 系(一定范围内呈线性关系)。本文的计算结果说 明,对于同一类配合物(⁹⁹Tc^mO-BAT 类或⁹⁹Tc^mO-MAMA 类),其脑吸收值与配合物在水溶液中的溶 剂化自由能在一定范围内也呈线性关系(见图 7),表明 Tc-配合物在水溶液中的溶剂化自由能也 是影响其脑吸收值的重要因素。从前面的讨论可 知,配合物在水溶液中的溶剂化自由能可以反映 其脂溶性的大小,从⁹⁹Te^mO-L,L-ECD和⁹⁹Te^mN-L, L-ECD,⁹⁹Te^mO-BAT和⁹⁹Te^mN-BAT在水溶液中的 溶剂化自由能的比较可以看出,⁹⁹Te^mN-BAT类四 齿配合物的亲水程度很高,脂溶性很低,这势必会 造成该类配合物的脑吸收值很低。因此尝试通过 大量合成⁹⁹Te^mN-BAT类四齿配合物来寻找性质更 优的脑灌注显像剂的思路是不太可行的。

3 结 论

利用 G98W 程序,采用 Hartree-Fock 方法和赝 势基组 LANL2DZ,计算了 3 个 TcO-BAT,3 个 TcO-MAMA,以及 TcN-BAT,TcO-L,L-ECD 和 TcN-L,L-ECD 配合物在真空状态下和溶液环境中的性质。 结果表明:(1)⁹⁹Tc^m-配合物的偶极矩不能很好地 解释其脑吸收值的差异;(2) CPCM 模型和 IEFPCM 模型计算的⁹⁹Tc^m-配合物在溶液中的溶剂化自由 能不仅可以更灵敏地反映其脂溶性的大小,而且 是影响脑吸收值的重要因素;(3)⁹⁹Tc^mN-BAT 类四 齿配合物的亲水性较强,不宜在该类配合物中发 展功能性脑显像剂。

参考文献:

- KUNG HF, MEEGALLA S, PLOSSL K, et al. Two Tc 99m N₂S₂ Complexes as Dopamine Transporter Imaging Agents [A]. In:NICOLINI M, MAZZI U,ed. Technetium, Rhenium and Other Metals in Chemistry and Nuclear Medicine [C]. SGE Editoriali, Italy. 1999. 373~379.
- [2] OYA S, HLOSSL K, KUNG M P, et al. Small and Neur tral Tc^vO BAT, Bisaminoethanethiol (N₂S₂) Complexes for Developing New Brain Imaging Agents [J]. Nucl Med Biol, 1998, 25: 135 ~ 140.
- [3] MANG ERA KO, VANBILLOEN H P, BHLANDE E, et al. Influence of a ^{99m} TcN Core on the Biological and Physicochemical Behavior of ^{99m} Tc Complexes of L, L-EC

and L, L-ECD[J]. Nucl Med Biol, 1996,23:987~993.

- KUNG H F, CUO Y Z, YU C C, et al. New Brain Per fusion Imaging Agents Based on ^{99m}Tc-Bis (aminoethanethiol) Complexes: Stereoisomers and Biodistribution [J]. J Med Chem, 1989, 32:433~437.
- [5] O NEL J P, WILSON S R, KATZENHLENBOGEN J A. Preparation and Structural Characterization of Monoamine monoamide Bis(thiol) Oxo Complexes of Technetium (V) and Rhenium (V) [J]. Inorg Chem, 1994, 33:319 ~ 323.
- [6] BARONE V, COSSI M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Mode[J]. J Phys Chem, 1993, A102:1 995~2 001.
- [7] COSSI M, BARONE V, CAMMI R, et al. *Ab Initio* Study of Solvated Molecules: a New Implementation of the Polarizable Continuum Model [J]. Chem Phys Lett, 1996, 255: 327 ~ 335.
- [8] CANCES E, MENNUCCI B, TOMASI J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics [J]. J Chem Phys, 1997, 107:3 032 ~ 3 041.
- [9] BARONE V, COSSI M, TOMASI J. Geometry Optimizar tion of Molecular Structures in Solution by the Polarizable Continuum Model [J]. J Comp Chem, 1998, 19:404~ 417.
- [10] COSSI M, BARONE V, MENNUCCI B, et al. Ab Initio Study of Ionic Solutions by a Polarizable Continuum Dielectric Model [J]. Chem Phys Lett, 1998, 286:253~ 260.
- [11] BARONE V, COSSI M, TOMASI J, et al. A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model [J]. J Chem Phys, 1997, 107: 3 210~3 221.
- [12] 王祥云,魏雄辉,刘新起,等.^{99m}TcO³⁺和^{99m}TcN²⁺的
 二胺基二硫醇配合物在脑中滞留机制的量子化学
 研究[J]. 化学学报,2000,58(12):1552~1528.

2

STUDIES OF TECHNETIUM CHEMISTRY . THE RELATIONSHIP BETWEEN SOLVATION FREE ENERGIES AND BRAIN UPTAKES OF ⁹⁹Tc^m COMPLEXES

JIA Hong-mei¹, LIU Bo-li¹, MENG Zhao-xing¹, JIN Hai-guang¹, WANG Xiang-yun²

1. Department of Chemistry, Beijing Normal University, Beijing 100875, China;

2. Department of Technical Physics, Peking University, Beijing 100871, China

Abstract Based on the X-ray crystallographic data of Tc-complexes for brain imaging agents, geometry optimizations *in vacuo* of TcO-BAT, TcO-MAMA, TcO-*L*, *L*-ECD, TcN-BAT and TcN-*L*, *L*-ECD complexes are performed with Hartree-Fock method and LANL 2 DZ basis set of G98W program. Then solvation free energy for each Tc-complex mentioned above in water is calculated by polarizable continuum method (PCM) including models of CPCM and IEFPCM. The results show that solvation free energy of Tc-complex is not only an indicator of lipophilicity but also one of the important factors that influence the brain uptake.

Key words:⁹⁹Tc^m; brain radiopharmaceuticals; brain uptake; solvation free energy

第六届全国核化学与放射化学学术会议通知

第六届全国核化学与放射化学学术会议及理事会会议定于 2002 年 9 月中旬在兰州召开。 现就学术论文摘要的征集内容通知如下:

(1)核燃料化学;(2)镧系及锕系元素化学;(3)核化学;(4)放射分析化学及放射物理分析;(5)分离 技术及示踪原子应用;(6)核药物化学与标记化合物;(7)环境放射化学;(8)放射性三废处理与处置。

会议以大会报告为主, 拟邀请国内外著名学者作涉及学科前沿和交叉学科的大会报告。请预定参加会议者与组委会联系并将论文摘要通过 E-mail 或邮局(一页 A4 纸, 不附文献)于六月十五日前邮至 会议组委会。

组委会联系人:朱志瑄 通讯地址:北京 275-26 信箱,邮编:102413 电话: (010)69357876,69357374;传真:(010)69358564 E-mail: Zhuzx @iris.ciae.ac.cn

中国核学会核化学与放射化学学会 2001 年 12 月 5 日