加压淋洗色谱法从¹⁴⁷Nd 中分离¹⁴⁷Pm 的研究

张 炜 郭治军 冯利邦 刘志安 陈励权

(兰州大学化学化工学院, 兰州 730000)

研究了用加压离子交换法从堆照产物 14 Nd中分离 147 Pm。首先用加压排代色谱法确定了堆照 产物 147 N d 中的主要杂质成分,继而用加压淋洗色谱法以 α 羟基异丁酸(α H BA)-抗坏血酸(V c) 为 淋洗剂,从¹⁴⁷N d 中分离¹⁴⁷Pm,避免了主要杂质^{152,154}Eu 对产品¹⁴⁷Pm 的污染。研究结果表明、当分离 条件为: c(cHBA)= 0 30~ 0.40 mol/L、c(Vc)= 0 05~ 0 10 mol/L、pH= 4.00~ 4.20、线性流速 为 8~ 12 cm/m in 时, 分离因子 β (N d/Pm) = 3 00, β (Eu/N d) = 2 61。

关键词 加压淋洗色谱 147Pm 147N d 152, 154Eu 加压排代色谱 中图分类号 O · 615.3

在 Pm 的二十余种同位素中, ^{147}Pm 作为 β 源, 可以作核电池在航天、医学、深海、极地以及 无人气象站、灯塔、微波站等用作能源。由于它在能量密度、容量、寿命等方面的优势,受到人们 广泛的重视[1]。147Pm 的重要来源是从核裂变产物中提取[2],但核裂变产物杂质多,极强的放射 性对防护设备要求很高,不适用于小规模生产。

146
N d $\frac{n, y}{\sigma = 1.46 \times 10^{-28} m^2}$ 147 N d $\frac{\beta}{11.02 \text{ d}}$ 147 Pm $\frac{\beta}{2.623 \text{ y}}$ 147 Sm

以146N d 为靶子, 经反应堆(n, 为反应制得的 Pm 同位素, 有147Pm (T1/2= 2 623 y), 149Pm (T_{1/2}= 53 08 h)和¹⁵¹Pm(T_{1/2}= 28 h),其它杂质较少;而且在辐照¹⁴⁶Nd制备¹⁴⁷Pm过程中, 147 N d 的半衰期短 $(T_{1/2}=11.02\ d)$,从 147 N d 到 147 Pm 很容易达到放射性平衡,所需辐照时间短, 是制备¹⁴⁷Pm 的有效途径之一。

由于靶核¹⁴⁶N d 辐照后尚有与¹⁴⁷Pm 共存的其它放射性同位素, 为此, 先将出堆后的产物冷 却半年,使大部分短寿命的杂质衰变,再确定杂质的分布。根据文献[3]关于¹⁴⁷N d 的分离和纯 化工作, 以冷却半年的堆照产物¹⁴⁷N d 示踪N d, 利用加压排代法分离 Pm、N d, Sm 混合物, 以考 察其它长寿命放射性杂质浓集情况。再以 &H BA -V c(&羟基异丁酸-抗坏血酸) 为淋洗剂,用 加压淋洗色谱法分离¹⁴⁷Pm 和¹⁴⁷N d。

1 实验部分

1.1 实验装置

排代柱, $L=90~{\rm cm}$, $S=0.48~{\rm cm}^2$,硬质玻璃柱;强酸性离子交换树脂,粒径为 $40\sim60~\mu{\rm m}$,对H⁺的交换容量为 $2.30~{\rm mmol/mL}$ (湿树脂);淋洗柱, $L=30~{\rm cm}$, $S=0.125~{\rm cm}^2$,不锈钢柱;强酸性低交换容量树脂(本实验室合成),粒径为 $30\sim40~\mu{\rm m}$,对H⁺的交换容量为 $0.093~{\rm mmol/g}$ (干树脂)。

1.2 仪器及试剂

- **1.2.1** 仪器 N 664A 型闪烁计数器, N 530 型自动定标器, 英国 EKCO 公司; FJ-21016 型双 道液体闪烁计数器, 西安核仪器厂; 7450 型 4096 道脉冲幅度分析器, 美国; LH 8463 型同轴高 纯锗 γ 探测仪, 北京核仪器厂; 751G 型紫外可见分光光度计, PH S-2 型酸度计, 上海分析仪器厂。

1.3 分析方法

 147 Pm 的测定^[4]: 预先向测量瓶中加入 $10\,\text{mL}$ 闪烁溶液; 取 $5\,$ 滴试样, 用水稀释至 $2.0\,\text{mL}$ 后, 准确取 $0.10\,\text{mL}$ 于测量瓶中, 加 $4\,$ 滴乳化剂 $T\,\text{riton}$ X- $100\,$ 摇匀避光后用液体闪烁计数器测量。 147 N $d\,$ 用N $a\,$ I 晶体闪烁计数器测量; 152,154 Eu 用两种方法均可测量。

2 结果与讨论

2.1 加压排代色谱分离¹⁴⁷Nd 中的杂质

为了确定堆照产物中长寿命放射性杂质的主要成分, 用出堆后冷却半年的 147 N d 示踪 N d, 并取相等摩尔的相邻元素 Pr 和 Sm, 按吸附段与排代段 1 1 投料, Pr, N d, Sm 各为 5 mmo l, 树脂床为 H⁺型。在 c (D T PA) = 50 mmo l/L, pH = 8.0, 线性流速 7.5 cm/m in, 柱温 70 和柱压为 7.8 M Pa 的条件下进行排代分离。按份取样, 测量 147 N d 放射性计数, 用分光光度法测量 Pr, N d, Sm 的吸光度, 用滴定法测定 D T PA 的含量, 结果示于图 1。从图 1 可见, 147 Pm 浓集在 Sm 和 N d 的交叉区, 主要杂质经 4096 道脉冲幅度分析器测定为 152,154 Eu, Sm 和 Pr 区段均无放射性; 杂质浓集在 Sm 区段前沿, 有些杂质进入 D T PA 区段, 因较弱未进一步测定。

2.2 加压淋洗色谱分离¹⁴⁷Pm

将淋洗柱转为 NH^{\ddagger} 型,用去离子水洗至中性。在已知浓度的 Nd^{3+} 溶液中,加入适量的 ^{147}Nd 指示剂及少量固体Vc,用泵排入淋洗柱,并用水洗涤。然后用 α -H BA-V c 溶液加压淋洗,柱压为 14.7M Pa。加入Vc 是为了将放射性杂质 $^{152,154}Eu^{3+}$ 还原为二价,使其排代序位于Nd 之后,避免 $^{152,154}Eu$ 对 ^{147}Pm 的污染 15,61 。 待流出 13.0 mL (死体积)后,每份取样 5 滴,测定 ^{147}Nd

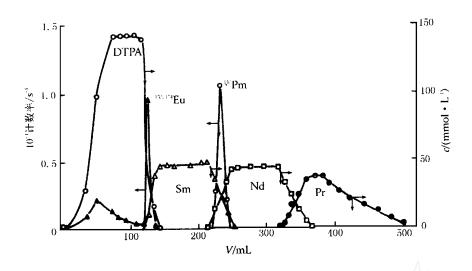


图 1 147 Pm、 147 N d、 152,154 Eu 的排代曲线 Fig 1 D isp lacement chromatogram of 147 Pm、 147 N d、 152,154 Eu H $^+$ 型, c (DTPA) = 0 050 mol/L, pH = 8 0, t= 70 , P_{col} = 7.8 M Pa, v= 7.5 cm/m in, Q_{abs} Q_{dis} = 1 1

152,154Eu 和147Pm 的放射性活度,并作出淋洗曲线。两相邻元素的分离因子可由下式[7]计算:

 $β = (V_B - V_0)/(V_A - V_0)$ 式中, V_A 和 V_B 分别为元素 A 和 B 的峰顶相对应的体积; V_0 为树脂床的空隙体积,在本实验条件下为 15 滴,死体积为 260 滴。 2. 2. 1 αH BA 浓度对分离的影响 在αH BA -V c溶液的 pH、线性流速、以及 N d 的投料量不变的条件下,αH BA 浓度对分离因子的影响列入表 1, 淋洗曲线示于图 2。表 1 结果表明,αH BA 的浓度对分离效果的影响很大。考虑到既能得到纯的¹⁴⁷Pm,又能 排除 放射性杂质对分离的影响,αH BA 的浓度以 0. 30~ 0. 40 m o l/L 为佳。图 2 表明, 147 Pm、147 N d 和 152, 154 Eu 得到了良好的分离。

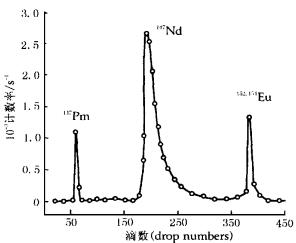


图 2 147Pm、147N d、152,154Eu 的淋洗曲线

Fig 2 Elution chromatogram of 147Pm、147N d、152,154Eu

c(œH BA) = 0 40 mol/L, pH = 4 0, v = 8 0 cm/m in,

m (N d) = 0 5 mg, c(V c) = 0 05 mol/L, P col = 7.8 M Pa

表 1 α-H IBA 溶液的浓度对分离效果的影响 Table 1 Effect of α-H IBA concentration on separation coefficient

c(\alpha -H B A)/(mol·L ⁻¹)	β(N d/Pm)	β(Eu/N d)
0.26	6.29	1.75
0.30	4. 29	2.40
0.40	4. 14	2.52
0.50	5.00	1.80

注(notes): pH = 4 0, v = 8 0 cm /m in, m (N d) = 0.5 mg, c (V c) = 0.05 mol/L

表 2 α-HIBA 溶液的 pH 对分离效果的影响 Table 2 Effect of pH of α-HIBA solution on separation coefficient

pH (α -H В А)	β (N d/Pm)	$\beta(Eu/Nd)$
3.80	3.38	2.74
4.00	3.00	2.88
4. 20	3.57	2.96
4.40	5.50	2.15

注(notes): $c(\alpha H BA) = 0.40 \text{ mol/L}$, v = 8.0 cm/m in, m (N d) = 0.5 mg, c(V c) = 0.05 mol/L

2. 2. 3 α-H BA 溶液的线性流速对分离的影响 在 α-H BA 的浓度、pH、以及Nd 的投料量不变的条件下,α-H BA 溶液的线性流速对分离效果的影响列入表 3, 淋洗曲线示于图 3。表 3 和图 3 的结果表明,当线性流速较大时, ^{147}Nd 有拖尾现象,与 $^{152,154}Eu$ 的分离效果不好,并且 ^{147}Pm 峰明显降低。 虽然线性流速低时分离效果较好,但考虑到分离时间等因素,线性流速选用 8. 0~ 12. 0 cm m in 为佳。

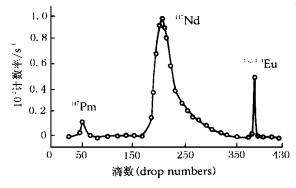


图 3 线性流速为 16.0 cm /m in 时, ¹⁴⁷Pm、
¹⁴⁷N d、 ^{152, 154}Eu 淋洗曲线

Fig 3 Elution chromatogram of $^{147} Pm ^{147}_{\bullet} N \, d$ and $^{152,\,154} Eu$

 $c(\text{Ceth BA}) = 0.40 \text{ mol/L}, \text{pH} = 4.0, \ v = 16.0 \text{ cm/m in},$ $m \text{ (N d)} = 0.5 \text{ mg}, \ c(\text{V c}) = 0.05 \text{ mol/L}, \ P_{\infty} = 7.8 \text{ M Pa}$

2. 2. 4 投料量对分离效果的影响 由于 N d 为靶子时制得的 147 Pm 是无载体同位素, 故以 N d 量为投料量。指示剂中所含 N d 量为每滴 0. 4 m g。外加一定量稳定的 N d $^{3+}$,使投料量占交换量为不同百分数。固定 ∞ H BA 浓度、p H 和线性流速,结果列入表 4。结果表明: N d 投料量占柱总交换容量 3% ~ 5% 之间可以得到良好的分离效果,其差别在于投料量增加时 N d 峰相对后移。 β (N d/Pm)增加,而 β (Eu/N d)减小。

表 3 α-H IBA 溶液的线性流速对分离效果的影响 Table 3 Effect of liner velocity of α-H IBA solution on separation coefficient

$v/(\text{cm} \cdot \text{m in}^{-1})$	β (N d/Pm)	β (Eu/N d)
4.0	3. 14	_
8.0	3.00	2.88
12.0	3.00	2.61
16.0	5.29	1.97

注 (notes): c (**c**H **BA**) = 0 40 mol/L, pH = 4 0, m (N d) = 0.5 mg, c(V c) = 0.05 mol/L

表 4 Nd 投料量对分离效果的影响

Table 4 Effect of sample quantity on separation coefficient

R (N d)/%	β (N d/Pm)	β(Eu∕N d)
2.0	2.09	3.02
2.6	2.36	2.94
3.0	3.00	2.88
5.3	4. 14	2.52
7.4	4. 85	2. 28

注 (notes): c (α H BA) = 0 40 m oLL, pH = 4 0, v= 8 0 m/m m, c(V c) = 0 05 m oL/L, R (N d) 为 N d 投料量与柱交换容量的百分比(R (N d) = m (N d)/Q)

3 结 论

- (1) 经加压排代色谱分离堆照产品物¹⁴⁷N d 中, 除衰变产物¹⁴⁷Pm 外, 主要杂质是^{152, 154}Eu。
- (2) 用 α-H BA -V c 作淋洗剂, 用加压淋洗色谱法可以从 147 N d 蜕变产物中成功地分离 147 Pm, 并能分出杂质 $^{152,\,154}$ Eu, 纯化 147 N d。分离 147 Pm 最佳工艺条件是: c (α-H BA) = 0 30~0.40 m o l/L; pH = 4 00~4.20; 线性流速为 8~12 cm /m in; c (V c) = 0 05 m o l/L; N d 投料量为柱交换容量的 3%~5%。

参考文献

- 1 王铁山, 张保国. 同位素电池发电机制的研究和发展, 同位素, 1996, 9(1): 41~46
- 2 Lee Chungsin, Wang Yunmin, Cheng Wulong, et al. Chemical Study on the Separation and Purification of Promethium-147. J Radioanal Nucl Chem, 1989, 130(1): 21~37
- 3 WuWangsu, Chen Liquan, Yang Rudong Removal of YA ctive Species and Purification of ¹⁴⁷Nd Produced in a Nuclear Reactor J Gansu Sci 1998 10 supp: 38~ 40
- 4 霍罗克斯 DL. 液体闪烁计数技术的应用. 黄显太译 北京: 原子能出版社, 1981
- 5 Chen L iquan, Zhang Wei Separation of Carrier-Free ⁶⁰Co and ⁵⁴M n From Neutron-Irradiated Natural Iron Target J Radioanal Nucl Chem, lett, 1996, 213(4): 239~ 95
- 6 Chen L iquan, W u W angsu, Yang Rudong Study of the Purification of ^{153, 159}Gd Produced in a Neutron Reactor by Pressurized Elution Chromatography, J Radioanal Nucl Chem, lett, 1998, 229(2): 191~ 195
- 7 陈忠对, 刘国兴, 王旭辉. 镅(III)、锔(III) 阳离子交换分离的优良淋洗剂——α·羟基-α·甲基丁酸. 核化学与放射化学, 1988, 10(2): 78~83

SEPARATION OF PROMETHIUM -147 FROM NEODYM IUM -147 BY PRESSURIZED ELUTION CHROMATOGRAPHY

Zhang Wei Guo Zhijun Feng Libang Liu Zhi'an Chen Liquan (College of Chen istry and Chen ical Engineering, Lanzhou University, Lanzhou 730000)

ABSTRACT

A new chemical method based on two separation steps is developed to isolate promethium-147 from neodym ium-147. The distribution of radioactive impurities in neodym ium-147 is determined by pressurized displacement chromatography with DTPA as an eluent, then promethium-147 is separated from neodym ium-147 and remaining contaminants by pressurized elution chromatoigraphy with α-hydroxyisobutyric acid-ascorbic acid (α-H BA-V c) as an eluent

Key word Pressurized displacement chrom atography Pressurized elution chrom atoigraphy Promethium -147 Neodym ium -147 Europ ium -154