钚(Ⅳ)-胶体-不动介质(花岗岩)间的作用机 制:实验,表面配位和 DLVO 作用力

谢金川1,李红霞1,王 煜2

1. 西北政法大学, 军民融合技术研究院, 陕西西安 710122; 2. 西北核技术研究院, 陕西西安 710024

摘要:为了准确模拟钚在地下水中的大尺度迁移行为,需要掌握地下水三相体系中钚(W)-天然胶体-不动介质(花岗岩)间的作用机制。实验结果表明,钚(W)吸附在土壤胶体表面生成的钚(假)胶体有很强的运动能力(钚(假)胶体在装有孔隙介质的柱体中传输后钚的回收率R反映其运动能力),其运动能力R随土壤胶体质量浓度 ρ 的增大而增大(0 $\leq \rho \leq$ 375.4 mg/L, 1.3% $\leq R \leq$ 52.5%)。钚(W)在土壤胶体表面生成的主要配位种态是 \equiv SOPu(OH)₃,种态百分数>95%,且种态百分数与胶体浓度正相关。实验和表面配位计算证实,钚(假)胶体增强了钚的运动能力,比水溶态钚污染远场水域的风险更大。DLVO作用势计算结果指出,随着胶体浓度的继续增大,胶体-介质间第二能量最小值(ϕ_{min2})的波谷深度加深。该引力相互作用势导致钚(假)胶体在介质表面的吸着沉积效率增大,且与实验观察到的逐渐变弱的钚(假)胶体的运动能力一致(375.4 mg/L $\leq \rho \leq$ 2017.8 mg/L, 52.5% $\leq R \leq$ 12.7%)。

关键词:土壤胶体;钚(假)胶体;运动能力;表面配位;DLVO作用势
 中图分类号:X591
 文献标志码:A
 文章编号:0253-9950(2024)05-0490-09
 doi: 10.7538/hhx.2024.YX.2023094

Interaction Mechanisms Between Pu(IV), Colloid, and Immobile Media (Granite): Experiments, Surface Complexation and DLVO Potential

XIE Jin-chuan¹, LI Hong-xia¹, WANG Yu²

 Institute of Military-Civilian Integration Technology, Northwest University of Political Science and Law, Xi'an 710122, China; 2. Northwest Institute of Nuclear Technology, Xi'an 710024, China

Abstract: In order to accurately simulate the large-scale migration of plutonium in groundwater(a threephase system), it is necessary to understand the interaction mechanisms between plutonium(\mathbb{N}), natural colloid, and granite(immobile media). The experimental results show that plutonium pseudo-colloids(i.e., Pu(\mathbb{N}) sorbed on the surfaces of soil colloids) have the strong mobility(i.e., the recovery percentage of plutonium after plutonium pseudo-colloids transported through columns filled with pore media, R). The mobility R increases with soil colloid concentration $\rho(0 \le \rho \le 375.4 \text{ mg/L}, 1.3\% \le R \le 52.5\%)$. The master complexation speciation of Pu(\mathbb{N}) on the surfaces of soil colloids is \equiv SOPu(OH)₃. The speciation percentage(>95\%) is positively correlated with the colloid concentration. The results of experiments and surface complexation calculations confirm that plutonium pseudo-colloids enhance the mobility of Pu(\mathbb{N})

收稿日期: 2023-10-18;修订日期: 2024-01-04

基金项目:陕西省自然科学基础研究计划(2023-JC-YB-278);国家自然科学基金(21477097)

491

and thus pose a greater risk of contaminating far-field waters than the dissolved Pu(W). The calculations of DLVO interaction potential indicate that the trough depth of the second energy minima(Φ_{min2}) between colloids and media deepens with increasing colloid concentrations. This attractive interaction potential results in an increase in the adsorptive deposition efficiency of plutonium pseudo-colloids on the media surfaces. The DLVO calculations are consistent with the observation: the mobility of plutonium pseudo-colloids become weak(375.4 mg/L $< \rho \le 2017.8$ mg/L, $52.5\% < R \le 12.7\%$).

Key words: soil colloid; plutonium pseudo-colloid; mobility; surface complexation; DLVO interaction potential

地下核试验产生大量的放射性污染物,如 ²³⁹Pu和²³⁵U等^[1-2]。长寿命且高毒性的²³⁹Pu进入 地下水,可能污染核试验场及周边几百公里区域 的生态环境,并对人类身体健康产生严重威胁^[3-4]。 由于地下水一般含有硅酸盐无机胶体和有机胶 态物质(质量浓度范围 0.5~50 mg/L)^[5-6],可将地 下含水层视为由水-天然胶体-花岗岩组成的三相 体系^[7]。天然胶体可随地下水运动,为可动相;花 岗岩等介质没有运动能力,为不动相。为了准确 预报地下水中钚的赋存形态、迁移速率和迁移能 力(量),避免生态环境遭受永久性破坏,需要研 究含水层三相体系中钚与天然胶体和花岗岩的 作用机制。

钚有低溶解度(Pu(IV),溶解度常数 lg K_{sn}^{Θ} = -58.5±0.7)^[8]、强吸附的性质,在静态吸附实验中 表现出非常高的吸附平衡分配系数(K_d)^[9-10]。一 般认为钚在地下水中会吸附到花岗岩等介质表 面,没有运动能力。然而,美国 Nevada 核试验场 和俄罗斯 Mayak 核燃料加工厂的地下水中监测到 了钚,并发现钚是以吸附到硅酸盐胶体表面的钚 (假)胶体形态存在,迁移速率分别为>1.3 km/30 a 和>4 km/55 a^[11-12]。由于现场监测到的钚的运动 能力远高于由静态 K_d 值模拟的运动能力, 人们将 钚(假)胶体的这种运动行为冠之为"钚的增强 迁移"现象[13-14]。当剖析钚的增强迁移现象时发 现, 钚(假)胶体之所以有增强迁移的能力是因为 天然胶体作为了钚的载体。因此衡量钚(假)胶 体是否具有增强迁移的能力应该是钚(假)胶体 与水溶态钚的运动能力进行比较:如果钚(假)胶 体的运动能力强于水溶态钚,则证实此现象的存 在,反之不能。将水溶态钚和钚(假)胶体分别注 入一定粒度的孔隙介质中,让它们分别在介质间 的孔隙空间中运动,收集柱体末端的释出液发 现, 钚(假)胶体的钚回收率比水溶态钚的回收率

高很多,从而证实了钚(假)胶体的增强迁移现 象^[15]。既然天然胶体在钚的运动过程中起到了关 键作用,钚与天然胶体的相互作用引起了人们的关注。

天然硅酸盐无机胶体的表面有大量的硅羟基 官能团^[16-17],不同价态的钚有可能与这些官能团 发生配位,生成表面配位化合物。这种表面配位 实际上增大了钚的表观溶解度,使钚本应因饱和 而聚集、沉降,或吸附到含水层中花岗岩的表面 而丧失运动能力,但最终钚通过由表面配位生成 的钚(假)胶体在地下水中大尺度运动。尝试用 不同价态的钚与硅羟基官能团的配位方程式 (组),计算钚的表面配位种态及相对量,并由微 观的表面配位机制解释观察到的宏观的钚(假) 胶体在孔隙介质中的运动现象。

硅酸盐胶体表面一般呈现净负电荷特性[16-17], 当钚(假)胶体粒子在地下水中运动时会发生新 的作用机制:一是表面负电特性的钚(假)胶体与 表面负电特性的花岗岩介质间的静电排斥作用; 二是钚(假)胶体与花岗岩间的范德华引力作用。 这两种作用势的大小与胶体尺度、胶体和介质的 表面电位、作用距离等有关[18-19]。当静电排斥作 用势大于范德华引力作用势时钚(假)胶体不能 吸附沉积在花岗岩介质表面, 钚(假) 胶体的运动 能力不受影响(暂不考虑孔隙截留机制)。但是, 当静电排斥作用势小于范德华引力作用势时钚 (假)胶体会吸附沉积在介质表面,钚(假)胶体的 运动能力受到影响,甚至丧失。尝试计算实验条 件下硅酸盐胶体与花岗岩介质间的多种作用势, 并依此解释实验观察到的钚(假)胶体粒子在介 质中的运动能力与胶体浓度的关系。

本研究的目的是通过热力学计算探索钚-胶体间的表面配位机制和胶体-介质间的(静电)排斥及(分子)吸引机制,进一步解释钚(假)胶体增强迁移的实验现象。本研究采用的天然胶体为

新疆某地土壤样品中提取的土壤胶体(粒径 1 nm~1 µm), 孔隙介质为土壤样品中 0.3~0.7 mm 的部分, 钚(假) 胶体为钚(IV) 吸附到土壤胶体表 面的复合体。将不同土壤胶体浓度的钚(假)胶 体悬浮液分别注入装有孔隙介质的柱体中完成 钚(假)胶体的传输能力实验,收集释出液,超滤 后通过溶剂萃取和质谱(同位素稀释法)分析钚 的价态、形态和浓度。土壤样品的物相和化学成 分由X射线衍射仪测量完成。土壤胶体的粒度 和表面电位由纳米粒度电位仪测量完成,比表面 积由低温氮气吸附仪完成。给出不同价态的钚 与硅羟基官能团的配位方程式及配位常数,将其 嵌入 PhreeQc 程序中,模拟计算出钚的表面配位 种态及相对量。由经典 DLVO 理论计算土壤胶体-孔隙介质间的相互作用势,包括范德华引力作用 势 ϕ_{vdw} 、静电双电层排斥作用势 ϕ_{ed} 、波尔排斥作 用势Φ_B,给出各作用势与胶体尺度和胶体-介质间 距的关系,分析其对钚(假)胶体运动能力的影响。

1 实验部分

1.1 主要仪器及试剂

D/MAX-rA 粉晶 X 射线衍射仪, 日本 Rigaku; ASAP2020 N₂ 吸附仪, 美国 Micromeritics; 电感耦 合等离子体质谱仪, 德国 Finnigan MAT; Zetasizer Nano ZS 纳米粒度电位仪, 英国 Malvern; Amicon Ultra-4 10 kD 超滤管、超纯水(18.2 M Ω), 美国 Millipore; 2-噻吩甲酰三氟丙酮(TTA, T27006-100G/237825, 纯度 99%)和二(2-乙基己基)磷酸酯 (HDEHP, 纯度 97%)萃取剂, 美国 Sigma-Aldrich。

HCl、NaCl、AgNO₃、NaOH溶液均由市售分析 纯试剂配制。

1.2 土壤胶体

本研究使用的土壤胶体和不动介质均源自新 疆某地的土壤样品,土壤胶体是指土壤样品中 1 nm~1 µm 的部分,不动介质是指土壤样品中 0.3~0.7 mm 的部分(主要为石英砂),使用下面的 方法进行分级。土壤样品风干后用粉晶 X 射线 衍射仪测量其物相和化学成分(表1),测量方法 分别采用国标 GB/T 16553-2003^[20]和行业标准 DZG93-05^[21]。现场土壤样品的主要物相为石英、 斜长石和绢云母等,而化学成分主要为 Si、Al 和 Ca 等元素。Ca 的质量分数接近 9%,该介质属于 碱性石灰性土壤。

表1 土壤样品的物相和化学成分

Table 1 Mineral phase and chemical composition

物相	质量分数/%	化学成分	质量分数/%
石英	50	SiO ₂	60.48
斜长石	15	Al ₂ O ₃	10.44
绢云母	11	CaO	8.95
正长石	6	Fe ₂ O ₃	3.55
方解石	5	MgO	3.25
白云石	4	K ₂ O	2.37
绿泥石	4	Na ₂ O	2.04
闪石	2	TiO ₂	0.44
石膏	1	MnO	0.10
黄铁矿	1	烧蚀量	7.78
其他	1		

1.2.1 土壤胶体的制备 称取过 0.3 mm 孔筛的风 干土样 150g 于 2 L 烧杯中, 缓慢滴加 0.5 mol/L HCl, 用玻璃棒搅拌,直到土壤不剧烈冒泡为止,放置 过夜; 倾去上部清液, 滴加 0.2 mol/L 的 HCl, 用玻 璃棒搅拌,直到土样中游离CaO全部分解(无明 显气泡产生);用 0.02 mol/L 的 HCl 调节土壤悬液 pH值为6.0~6.5,并保持一昼夜不变,否则再用 0.02 mol/L HCl 调节; 倾去上部清液, 加 300 mL 超 纯水搅匀,澄清一段时间后,倾泻、洗涤土壤悬 液,如此洗涤2~4次(除Ca盐),直到滤液中无氯 离子为止(1 mol/L AgNO, 检验);将上述处理过的样 品配成土水质量比1:5左右的悬浊液,超声分散 30 min;分散后的悬浊液全部移入5L烧杯中,配 成w=3%的悬浊液用于提取胶体;根据Stokes定 律(土粒密度取 2.65 g/cm³, 直径为 1 µm 的土壤胶 体在 25 ℃ 水中沉降 10 cm 需要 27.44 h), 将 ≤1 µm 粒径范围的土壤胶体虹吸转移至烧杯中,冰箱中 保存备用(4℃)[22]。将聚四氟乙烯薄膜高温压制 成凹形,洗净、烘干、冷却,置于玻璃表面皿上, 用移液管定量移取混匀的胶体悬浮溶液,经60℃ 烘干(红外灯),称重,确定胶体悬浮溶液的胶体 质量浓度(每次四个样品,测量3次,取均值(751.3± 11.43) mg/L)_o

1.2.2 土壤胶体的粒径 将制备的土壤胶体悬浮 液浓缩或用超纯水稀释成不同浓度的悬浮液 (0.5~2017.8 mg/L),用纳米粒度电位仪测量悬浮 液中土壤胶体的粒径 d_c。每个样品每 2 min 测量 1 次,测量至 10 min;每个数据点设定 3 个平行样

品,取平均值。

1.2.3 土壤胶体的比表面积 干土壤胶体经研磨后,用N2吸附仪低温(77K)测量其比表面积。由 BET法处理吸附等温线数据,土壤胶体的比表面积为 69.43 m²/g。

1.2.4 土壤胶体的表面电位 用 NaCl 将土壤胶体 悬浮液(100 mg/L, pH=8.5)的 Na⁺浓度分别调整到 0.001~1.0 mol/L 范围, 超声 2.5 min 后用纳米粒度 电位仪测量电迁移率, 再转化为不同 Na⁺浓度时 的 Zeta 电位值。0.001~1.0 mol/L Na⁺时, Zeta 电位 均为负值, 表明胶体表面呈负电荷状态。

1.3 钚(假)胶体

取一定浓度的土壤胶体悬浮液,逐滴加入经 纯化的²³⁹Pu(N)溶液,²³⁹Pu浓度在10⁻⁹ mol/L量 级,磁力搅拌器连续搅拌。10 min 后,用1 mol/L NaOH调pH值至约8.5(孔隙水pH值)。²³⁹Pu(N) 吸附到土壤胶体表面后形成的复合体即为钚 (假)胶体,图1是钚(假)胶体的示意图。

Fig. 1 Plutonium pseudo-colloid

1.4 钚(假)胶体的传输实验(柱实验)

用超纯水反复超声淋洗 0.3~0.7 mm 的土壤 样品,以去除表面附着的细小胶态颗粒,自然风 干后使用。取5g介质在玛瑙研钵中捣碎,沉降 法取得<10 μm 粒级部分,由纳米粒度电位仪测 量介质的表面电位值:Zeta 电位(绝对值)随 Na⁺ 浓度的增大而减小,介质表面的负电性减弱,但 总体呈负电荷特性。

将风干后的土壤介质(主要为石英砂)装入 ¢2 cm×12 cm有机玻璃柱体中,每装入2 cm轻轻 挤压介质,以控制装填密度与土壤容重基本一 致,装填高度为10~10.5 cm。准确称量装入的介 质质量。 蠕动泵将一定浓度的土壤胶体悬浮液注入柱体,淋洗介质,当柱体含水量稳定后,注入一个孔体积的钚(假)胶体悬浮液,用部分自动收集器在柱体底部定时收集释出液。示踪源注入完毕后,迅速切换为不含示踪钚的土壤胶体悬浮液(4个孔体积,同样的土壤胶体浓度、Na⁺强度和 pH 值)。图2是钚(假)胶体在孔隙介质中传输的实验示意图。

ICP-MS测量释出液中²³⁹Pu的浓度(同位素稀释法) 结合超滤-溶剂萃取-ICP-MS分析钚的形态和价态

图 2 钚(假)胶体在孔隙介质(0.3~0.7 mm)中传输 的实验示意图

Fig. 2 Transport experiment of plutonium pseudo-colloids through porous media(0.3-0.7 mm)

电感耦合等离子体质谱仪(ICP-MS)测量释出 液中²³⁹Pu浓度(同位素稀释法),10kD超滤和 TTA/HDEHP联合萃取技术分析钚的形态和价 态。分析方法详见本课题组以前的研究^[15,23]。

2 结果与讨论

2.1 钚(假)胶体的运动能力

表 2 是钚(假)胶体在孔隙介质中传输时,钚 的回收率(R)与土壤胶体质量浓度(ρ)的关系。 钚的回收率反映了钚(假)胶体的运动能力,因此 R也可称之为钚(假)胶体的可动迁移量(针对现 场地下水的监测而言)。实验结果表明,钚(假) 胶体的运动能力随土壤胶体浓度的增大而增大: ρ 从0增大到375.4 mg/L时,R从1.3%增大到52.5%。 结果进一步表明,水溶态钚(W)容易吸附在介质 表面成为不动相;钚(假)胶体比水溶态钚(W)的 运动能力高得多(52.5%/1.3%=40.4),具有增强迁移的能力。然而,当土壤胶体浓度继续增大时,

钚(假)胶体的运动能力反而降低: ρ从 375.4 mg/L 增大到 2 017.8 mg/L 时, R 从 52.5% 降低到 12.7%。

表 2 不同土壤胶体质量浓度(ρ)时钚(假)胶体在柱体中传输时钚的回收率(R) 和模拟计算的钚在土壤胶体表面的配位种态百分数(P)

Table 2 Recovery percentages of plutonium after plutonium pseudo-colloids transported through columns(R) and speciation percentages(P) of plutonium complexation on soil colloid surfaces as function of colloid concentration(ρ)

$\rho/(mg^{-1})$ R/%	D/0/		$P(Pu(\mathbb{N}))/\%$			<i>P</i> (Pu(V))/%	$P(\operatorname{Pu}(\mathbb{N}))/\%$
	<i>R</i> /%	≡SOPu(OH) ₃	\equiv SOPu(OH) ₄ ⁻	≡SOPu ³⁺	≡SOPu ²⁺	≡SOPuO ₂	\equiv SOPuO ₂ ⁺
0	1.3						
0.5	8.6	95.26	4.745	1.538×10^{-14}	4.057×10^{-20}	6.058×10^{-27}	2.230×10 ⁻²⁸
5.0	19.1	95.27	4.732	1.551×10^{-14}	2.224×10 ⁻²¹	1.111×10^{-25}	7.525×10^{-26}
15.0	24.7	95.28	4.715	1.569×10^{-14}	8.058×10^{-25}	3.091×10^{-22}	5.844×10 ⁻¹⁹
50.1	36.1	95.34	4.660	1.629×10^{-14}	3.797×10^{-24}	6.732×10 ⁻²³	2.804×10^{-20}
95.1	41.8	95.40	4.596	1.703×10^{-14}	5.875×10 ⁻²⁵	4.486×10 ⁻²²	1.263×10^{-18}
175.2	49.2	95.50	4.496	1.827×10^{-14}	6.412×10 ⁻²⁵	4.314×10 ⁻²²	1.194×10^{-18}
375.4	52.5	95.69	4.314	2.083×10^{-14}	1.012×10^{-24}	2.991×10 ⁻²²	5.980×10 ⁻¹⁹
751.3	51.1	95.88	4.124	2.404×10^{-14}	1.052×10^{-23}	3.174×10 ⁻²³	7.044×10 ⁻²¹
2 017.8	12.7	96.11	3.895	2.881×10^{-14}	2.194×10 ⁻²³	1.722×10^{-23}	2.196×10 ⁻²¹

注: 主要的模拟计算参数包括: 钚浓度 10-9 mol/L, pH=8.5, NaCl浓度0.002 mol/L, 土壤胶体点位密度 2.3/nm²

2.2 Pu(Ⅳ)与土壤胶体表面的配位

钚(假)胶体能否作为一个稳定质点,取决于
 钚是以物理还是化学方式吸附于土壤胶体的
 表面。一般而言,化学吸附(即表面化学配位)时
 质点较为稳定。土壤胶体表面的吸附(配位)点
 位是 ==SOH 基团,该硅羟基官能团在水溶液中
 加氢(==SOH²)或脱氢(==SO⁻)后可与Pu³⁺、
 Pu⁴⁺、PuO²₂、PuO²⁺等离子配位,生成的表面配位
 物质为 ==SOPu(OH)₃、==SOPu(OH)₄⁻、==SOPu³⁺、
 =SOPu²⁺、==SOPuO₂、==SOPuO²₂等^[24-25],表面配
 位方程式和配位常数(lg K)如式(1-8)所示。

 $\equiv SOH + H^+ \rightleftharpoons SOH_2^+ \qquad lg K_1 = 5.4 \qquad (1)$

 $\equiv SOH \rightleftharpoons \equiv SO^- + H^+ \qquad \lg K_2 = -6.7 \qquad (2)$

 $\equiv \text{SOH} + \text{Pu}^{3+} \rightleftharpoons \text{SOPu}^{2+} + \text{H}^{+} \qquad \text{lg } K_3 = -2.1$ (3)

$$\equiv SOH + Pu^{4+} \rightleftharpoons SOPu^{3+} + H^{+} \qquad \lg K_4 = 15.3$$
(4)

$$\equiv \text{SOH} + \text{PuO}_2^+ \rightleftharpoons \equiv \text{SOPuO}_2 + \text{H}^+ \qquad \text{lg } K_5 = -8.5$$
(5)

$$\equiv \text{SOH} + \text{PuO}_2^{2+} \rightleftharpoons \text{SOPuO}_2^{+} + \text{H}^+ \qquad \text{lg } K_6 = 1.2$$

(6)

 $\equiv SOH + Pu^{4+} + 3H_2O \rightleftharpoons SOPu(OH)_3 + 4H^+$

$$lg K_7 = 12.5 (7)$$
$$\equiv SOH + Pu^{4+} + 4H_2O \rightleftharpoons SOPu(OH)_4^- + 5H^+$$

 $\log K_8 = 5.0$ (8)

将配位方程式(1—8)嵌入 PhreeQc (v 3.00) 计 算程序包中,用于模拟钚的表面配位过程。计算 过程需要的主要参数包括:土壤胶体点位密度 2.3/nm^{2 [25-26]}, 钚浓度10⁻⁹ mol/L, pH=8.5, NaCl浓度 0.002 mol/L。土壤胶体的点位浓度根据溶液中土 壤胶体的浓度和胶体的BET 比表面积(69.43 m²/g) 计算而来,模拟计算的结果列于表2。

表 2 计算结果指出, 钚在地下水模拟环境中 主要以四价态存在, 且主要以吸附到胶体表面的 钚(假)胶体形态存在。Pu⁴⁺与土壤胶体表面有很 强的亲合(配位)能力, 发生的主要配位方式是 $=SOH+Pu^{4+}+3H_2O \Longrightarrow =SOPu(OH)_3+4H^+, 生成的$ $主要表面配位种态是 <math>=SOPu(OH)_3, 其配位种态$ 百分数高于 95%, 且与土壤胶体浓度正相关; Pu³⁺、PuO₂⁺、PuO₂²⁺与土壤胶体表面仅有弱的配位 能力, 其表面配位种态百分数可忽略不计。

表面配位计算的结果与实验结果和现场监测的结果是一致的:(1)钚(Ⅳ)主要以吸附到胶体 表面的钚(假)胶体形态存在,钚(假)胶体比水溶 态钚(\mathbb{N})的运动能力高得多(52.5%/1.3%=40.4), 钚的运动能力 *R* 随土壤胶体质量浓度 ρ 的增大而 增大($\rho \leq 375.4 \text{ mg/L}$);(2)Kersting^[11]和 Novikov^[12]等分别监测到美国 Nevada 和俄罗斯 Mayak 的地下水中钚的大尺度迁移现象(分别迁 移了约 1.3 km 和约 4 km),如果钚是以水溶态存 在,则吸附到含水层中花岗岩的表面,不可能观 察到钚的大尺度迁移现象。

2.3 胶体与不动介质间的作用

经典 DLVO 理论可用于计算胶体-花岗岩介 质间的相互作用势,胶体-胶体间的相互作用势一 般约等于胶体-介质间的相互作用势的一半^[27-28], 本研究暂不考虑胶体-胶体间的作用问题。

胶体-介质间的总相互作用势(Φ_T)来自三种 贡献:范德华引力作用势 Φ_{vdW} (attractive van der Waals interaction potential);静电双电层排斥作用 势 Φ_{edl} (electrostatic double layer interaction potential); 波尔排斥作用势 Φ_B (Born repulsion potential)。长 程作用范围内, Φ_B 对 Φ_T 的贡献较小,可忽略。总 作用势 Φ_T 的表达式如式(9)。

$$\Phi_{\rm T} = \Phi_{\rm B} + \Phi_{\rm vdW} + \Phi_{\rm edl} \tag{9}$$

波尔排斥作用势**の**_B是由于分子轨道的重叠 产生的短程分子间的作用,球形胶体和平板介质 间的**の**_B表达式如式(10)^[29]。

$$\Phi_{\rm B} = \frac{A\sigma_{\rm c}^6}{7\,560} \left[\frac{4d_{\rm c} + h}{(d_{\rm c} + h)^7} + \frac{3d_{\rm c} - h}{h^7} \right]$$
(10)

式中: *d*_c 是测量的土壤胶体的水力学直径(表 3), nm; *h* 是胶体-花岗岩介质的间距, nm; *o*_c 是碰撞直 径, 通常约等于 0.5 nm^[27]; *A* 是材料 1(土壤胶体) 通过材料 3(硅酸盐介质)与材料 2(水)相互作用 的 Hamaker 常数。*A* 的值(1.75445×10⁻²¹ J)通过式 (11)取得^[30]。

$$A = \left(\sqrt{A_{11}} - \sqrt{A_{22}}\right) \left(\sqrt{A_{33}} - \sqrt{A_{22}}\right)$$
(11)

式中: $A_{11}=2.5\times10^{-20}$ J适用于绝大多数黏土材料^[31]; $A_{22}=4.0\times10^{-20}$ J为水的值; $A_{33}=2.5\times10^{-20}$ J为硅酸盐的值^[32]。

根据 Gregory 公式^[33],范德华引力作用势 Φ_{vdw}(1:1电解质)的表达式见式(12)。

$$\Phi_{\rm vdW} = -\frac{Ad_{\rm c}}{12h\left(1+\frac{14h}{\lambda}\right)} \tag{12}$$

式中 λ 为相互作用的特征长度,通常取 100 nm^[27]。

胶体与介质间的静电双电层排斥作用势Φ_{edl}的表达式为式(13)^[34-35]。

$$\Phi_{\rm edl} = \frac{\pi \, d_{\rm c} \varepsilon}{2} \left\{ 2\phi_1 \phi_2 \ln \left[\frac{1 + \exp(-\kappa h)}{1 - \exp(-\kappa h)} \right] + \left(\phi_1^2 + \phi_2^2 \right) \ln \left[1 - \exp(-2\kappa h) \right] \right\}$$
(13)

式中: $\phi_1(-42.6 \text{ mV})$ 和 $\phi_2(-37.2 \text{ mV})$ 分别是土壤胶体和介质的表面电位,由纳米粒度电位仪在 pH=8.5 时测量得到;水的介电常数 ε 为 6.95×10⁻¹⁰ C²/(N•m²),静电双电层的厚度(Debye 长度, κ)如式(14)。

$$\frac{1}{\kappa} = \sqrt{\frac{\varepsilon k_{\rm b} T}{{\rm e}^2 \sum n z^2}} \tag{14}$$

式中: e 是电子电荷, 1.602×10^{-19} C; *n* 是 Na⁺在孔 隙水中的浓度, 0.002 mol/L; *z* 是 Na⁺价态; *k*_b 是 Boltzmann 常数, 1.381×10^{-23} J/K; *T* 是绝对温度, 298 K。

图 3 是不同胶体浓度时 ϕ_{T} 与胶体-花岗岩间 距 h 关系的计算结果(0.5~175.2 mg/L 时的计算 结果未提供),第一能量最小值(the primary energy minima, ϕ_{min1})和能垒(the energy barrier, ϕ_{max})及第 二能量最小值(the second energy minima, ϕ_{min2})列 于表 4。

表 3 较高土壤胶体质量浓度时土壤胶体的水力学直径 (*d*_c) Table 3 Hydrodynamic diameters(*d*_c) of soil colloids at relatively high concentrations

	-									
时间/min		不同土壤胶体质量浓度(mg/L)时土壤胶体的水力学直径d_nm								
	95.13	175.2	375.4	751.3	2 017.8					
2	459.0±36.9	468.4±19.2	488.0±30.3	490.4±23.2	566.8±32.1					
4	455.3±37.4	482.2±38.3	492.4±24.5	490.8±29.5	572.6±23.8					
6	455.1±32.4	486.7±35.2	490.8±28.6	511.1±38.6	569.2±28.1					
8	463.6±38.0	486.0±31.5	480.2±22.5	507.6±38.8	589.9±36.8					
10	469.9±43.0	484.1±40.2	488.4±92.8	500.6±26.8	593.4±28.6					
	(460.6±37.5)	(481.5±32.9)	(488.0±39.7)	(500.1±31.4)	(578.4±29.9)					

注: 钚在多孔介质内的传输时间约为10 min, 因此纳米粒度电位仪测量时间维持10 min; 括号内数值为平均值

图 3 不同浓度的土壤胶体与介质表面的相互作用势能与两者距离的关系

Fig. 3 Interaction potential between colloids of various concentrations and media, as function of distance between them

表4 不同土壤胶体质量浓度ρ时胶体与介质间的第一和第二能量最小值及斥力能垒值

TC 11 4	D' 1	1			1	1 .	1 /	11	• •	c ·	· · ·	1	1.
Table 4	Primary and	secondary	enerov	minima ar	nd energy	harrier	hetween	COLLO	100 0	t various	concentrations a	nd me	d12
1 4010 -	I I I I I I I I I I I I I I I I I I I	secondary	CHCIEV	iiiiiiiiiiiiia ai	iu chicigy	Darrier	Detween	COHO	ius o	i vanous	concentrations a	nu me	uiu
		2	0,		0,								

$ ho/(\mathrm{mg} \cdot \mathrm{L}^{-1})$	1 /	第一能量最小值		斥力能	垒	第二能量最小值		
	$u_{\rm c}$ /IIII	$\Phi_{\min 1}/(k_{\rm B}T)$	<i>h</i> /nm	$\Phi_{\rm max}/(k_{\rm B}T)$	<i>h</i> /nm	$\Phi_{\rm min2}/(k_{\rm B}T)$	<i>h</i> /nm	
375.4	488.0	488.0	0.30	507.7	0.72	-0.005 83	131.3	
751.3	500.1	507.7	0.30	521.5	0.72	-0.00599	131.3	
2017.8	578.4	585.8	0.28	603.1	0.72	-0.00692	131.3	

为了解释土壤胶体质量浓度 $\rho \ge 375.4 \text{ mg/L}$ 时, 钚的运动能力 R 随土壤胶体质量浓度的增大 而降低(表 2), 计算了胶体与介质间的总相互作 用势 ϕ_{T} 。对于不同土壤胶体质量浓度的钚悬浮 液而言, 胶体质量浓度越大(即胶体密度大), 胶体 间因布朗运动产生的碰撞概率就越大, 碰撞产生 的胶体间的弱聚集成功率就越高。如 Heidmann^[36] 和 Czigány^[37]等报道, 增大胶体浓度, 聚集体尺寸 快速增大。结果表明, 土壤胶体直径从 d_c =488.0 nm (ρ =375.4 mg/L)增大到 d_c =578.4 nm(ρ =2017.8 mg/L)。 胶体直径的变化可能会影响到胶体与介质间的 相互作用势, 更可能影响到钚(假)胶体在孔隙空 间中的运动能力(即阻塞效应)。当 ρ <375.4 mg/L 时, d_c 值变化幅度较小。

表4指出,胶体-介质间的排斥能垒(ϕ_{max})达 几百 k_BT ,表明在第一能量最小值(ϕ_{min1})的作用范 围(0.28~0.30 nm)胶体难以在介质表面发生沉 积,即钚(假)胶体不可能越过如此高的能垒障碍 在介质表面被有效吸着。然而,可以明显观察到 在较高胶体浓度时,第二能量最小值 ϕ_{min2} 的出现 (图 3(b)),它们的波谷深度随胶体浓度的增大而 增大。此引力相互作用势(ϕ_{min2})促进了钚(假) 胶体在孔隙介质表面的有效吸着,这与较高土壤 胶体浓度时钚(假)胶体的运动能力 R 相应变小 的实验现象是一致的。

3 结 论

 环(假)胶体在孔隙介质中传输的实验结果表明, 土壤胶体作为钚(ℕ)的载体增强了钚(ℕ)的运动能 力:当土壤胶体质量浓度从 ρ =0增大到 ρ =375.4 mg/L 时,钚的回收率从 R=1.3%增大到 R=52.5%。钚(假) 胶体远大于水溶态钚(ℕ)的运动能力(52.5%/1.3%= 40.4)是钚(假)胶体增强迁移(传输)现象的最直 接证据。然而,当土壤胶体浓度继续增大时,钚 (假)胶体的运动能力反而降低: ρ =375.4 mg/L 增 大到 ρ =2 017.8 mg/L 时, R=52.5%降低到 R=12.7%。

际与胶体表面的硅羟基的配位计算结果指 出, 钚在地下水中主要的赋存价态是四价, 钚(Ⅳ) 与胶体有很强的表面配位能力, 生成的主要表面 配位种态是 ═SOPu(OH)₃(配位种态百分数>95%), 胶体浓度越大, ═SOPu(OH)₃的配位种态百分数 越高。表面配位的计算结果与钚(假)胶体传输 实验的现象一致(ρ≤375.4 mg/L)。较高土壤胶体 质量浓度时(ρ>375.4 mg/L), 胶体-介质间第二能 量最小值(Φ_{min2})的波谷深度随胶体质量浓度的增 大而加深,此引力相互作用势有利于钚(假)胶体 在介质表面的吸着沉积,钚(假)胶体运动能力逐 渐变弱的宏观实验现象反映了此微观作用机制 的结果。

参考文献:

- [1] Smith D K, Finnegan D L, Bowen S M. An inventory of long-lived radionuclides residual from underground nuclear testing at the Nevada Test Site, 1951–1992[J]. J Environ Radioact, 2003, 67(1): 35-51.
- [2] Smith D K, Williams R W. The dynamic movement of plutonium in an underground nucleartest with implications for the contamination of groundwater[J]. J Radioanal Nucl Chem, 2005, 263(2): 281-285.
- [3] 包敏,王群书.熔岩玻璃体²³⁹Pu 在地下水中的迁移模拟研 究[J].原子能科学技术,2014,48(10):1757-1765.
- [4] 刘艳,韩小元,臧建正,等.钚在低碳钢包装容器腐蚀产物上的吸附行为研究进展[J].核化学与放射化学,2019,41(3): 242-250.
- [5] Kim J I. Actinide colloid generation in groundwater[J]. Radiochim Acta, 1991, 52-53(1): 71-82.
- [6] DeNovio N M, Saiers J E, Ryan J N. Colloid movement in unsaturated porous media: recent advances and future directions[J]. Vadose Zone J, 2004, 3(2): 338-351.
- [7] Xie J, Lin J, Zhou X, et al. Plutonium partitioning in threephase systems with water, colloidal particles, and granites: new insights into distribution coefficients[J]. Chemosphere, 2014, 99: 125-133.
- [8] Neck V, Altmaier M, Seibert A, et al. Solubility and redox reactions of Pu(IV) hydrous oxide: evidence for the formation of PuO_{2+x}(s, hyd)[J]. Radiochim Acta, 2007, 95(4): 193-207.
- [9] Xie J, Lu J, Zhou X, et al. Plutonium-239 sorption and transport on/in unsaturated sediments: comparison of batch and column experiments for determining sorption coefficients[J]. J Radioanal Nucl Chem, 2013, 296(3): 1169-1177.
- [10] 谢添,陈超,朱君,等.铀、钚等在某岩土介质上的吸附及其 动力学[J].核化学与放射化学,2021,43(4):353-361.
- [11] Kersting A B, Efurd D W, Finnegan D L, et al. Migration of plutonium in ground water at the Nevada Test Site[J]. Nature, 1999, 397: 56-59.
- [12] Novikov A P, Kalmykov S N, Utsunomiya S, et al. Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia[J]. Science, 2006,

314(5799): 638-641.

- [13] Wolfsberg A, Dai Z, Zhu L, et al. Colloid-facilitated plutonium transport in fractured tuffaceous rock[J]. Environ Sci Technol, 2017, 51(10): 5582-5590.
- [14] Kersting A B, Zavarin M. Colloid-facilitated transport of plutonium at the Nevada Test Site, NV, USA[M]// Kalmykov S, Denecke M. Actinide Nanoparticle Research, Berlin, Heidelberg: Springer, 2011: 399-412.
- [15] Xie J, Lu J, Lin J, et al. The dynamic role of natural colloids in enhancing plutonium transport through porous media[J]. Chem Geol, 2013, 360: 134-141.
- [16] 熊毅.土壤胶体:第一册:土壤胶体的物质基础[M].北京:科 学出版社,1983:1-10.
- [17] 熊毅.土壤胶体:第二册:土壤胶体研究法[M].北京:科学出版社,1985:3-19.
- [18] 周旭,王煜,李伟平,等. Pu(IV) 在高盐度花岗岩地下水中 的形态分布特征[J].原子能科学技术,2016,50(11):1928-1936.
- [19] 侯作贤, 靳强, 叶远虑, 等. 放射性核素在花岗岩上的吸附 行为[J]. 核化学与放射化学, 2015, 37(4): 207-214.
- [20] 国家质量监督检验检疫总局.珠宝玉石鉴定[M].北京:中国标准出版社,2004.
- [21] 地质矿产部科学技术司实验管理处.岩石和矿石分析规程:第二分册:非金属矿分析规程[M].陕西:陕西科学技术 出版社,1994.
- [22] 李学垣.土壤化学及实验指导[M].北京:中国农业出版 社,1997.
- [23] Xie J, Wang X, Lu J, et al. Colloid-associated plutonium transport in the vadose zone sediments at Lop Nor[J]. J Environ Radioact, 2013, 116: 76-83.
- [24] Marimon M M. On the sorption and diffusion of radionuclides in bentonite[D]. Department of Chemistry, Nuclear Chemistry Royal Institute of Technology, Stockholm, Sweden, 2002.
- [25] Schwantes J M, Santschi P H. Mechanisms of plutonium sorption to mineral oxide surfaces: new insights with implications for colloid-enhanced migration[J]. Radiochim Acta, 2010, 98(9-11): 737-742.
- [26] Dong W, Tokunaga T K, Davis J A, et al. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-area Savannah River Site[J]. Environ Sci Technol, 2012, 46(3): 1565-1571.
- [27] Elimelech M. Particle deposition and aggregation: measurement, modelling, and simulation; colloid and surface engineering series[M]. Oxford, Boston: Butterworth-Heinemann, 1995.
- [28] Tosco T, Bosch J, Meckenstock R U, et al. Transport of

ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate[J]. Environ Sci Technol, 2012, 46(7): 4008-4015.

- [29] Ruckenstein E, Prieve D C. Adsorption and desorption of particles and their chromatographic separation[J]. AlChE J, 1976, 22(2): 276-283.
- [30] Hiemenz P C, Rajagopalan R. Principles of colloid and surface chemistry[M]. 3rd ed. New York: Marcel Dekker, 1997.
- [31] Novich B E, Ring T A. Colloid stability of clays using photon correlation spectroscopy[J]. Clays Clay Miner, 1984, 32(5): 400-406.
- [32] Séquaris J M, Lewandowski H. Physicochemical characterization of potential colloids from agricultural topsoils[J]. Colloids Surf A Physicochem Eng Aspects, 2003, 217(1-3): 93-99.

- [33] Gregory J. Approximate expressions for retarded Van Der Waals interaction[J]. J Colloid Interface Sci, 1981, 83(1): 138-145.
- [34] Hogg R, Healy T W, Fuerstenau D W. Mutual coagulation of colloidal dispersions[J]. Trans Faraday Soc, 1966, 62: 1638-1651.
- [35] Hoek E M V, Agarwal G K. Extended DLVO interactions between spherical particles and rough surfaces[J]. J Colloid Interface Sci, 2006, 298(1): 50-58.
- [36] Heidmann I, Christl I, Kretzschmar R. Aggregation kinetics of kaolinite-fulvic acid colloids as affected by the sorption of Cu and Pb[J]. Environ Sci Technol, 2005, 39(3): 807-813.
- [37] Czigány S, Flury M, Harsh J B. Colloid stability in vadose zone Hanford sediments[J]. Environ Sci Technol, 2005, 39(6): 1506-1512.