第20卷 第3期	核	化	学 与	放 射	化	学	Vol 20 No. 3
1998年8月	Journal	of	Nuclear	and R	adioc	hem istry	Aug 1998

中子活化分析法测定热中子诱发

²³⁵U 裂变中¹³⁵Cs 的产额^{*}

张生栋	郭景儒	崔子	安智	李フ	ト明
张淑兰	孙宏清	杨	毅	李	絍

(中国原子能科学研究院放射化学研究所,北京 102413)

应用裂变反冲法和中子活化分析法测定了热中子诱发²³⁵U 裂变中¹³⁵Cs的裂变产额。主要研究 内容包括: ²³⁵U 靶的制备;反冲捕集装置的设计加工;用Au 作为中子监测器监测¹³⁵Cs 活化时的中 子注量率; ¹³⁷Cs 和¹³⁶Cs 的放化分离和测量。以¹³⁷Cs 的裂变产额为标准得到¹³⁵Cs 的裂变产额值为 (6.34±0.46)%。

关键词^{□1}中子活化分析 反冲捕集 ¹³⁵Cs 裂变产额 中图分类号 O・571.421 TU・277

国内应用中子活化分析技术测定裂变产额的研究尚未开展,国外有关这方面的研究工作 也比较少。Aum ann 等^[1]应用中子活化分析法测量热中子诱发²³⁵U 裂变中¹²⁹I 的裂变产额,用 Au-A1 合金丝作为中子监测器来确定活化时的热中子注量率,得到¹²⁹I 的裂变产额值为 0.69%,误差大约为7%。Pillay等^[2]用中子活化分析法测量富集U 的快中子增殖反应堆燃料 (含 2% Zr)元件中裂变产物¹⁴¹Pr 的裂变产额,用¹⁴¹Pr-⁵⁵M n 的混合体作为中子监测器监测活化 时的中子注量率,得到¹⁴¹Pr 的快中子裂变产额值为 6.05%,误差为 3.5%。这些方法都是在活 化分析前对待测核素进行化学分离,这样有可能引起污染和损失,应尽可能避免。

¹³⁵Cs 是一个长寿命的裂变核素, 其半衰期为 2.3 × 10⁶ a^[3]。 其裂变产额的测定已有文献 [4—7]报道, 测量方法为质谱法, 其中包括绝对测量和相对测量。这些测量的实验误差比较大。 因此, 应用非质谱法重新测量¹³⁵Cs 的裂变产额, 以给出更为准确的数据。

¹³⁵Cs的热中子活化截面比较大,且(n,))反应生成的¹³⁶Cs的半衰期适中,发射的)/射线易 于探测。因此应用中子活化分析测量¹³⁵Cs原子数是适宜的,并选用¹⁹⁷Au 作为中子监测器。本 文用中子活化分析法测定¹³⁵Cs的裂变产额,根据反冲法原理,应用捕集片收集生成的裂变产

收稿日期: 1997-06-16 收到修改稿日期: 1997-08-15 张生栋: 男, 31 岁, 核化学化工专业, 硕士, 助研, 副主任

2

^{*} 核工业科学基金资助项目

物作为¹³⁵Cs活化分析的照射靶。¹³⁵Cs是从铀靶中反冲出来的,避免了活化分析前的放化分离。 碎片反冲收集和中子活化分析都是成熟的技术,巧妙地将这两种技术结合起来解决了裂变产 额的测定问题。

1 实验原理

²³⁵U 靶在反应堆照射过程中, 某一个放射性裂变产物核素, 一方面由于²³⁵U 的核裂变而不断生成, 另一方面又由于该核素的放射性衰变而减小。当在照射期间中子注量率 ϕ 恒定, ²³⁵U 的原子数 $N \propto 2^{235}$ U 裂变截面 σ_x 该核素的裂变产额 Y 和衰变常数 λ 以及照射时间 f_1 已知, 则该核素在停照时刻的原子数N表示如下:

$$N = \frac{YN_0 \mathcal{P}_i}{\lambda} (1 - e^{-\lambda_i})$$
(1)

实验采用反冲捕集装置收集裂变碎片,该装置对所有的裂变产物核素的捕集效率都是相同的。某个核素在捕集片上的原子数N 等于停止照射时该核素的原子数N 乘以捕集效率 6。即:

$$N = \frac{YN_0 \Phi_{\rm f}}{\lambda} (1 - e^{-\lambda_{\rm i}}) \epsilon_{\rm c}$$
⁽²⁾

将捕集片冷却几个月后, 再包装入堆进行中子辐照。本工作选择¹³⁷Cs 为裂变产额标准, 中子辐照时¹³⁷Cs 的损失量可以忽略, 待测核素¹³⁵Cs 中子辐照生成¹³⁶Cs。辐照后的捕集片再经过 冷却、溶解、放化分离, 最后制成 Cs 沉淀源测量¹³⁷Cs 和¹³⁶Cs。

对于¹³⁷C s, 若考虑其探测效率 *e*、 *Y* 分支比 *p*₇、化学回收率 *Y*。和冷却时间 *t*₆, 则¹³⁷C s 的放 射性计数为:

$$A_{7} = Y_{7}N_{0} \Phi_{\bar{i}}Y_{c}\epsilon_{7}p_{7}(1 - e^{-\lambda_{7}t_{i}})e^{-\lambda_{7}t_{c}}\epsilon_{c}$$

$$(3)$$

对于¹³⁵Cs来说,到活化前的原子数应为:

$$N_{5} = \frac{Y_{\underline{s}N_{0}} \Phi_{\overline{t}}}{\lambda_{5}} \epsilon_{c} (1 - e^{-\lambda_{5} t_{i}}) e^{-\lambda_{5} t_{c}}$$

$$\tag{4}$$

活化生成的¹³⁶C s 测量时刻的计数为:

 $A_{6} = Y_{5}N_{0}\Phi_{\overline{t}}\epsilon_{c}(1 - e^{-\lambda_{5}t_{1}})e^{-\lambda_{5}t_{c}}\Phi_{\sigma_{5}}(1 - e^{-\lambda_{6}t_{c}})e^{-\lambda_{6}t_{c}}Y_{c}\epsilon_{6}p_{6}/\lambda_{6}$ (5)

式中, Y_5 为¹³⁵Cs的裂变产额; ϕ 为捕集片活化时中子注量率, 由¹⁹⁷Au 作为中子监测器监测得 到; σ_5 为¹³⁵Cs 热中子活化截面; Y_c 为化学回收率; σ_6 为¹³⁶Cs Y特征峰的探测效率; p_6 为¹³⁵Cs Y特征峰的分支比; r_6 为捕集片活化时间; t_c 为U 靶停止辐照到捕集片活化前的冷却时间; t_c 为 活化产物的冷却时间。

式(3)与式(5)相比,N 、 ϕ (4, K)、等可消去,则得到:

$$\frac{Y_{5}}{Y_{7}} = \frac{A_{-6}}{A_{-7}} \cdot \frac{(1 - e^{-\lambda_{5}t_{1}})e^{-\lambda_{7}t_{c}}p_{7}\epsilon_{7}\lambda_{5}}{(1 - e^{-\lambda_{6}t_{R}})e^{-\lambda_{6}t_{c}}p_{6}\epsilon_{6}}\phi_{\sigma_{5}}(1 - e^{-\lambda_{5}t_{1}})e^{-\lambda_{5}t_{c}}}$$
(6)

令:

$$A_{6}^{0} = \frac{A_{7}}{(1 - e^{-\lambda_{7}t_{i}})e^{-\lambda_{7}t_{c}}p_{7}\epsilon_{7}}$$

$$A_{6}^{0} = \frac{A_{6}\lambda_{5}}{(1 - e^{-\lambda_{6}t_{R}})e^{-\lambda_{6}t_{c}}p_{6}\epsilon_{6}}\phi_{\sigma_{5}}(1 - e^{-\lambda_{5}t_{i}})e^{-\lambda_{5}t_{c}}}$$

则¹³⁵Cs的裂变产额表示为:

$$Y_5 = \frac{A \cdot \frac{0}{6}}{A \cdot \frac{0}{7}} \bullet Y_7 \tag{7}$$

2 实验部分

2.1 铀靶的制备

选择高纯A1片(纯度在 99.99%以上)作为衬底,其直径 d = 27.0 mm,质量厚度为 50 mg/cm^2 A1片的大小刚好能放入电镀槽底部,A1片的表面先用金相砂纸打磨,然后用去离 子水冲洗,再用乙醇擦拭 3次,最后用丙酮棉球擦干。

应用²³⁵U 丰度为 90. 2% 的U 3O 8 配制成 0.1 mol/L HNO 3 的铀溶液, 铀的质量分数 (w) 为 0. 96 × 10⁻³。 取配制好的²³⁵U 溶液 0. 13 g (含²³⁵U 约 110 μ g)于小烧杯中, 在红外灯下烘干, 用 分析纯的异丙醇溶解, 溶液体积约 5 mL。

将处理好的A1片放入电镀槽^[8]底部,使其与聚四氟乙烯垫圈压紧。用少量异丙醇冲洗电 镀槽,以除去残存水。加入1mL 异丙醇,然后将已准备好的U 料液转入槽子中,并用异丙醇清 洗小烧杯3次,使U 全部转移到槽子中,此时电镀槽中溶液的总体积约为10mL。插入铂阳 极,调节两极间的距离约为10mm,慢速搅拌使溶液均匀,通入冷却水,接通电流。调节电压在 500—1000V,电流在1.0mA 左右,转速约为150 r/m in 条件下,电镀30m in。制得的铀靶的 活性面积为269mm²(d=18.5mm),含²³⁵U 约100 µg,呈黄色,表面光洁,分布均匀。

2.2 捕集装置的制作和辐照

将电镀好的²³⁵U 靶平放, 镀面朝上, 叠加两个A1环,A1环的外径为27.0 mm, 与铀靶衬底 的外径相等, 内径为 d_{PH} 21.0 mm, 每个环厚度为1.0 mm。A1环上放一片 6.0 mg/cm²、d=27.0 mm A1片作为捕集片, 捕集片上再放一片 50 mg/cm²、d= 27.0 mm 的A1片。按紧后, 外 面用A1箔包裹几层, 使A1片与A1环之间不能移动, 即成为碎片捕集装置。

实验共做 11 个这样的碎片捕集装置, 放入内径 40 mm, 高 600 mm 的照射铝罐中, 铝罐冷 焊密封。在我院重水反应堆重水反射层管道辐照, 反应堆的超热指数为 (2.980 ± 0.103) × 10^{-2} 。照射的中子注量率为 3.99 × 10^{13} cm $^{-2}$ /s, 共辐照 66.0 h。

2.3 Au标准靶的制备

用高纯Au 片配制成Au 的溶液,介质为 0.1 mol \pounds HNO₃-0.3 mol \pounds HC1溶液,Au 的质量分数($_{W}$)为 0.778 × 10⁻⁶。准确称取Au 的标准溶液于盛有两层滤纸的聚四氟乙烯测量盘中,在红外灯下慢慢烘干。滤纸上放一高纯A1片(50 mg/cm²),刚好固定于测量盘中,使滤纸不脱落。测量盘外用高纯A1箔包裹几层,作为标准Au 靶。

2.4 捕集片的中子活化

将捕集了裂变碎片的捕集片冷却 6 个月后,放射性活度大大降低。打开捕集装置外的A1 箔,将捕集片放到一片清洗过的 50 mg/cm²、d = 27.0 mm 的A1片上,面朝上,上面放与捕集 装置相同的A1环一个,A1片两片,压紧,外层用A1箔包裹 3 层,使A1环与A1片之间不能移 动。

将包好的捕集片和Au标准靶一起装到照射铝罐内,冷焊密封后,放入重水反应堆反射层 管道照射,热中子注量率由金靶进行监测。共活化 5个捕集片,1号捕集片照射时间为 71.50 h,2,3 号捕集片照射时间为 184.67 h,4,5 号捕集片照射时间为 112.08 h。

2.5 ¹³⁶Cs ¹³⁷Cs 的放化分离

加入一定量的Cs载体(含Cs约30mg)和Sm、Eu、Zn、Zr、Ru、Sr、Mo等反载体溶液(每种元素大约5mg)于50mL烧杯中,并加入5mL6mol/LHCl。将活化后的捕集片(活性面朝下)放入烧杯中,在水浴中慢慢加热使捕集片完全溶解。加入过量的2mol/LNaOH溶液以沉淀稀土元素,并使大量的A1沉淀溶解。离心分离。清液通入CO2,使A1完全沉淀并除去。清液蒸至近干,加入2mol/LHCl刚好溶解蒸干物,加入3mL0.67mol/L柠檬酸钠溶液形成缓冲溶液(pH为6)。加入与水相等体积的0.15mol/L四苯硼钠-醋酸异戊酯溶液萃取Cs。用4mol/LHCl反萃Cs。水相转移另一烧杯中,蒸至近干,加入8mL冰醋酸溶解蒸干物。搅拌下加入8mL碘铋酸钾-冰醋酸溶液,得到沉淀CsBiblo^[9]。将沉淀转移至可拆式不锈钢离心器中离心,离心器中放有已恒重的聚四氟乙烯测量盘。用冰醋酸和乙醇洗涤后,拆开离心器,取出带沉淀的测量盘,放入烘箱中,在130下烘至恒重,计算化学回收率。

2.6 测量仪器及探测效率

¹⁹⁸A u、¹³⁶C s 和¹³⁷C s \mathcal{Y} 射线的测量用美国ORTEC 公司生产的HPGe 探测器,有效体积为 143 cm³,分辨率对⁶⁰Co 1332 keV \mathcal{Y} 射线的 FW HM 为 1.78 keV,连接美国 Canberra 公司制造 的 S-90 多道计算机系统和ORTEC 公司的 92X 多道计算机系统。测量时,在探头上放置厚度 为 1 mm 的Cd 吸收片,源与探头的距离为 10 cm,探测效率已经准确刻度,从能量-效率曲线得 到有关核素¹³⁶C s、¹³⁷C s 和¹⁹⁸A u 等的探测效率列入表 1,误差为 1%。

Table 1 Detection efficiencies of ¹⁹⁸ Au, ¹³⁶ Cs, ¹³⁷ Cs				
核素	E ₃ /keV	p /%	€⁄%	
¹³⁷ C s	661.6	85.1	1.27	
¹⁹⁸ A u	411.8	94.7	1.71	
¹³⁶ C s	818.5	100	1.08	
	340. 6	44.5	1.84	
	1048.1	80.5	0.91	

表 1 ¹⁹⁸Au ¹³⁶Cs 和¹³⁷Cs 的探测效率

3 结果与讨论

3.1 碎片捕集效率

本文设计的捕集装置,经计算捕集裂变碎片的几何效率大约为 40%。A1 捕集片的质量厚度为 5.0 m g/cm²,大于裂变碎片在 A1 中的射程^[10](轻碎片 4 m g/cm², 重碎片 3 m g/cm²)。

本工作中¹³⁵Cs 的裂变产额是相对于¹³⁷Cs 的裂变产额计算的。除了¹³⁷Cs 裂变产额必须准确已知外,另一个条件是¹³⁷Cs 和¹³⁵Cs 必须具有相同的捕集效率。¹³⁷Cs 和¹³⁵Cs 都是重碎片,它 们在U 中的射程为 9 m g/cm²^[10],空气中射程为 1.95 cm^[10]。电镀U 靶中U 的质量为 0.1 mg,质量厚度为 0.037 mg/cm²;U 活性面至捕集片的垂直距离为 2 mm,远小于¹³⁵Cs 和¹³⁷Cs 在U 和空气中的射程;另外,Kaw asak i^[16]研究了裂变产物 Xe 在A1中的扩散行为,认为在U 辐照时 Xe 反冲到A1中扩散可以忽略,在室温下的扩散也可以忽略。因此,我们设计的捕集装 置对¹³⁵Cs 和¹³⁷Cs 的捕集效率相同。

3.2 ¹³⁵Cs 活化时中子注量率的监测

用中子活化分析法测定裂变产额时,文献[1]报道用Au-A1丝,文献[2]报道用⁵Mn作中 子监测器。由于Au的稳定同位素只有¹⁹⁷Au,并且其活化截面数据非常准确,¹⁹⁷Au的活化产物 ¹⁹⁸Au的半衰期适中,因此,本工作选用Au作为中子监测器。

¹⁹⁷A u 俘获中子生成¹⁹⁸A u, 而¹⁹⁸A u 又俘获中子生成¹⁹⁹A u, 它们俘获中子的有效截面分别 为 98.8×10⁻²⁸m²和 2.58×10⁻²⁴m²。如果反应堆中子注量率较低, 照射时间较短时, ¹⁹⁸A u 的 活化可以忽略。但因为活化时中子注量率比较高, 辐照时间比¹⁹⁸A u 的半衰期还长, 所以¹⁹⁹A u 的量不可忽略。用以下微分方程式描述¹⁹⁷A u 的照射过程:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = - \Phi_{\bar{z}N}$$

$$\frac{N}{\mathrm{d}t} = - \Phi_{\bar{z}N} - N + \Phi_{\bar{z}N}$$
(8)

式中, σ , 为¹⁹⁷Au 中子俘获截面; N_0 为加入¹⁹⁷Au 的原子数; N 为辐照期间¹⁹⁷Au 的原子数 目; N_0 为¹⁹⁸Au 的原子数; σ_8 为¹⁹⁸Au 中子俘获截面; λ 为¹⁹⁸Au 的衰变常数; ϕ 为反应堆辐照时的 中子注量率。当 t=0 时, $N_0=0$, $N=N_0$ 。利用起始条件, 对式(8)进行积分, 得到式(9):

$$N = \frac{\sigma_7 \Phi_0}{(\lambda + \sigma_8 \Phi - \sigma_7 \Phi)} (e^{-\sigma_7 \Phi} - e^{-(\lambda + \sigma_8 \Phi)})$$
(9)

用¹⁹⁸Au 411.8 keV *Y*射线的特征峰净面积来获得¹⁹⁸Au 的活度,而反应堆照射时间、¹⁹⁷Au 的原子数、¹⁹⁷Au 和¹⁹⁸Au 的中子俘获截面以及¹⁹⁸Au 的衰变常数等参数都是已知的,所以可以利用式(9)求出中子注量率。计算结果列入表 2(利用式(9)计算出的中子注量率,已考虑了¹⁹⁸Au的活化损失)。

捕集片号	金靶号	$m ({}^{197}\text{Au}) / \mu g$	t/h	$\oint cm^{-2} \cdot s^{-1}$	$\phi_{\rm cm}^{-2} \cdot s^{-1}$
1#	1	9.33 × 10 ⁻²	71.50	8.64 × 10^{12}	8.41(1±1.3%)
	2	7.85 × 10 ⁻²		8.14 × 10 ¹²	× 10 ¹²
	3	7.92 × 10 ⁻²		8.36 × 10 ¹²	
	4	7.90×10^{-2}		8.49 × 10 ¹²	
2# , 3#	1	7.10 × 10 ⁻³	184.67	2.52 × 10^{13}	2.50(1±0.67%)
	2	9.81 × 10 ⁻³		2.49 × 10 ¹³	× 10 ¹³
4# , 5#	1	1.10×10^{-1}	112.08	1.26×10^{13}	1.24(1±0.83%)
	2	1.04×10^{-1}		1.26×10^{13}	× 10 ¹³
	3	1.11×10^{-1}		1.22×10^{13}	
	4	8.30 × 10^{-1}		1.23×10^{13}	

 \sim 表 2 Au 监测得到¹³⁵Cs 活化时的中子注量率

Table 2	Results of neutron	flux measured b	y Aumonitor
---------	---------------------------	-----------------	-------------

捕集片一共活化 3 次,由于每次活化位置不一样,监测到的中子注量率也不一样。但是,同一位置同一时刻照射时,用几个Au监测器监测到的中子注量率符合得较好,偏差小于 1.3%。 所以用Au作为中子监测器来监测¹³⁵Cs活化时的中子注量率是满意的。

¹⁹⁸Au 测量时,累积计数达 10⁵ 以上,计数统计涨落为 0.3%,Au 标准溶液取样误差 0.2%。这两项误差包括在同时辐照几个Au 靶的相对标准偏差 1.3% 中。另外,¹⁹⁸Au 测量效 率误差为 1%,Au 浓度误差 0.5%,¹⁹⁷Au 活化截面误差为 0.3%。所以,由Au 作为中子监测器 测到的中子注量率的误差为 1.7%。

3.3 ¹³⁶Cs 和¹³⁷Cs 的放化分离

通过大量条件实验建立的分离和纯化放射性Cs的流程将另文叙述。A1 捕集片溶解后, 溶

© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

7

液中存在大量的 Al^{3+} 。为了除去 Al^{3+} ,实验采用通入 CO_2 的办法。溶液被 CO_2 饱和后,其pH值正好适合A1(OH)3的沉淀条件(pH=5.8)。若采用加入NH4OH沉淀A1(OH)3,会引入过 量的NH4,对分离Cs不利。此流程对其它裂变核素有良好的去污能力。Cs的化学回收率也是 满意的.5个捕集片的化学回收率分别为 87.56% (1[#])、62.14% (2[#])、71.92% (3[#])、88.35% $(4^{\#})$, 86.41% $(5^{\#})$

3.4 ¹³⁶Cs 和¹³⁷Cs 放射性测量

活化 5 个²³⁵U 的裂变捕集片,经过放化分离和纯化,制成 5 个 Cs 沉淀源,进行)》测量。在 分离出的Cs 源中,除活化产生的¹³⁶Cs 外,还存在大量的裂变反冲的¹³⁷Cs,因此,¹³⁶Cs 测量是在 很强的¹³⁷Cs 背景下进行的。由于所用的 HPGe 探测器有良好的分辨率, 所以¹³⁷Cs 不会干扰¹³⁶ Cs 的测量(见图 1)。 计算得到¹³⁶Cs 和¹³⁷Cs 的A₆和A₇, 以及A⁸和A⁹, 列入表 3。

+=====================================	13	³⁶ C s	13	⁷ Cs
捕集斤亏 ——	$A 6/s^{-1}$	$10^{-7}A_{6}^{0}/Bq$	$A 7/s^{-1}$	10 ⁻ ⁷ A ⁰ /Bq
1	1.37	6.32	109.5	5.96
8	3.91	3.03	58.20	3.12
9	5.02	4.74	84.44	4.53
10	2.34	5.88	123.8	5.87
11	1.63	5.15	108.8	5.15

表 3 捕集片中¹³⁶Cs和¹³⁷Cs的放射性活度 Table 3 Activities of ¹³⁶Cs and ¹³⁷Cs in Al catchers

	110011 10205 01	0.5 4.1.4	00 11 11 0	tener s
	¹³⁶ C s			¹³⁷ C s

¹³⁶C s 的 A ⁸ 误差为 6.1% , 误差来源包括¹³⁶C s 测量的统计涨落(0.8%) 和探测效率(1%)、 中子注量率测量(1.7%)、 135 Cs活化截面(5.7%)等。在 135 Cs活化生成 136 Cs时,由于 136 Cs的中 子俘获截面 1.3 × 10⁻²⁸m²,也可以活化,使¹³⁶Cs的放射性降低,但通过计算发现¹³⁶Cs的损失量 小干 0.01%, 可以忽略。

 137 Cs的 $A^{\frac{9}{2}}$ 误差来源是: 测量的统计涨落为 0.1%, 探测效率的误差为 1%。 所以 $A^{\frac{9}{2}}$ 的误 差为 1%。 137 Cs 的活化截面为 0.25 × 10⁻²⁸ m^{2[11]}, 所以 137 Cs 在 235 U 靶辐照时和捕集片活化时, 它的损失可以忽略。(A - 1)核¹³⁶Xe 活化生成的¹³⁷Xe. 经衰变产生的¹³⁷Cs 的量也可以忽略。并 且由于裂变-捕集片是密封的. 137 Cs的先驱核(气体)不会逃逸, 所以, 由 137 Cs的 A^{9} 计算的裂变 产额是准确的。

3.5 ¹³⁵Cs 的裂变产额

在计算 136 Cs的 A^{0}_{2} 和 137 Cs的 A^{0}_{2} ,以及 135 Cs的裂变产额时,所用的主要核数据列入表 4。由 于得到捕集片中¹³⁶Cs的 A^{0}_{2} 和¹³⁷Cs的 A^{0}_{2} 并且¹³⁷Cs的裂变产额 Y_{7} 已知,因此利用式(7)就可 以计算出¹³⁵Cs的裂变产额 Ys,计算得到¹³⁵Cs的裂变产额列入表 5。从表 5 看出. 我们用中子活 化分析法测得的 135 Cs的裂变产额为 6.34%,偏差为 3.8%。考虑到 137 Cs的 A^{9} 误差为 1.0%, 137 Cs 的裂变产额 Y_7 应用的是最新编评值, 其误差为 1%, ^{136}Cs 的 A°_{\circ} 误差为 6.1%, 因此, 给出 135 Cs的裂变产额的误差为 7.3%。最终给出¹³⁵Cs 的裂变产额值为(6.34 ± 0.46)%。

Fig. 1 The \mathcal{Y} spectrum of Cs source separated from Al catcher

表 4 计算¹³⁵Cs 的裂变产额时所用的核数据

Table 4	The nuclear	da ta	used	'n	th is	work
Iable .	The nuclear	uuu	uscu		ui 15	

核素	<i>T</i> 1/2	$o^{1/10^{-28}}m^{2}$	Y ²⁾ /%
¹³⁷ C s	30. 174 a ¹⁾	(0.25 ± 0.03)	6.236
¹³⁶ C s	$13.0 d^{3)}$	1.3	
¹³⁵ C s		(8.7 ± 0.5)	
¹⁹⁷ A u		(98.8 ± 0.3)	
¹⁹⁸ A u	2. 6935 d ⁴⁾	(25800 ± 1200)	

注: 1) σ为(n,))反应截面,引自参考文献[11]; 2) y 为裂变产额,引自参考文献[12]; 3)引自参考文献[13]; 4)引自 参考文献[14]

表 5 测得的¹³⁵Cs 裂变产额

Table 5 Deter	m ination resul	ts of the fission	ı yield of	¹⁵⁵ Cs
---------------	-----------------	-------------------	------------	-------------------

捕集片号	$10^{-7}A_{6}^{0}/Bq$	$10^{-7}A_{7}^{0}/Bq$	$Y(^{135}Cs)/\%$
1#	6.32	5.96	6.62
8#	3.03	3.12	6.04
9#	4.74	4.53	6.53
10#	5.88	5.87	6.25
#			6.04

© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

从表 5 可以看出, ¹³⁶C s 的A[§] 构成了裂变产额误差的最大来源, 主要原因是¹³⁵C s 中子活化 截面的误差太大, 达 5. 7%。这说明准确的中子活化截面在活化法测定裂变产额工作中的重要 性。本文用中子活化法给出热中子诱发²³⁵U 裂变产生的¹³⁵C s 裂变产额 Y 与文献值列入表 6。从 表 6 可以看出, 本文测得的¹³⁵C s 的裂变产额与 Inghram ^[4]和W iles^[5]等给出的值相差较大, 而 与 Katcoff^[6]和 Pertruska^[7]等的值完全符合。另外, 他们给出的误差均在 10% 以上, 而本文给 出的误差为 7. 3%。

 表 6 不同方法测得¹³⁵Cs 的裂变产额比较

 Table 6 Results of the fission yield of ¹³⁵Cs by different inveitigators

 测量方法
 Y(¹³⁵Cs)/%
 文献

が重力な	I (CS) / %	入的
质谱法	7.98	[4]
质谱法	7.16	[5]
质谱法	6.40	[6]
质谱法	6.41	[7]
中子活化法	6.34	本文

在质量数为 135 的衰变链^[15]中,由于¹³⁵Cs的半衰期较长,它的先驱核的半衰期都比较短, 而它的 β衰变子体¹³⁵Ba 的独立裂变产额非常低,所以,本文测得的¹³⁵Cs 的裂变产额实际上等 于质量数为 135 的链产额。

我们的工作说明,用反冲捕集-中子活化分析法测定裂变产物中长寿命或稳定核素的裂变 产额是完全可行的,此法在裂变产额测定方面还有不少工作可做,我们根据核素的活化截面和 裂变产额进行估算,发现有 20 多个稳定或长寿命核素可以用此法测定。

本工作的物理测量和数据处理,得到唐培家、李学良、王书暖、李泽等同志的帮助,在此表 示感谢。

参考文献

- A um ann DC, Friedmann L. Cum ulative Yield of 1. 6 × 10⁷Y ¹²⁹ I From Them al-neutron Induced Fission of ²³⁵U. Radiochem A cta, 1982, 30: 19
- 2 Pillay KKS, M eyer RJ, L arsen RP. Determ ination of the Fast Fission Yield of ¹⁴¹PrU sing N eutron A ctivation A nalysis J R adioanal Chem, 1969, 3: 233
- 3 Sergeenkov YV. Nuclear Data Sheets for A = 135 Nuclear Data Sheets, 1987, 52(2): 215
- 4 Inghram M G, Hess DC, Reynolds JH. On the Relative Yields of Fission Cesium Isotopes Phys Rev, 1949, 76(11): 1717
- 5 W iles DR, Sm ith BW, Horsley R, et al Fission Yields of the Stable and Long-lived Isotopes of Cesium, Rubidium, and Strontium and Nuclear Shell Structure Can J Phys, 1953, 31: 419
- 6 Katcoff S, Rubinson W. Yield of ¹³⁸Xe in the Themal Neutron Fission of ²³⁵U. Phys Rev, 1953, 91(6): 1458
- Petruska JA, Melaika EA, Tom linson RH. The Fission Yield of the Cesium Isotopes Formed in the ThermalN eutron Fission of ²³⁵U and the Neutron Absorption Cross Section of ¹³⁵Xe Can J Phys, 1955, 33(11): 640

136

- 8 严叔衡, 苏树新, 张淑兰. 分子电镀法定量沉积铀和钚. 原子能科学技术, 1977, 3: 260
- 9 庄慧娥,李秀芳,姜耀中.弱放废液中铯-137 的测定.原子能科学技术,1977,2:148
- 10 普罗菲奥AE著.辐射屏蔽与计量学.顾俊仁等译.北京:原子能出版社, 1989.46
- 11 L ide DR. Handbook of Chem istry and Physics 72nd ed-Boston: CRC Press, 1991
- 12 James MF, Mills RW, Weaver DR. A New Evaluation of Fission Product Yields and the Production of a New Library (UKFYZ) of Independent and Cumulative Yields, Part II: Tables of Measured and Recommended Fission Yield AEA-TRS-1018, 1991
- 13 Baba S, Baba H, N atsume H. Half-lives of Some Fission Product Nuclides J Inorg Nucl Chem, 1971, 33: 589
- 14 Zhou ChM. Nuclear Data Sheets for A = 198 Nuclear Data Sheets, 1990, 60(2): 635
- 15 Burrow's TW. Nuclear Data Sheets for A = 135 Nuclear Data Sheets, 1987, 52(2): 282
- 16 Kawasaki S. Effect of Grain-boundary M igration on the Xe D istribution in A lum inium. J Nucl M ater, 1968, 26: 338

M EASUREM ENT OF FISSION Y IELD OF ¹³⁵Cs FROM THERMAL NEUTRON INDUCED FISSION OF ²³⁵U BY NEUTRON ACTIVATION ANALYSIS

Zhang Shengdong Guo Jingru Cui Anzhi Li Daming Zhang Shulan Sun Hongqing Yang Yi Li Hui

(China Institute of A tom ic Energy, P. O. B ox 275 (26), B eijing 102413)

ABSTRACT

The fission yield of ¹³⁵Cs in the thermal neutron fission of ²³⁵U is measured accurately by a neutron activation analysis in which the fission fragments are recoiled to a Al catcher. The preparation of ²³⁵U targets and the recoil-catcher assembly, determination of neutron flux by A u flux monitor, radiochemical separation and detection of ¹³⁶Cs and ¹³⁷Cs are studied. The fission yield of ¹³⁵Cs is obtained to be (6 34 ± 0 46)% with the fission yield of ¹³⁷Cs as standard.

Key words Neutron activation analysis Recoil-catch ¹³⁵Cs Fission yield