分子动力学模拟研究液态 T₂O 的振动光谱

吕廷海

(北京石油化工学院化工系,北京 102600)

用分子动力学模拟研究了液态氚水(T₄O)的三个分子内振动的光谱性质,并与实验值比较,给 出了液态 T₄O 的对称和非对称拉伸振动光谱。

关键词 分子动力学模拟 氚水 振动光谱 速度自相关函数

液态氚水(T_Q)的振动光谱,只有弯曲振动光谱已被用红外光谱法测定^[1,2],而对称和非 对称拉伸振动光谱至今还没有被测定。利用气液相同位素效应的精确测定数据,也可以计算液 体的振动光谱^[3,4],但这种方法需要操作大量有毒 T_Q 并进行复杂的实验。利用分子动力学 (MD)模拟,可以研究这些不能用实验直接或间接测量的有毒液体的性质。分子动力学模拟已 广泛地用于液体,特别是水的研究。用于MD 和MC(蒙特卡罗)计算机模拟研究液态水的相互 作用势有刚性、柔性和极性三种。某些液态水模型曾用于研究液态 H_Q 或 D_Q 的振动光 谱^[5-7]。但到目前为止,用模拟方法研究液态 T_Q 的振动光谱还未见报道。本文用MD 模拟预 测液态氚水的对称拉伸和非对称拉伸振动光谱。

1 方法原理

模拟中使用的BJH 柔性水模型^[5]是在 CF 水模型^[8]的基础上改进而来的,它已成功地用 于纯水^[5]、电介质水溶液^[9]、金属介面上水^[10]、超临界水^[11]等振动光谱的模拟计算。CF 液态水 模型是把液态水看成由氢和氧原子按 2 1 组成的混合物,用三个有效对势V_{HH}(r),V_{OH}(r)和 V₀₀(r) 描述体系中原子对的相互作用。CF 液态水模型能正确地表示水的分子结构、单个水分 子的偶极矩及氢键等性质,但不能准确地表示液态水的振动频率和气-液相变时的振动频率位 移。而改进后得到的BJH 柔性水模型克服了这一缺点,总势能分成分子间和分子内两部分。分 子间的对势能表示为:

收稿日期: 1995-10-04 收到修改稿日期: 1996-08-05

 $V_{00}(r) = 604.6/r + 111889/r^{8.86} - 1.045 \{ \exp \left[-4(r-3.4)^2 \right] - \exp \left[-1.5(r-4.5)^2 \right] \}$ (1)

$$V_{\text{OH}}(r) = - \frac{302}{r} + \frac{26.07}{r^{9.2}} - \frac{4179}{\{1 + \exp[40(r - 1.05)]\}} - \frac{16.74}{\{1 + \exp[5.493(r - 2.2)]\}}$$
(2)

 $V_{\rm HH}(r) = 151.1/r + 418.33/\{1 + \exp[29.9(r - 1.968)]\}$

子间的距离,以 0.1 nm 为单位。分子内的对势能是用 Carney 等^[12]的水的势能公式表示:

$$V_{\text{intra}} = L_{ij}\rho_i\rho_j + L_{ijk}\rho_i\rho_j\rho_k + L_{ijkl}\rho_i\rho_j\rho_k\rho_l$$
(4)

式中, $L_{ijk} L_{ijk} L_{ijk} \Delta 31$ 是二次、三次和四次方力常数; $\rho_1 = (r_1 - r_e)/r_1$, $\rho_2 = (r_2 - r_e)/r_2$, $\rho_3 = \alpha - \alpha_e = -\alpha$, 其中 r_1 、 r_2 和 α 是瞬时O - H 键长和H - O - H 键角, r_e 和 α 分别为对应的平 衡值($r_e = 0.09572 \text{ nm}$, $\alpha = 104.52$); 其它参数列入表 1。对重水和氚水, 除了氢同位素原子的 质量增加外, 假设其它参数都与氢水相同。

	农1 用 川桂	KJ /11101		
$\rho_1\rho_2(\rho_{1+} \rho_2)$	$(\rho_1^2 + \rho_2^2) \propto$	$\rho_1^4 + \rho_2^4$	$\rho_1 \rho_2 (\rho_1^2 + \rho_2^2)$	$(\rho_1^3 + \rho_2^3)$ a
- 55.7272	237.696	5383.67	- 55.7272	349.151
$\rho_1^2 + \rho_2^2$	$\rho_1 \rho_2$	$(\rho_{1+} \ \rho_{2}) \alpha$	($(\rho_1^3 + \rho_2^3)$
2332.27	- 55.7272	126.242	209.860	- 4522.52

表1 用于方程(4)BJH 水模型分子内的势能常数

模拟体系采用微正则系综。为了便于分析和比较,除了 T₄O 外,在同样条件下还模拟计算 了 H₄O 和 D₄O。液态 H₄O、D₄O、T₄O 的密度皆取实验值, 298.2 K 时分别为 0.9971、 1.1044^[13]、1.2138 g/mL^[14]。模拟胞为具有周期性边界条件的立方体,含有 200 个水分子,由 水的密度计算出相应的立方体的边长,切断半径为胞边长的 1/2。用 Gear 五级预测-校正法^[15] 解经典运动方程和用位移力法^[15]计算处理粒子间相互作用的远程 Coulom b 势能和近距离势 能。

由 200 个液态 H₄O 模拟得到的旧构型作为该模拟的起始构型。模拟过程用的时间步长皆 为 0.1 f₈、经过 5 p s 的模拟运算使体系达到平衡后再开始采集数据,对 H₄O, D₄O, T₄O 的数据 采集时间分别为 120, 120 和 150 p s。模拟过程的平均温度皆接近于 298.2 K。在对粒子的速度 不作重新校正的条件下,对 H₄O, D₄O, T₄O 模拟过程的总能量变化分别小于 0.4%, 0.05% 和 0.02%。

2 结果和讨论

按Bopp¹¹²¹方法计算液态水的振动光谱。在水分子的质心坐标系中,两个氢原子的瞬时速 度被投影在瞬时单位矢量上:一是在相应的两个O-H键方向的单位矢量uku2上的投影分 别为*U*1和*U*2;二是在水分子平面内垂直于O-H键,但方向朝外的单位矢量v1和v2上的投 影分别为*V*1和*V*2。则可以定义:

$$Q_1 = U_1 + U_2,$$

 $Q_2 = V_1 + V_2.$

kJ/mol

$$O_3 = U_1 - U_2$$

式中,*Q*,*Q*²和*Q*³分别近似地表示水分子的三个简正振动模对称拉伸、弯曲和非对称拉伸振动。用下式计算投影速度的归一化自相关函数:

图 1 液态 T₂O 分子的三个分子内振动的归一化投影速度自相关函数

式中, *j* 为进行平均的时间起点数; *i* 为体系中水 分子数。当 k=1,2,3 时, 计算得到的氚水分子 3 个简正振动投影速度归一化自相关函数示于图 1。由归一化自相关函数的 Fourier 变换得到液态 T₂O 的三个简正振动模的归一化振动光谱强度随 波数的变化关系示于图 2。液态H₂O 和D₂O 的光 谱图与液态 T₂O 的相似, 当然, 最大峰值的位置 是各不相同的。模拟计算得到的液态 H₂O, D₂O, T₂O 的光谱强度最大峰值的波数和文献实验值及 半峰宽(FW HM)列入表 2。由表 2 中的数据可见, 模拟计算得到的液态 T₂O 的 σ 值与实验值只差 22 cm⁻¹。模拟计算得到的液态 H₂O 的 σ 与实验 值的相对偏差在 ± 1% 以内, σ 的偏差也小于 ± 4%。模拟计算得到的液态 D₂O 的 σ 与实验值

图 2 液态 T₂O 分子的三个分子内振动模 的归一化振动光谱强度随波数的变 化关系

几乎完全一致, σ 和 σ 与实验值的相对偏差只有约±1%。模拟计算得到的液态 H O 和 D O 光谱的半峰宽与实验值相比, 也在合理的偏差范围之内。由模拟计算得到的 H O 与 D O 和 D O 与 T O 光谱强度最大值的波数比 σ (μ₂0)/σ (σ (μ₂0)) Λ σ (μ₂0)/σ (μ₂(τ₂0)), 对称拉伸振动 (Q₁)、弯曲振动(Q₂)、非对称拉伸振动(Q₃)分别为 1.38 1.37、1.37 和 1.20、1.19、1.19、这与 理想同位素效应的比值为 1.37 和 1.19 近似一致。由以上分析可以断定, 用 BJH 水模型进行 分子动力学模拟得到的液态 T O 的对称和非对称拉伸振动 σ 和 σ 值, 是可靠的理论预测值。 但需要指出, 由于在MD 模拟中只从经典力学考虑, 因此从MD 模拟得到的振动光谱的形状 2 © 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r

		表 2	液态 H ₂ O、D ₂ O、T ₂ O 振动光谱最大峰值的波数和半峰宽				cm ⁻¹
		Øi	FW HM 1	Ōž	FW HM 2	<i>0</i> 3	FW HM 3
	本工作	3480	229	1705	104	3594	263
H ₂ O	R	34501)	250 ²⁾	16401)	75 ³⁾	-	
	R	34501)	175 ²⁾	16451)	-	36301)	1402)
	本工作	2515	165	1247	73	2630	168
D 20	R	2500 ¹⁾	190 ²⁾	1225 ¹⁾	60 ³⁾	-	
	R	2515 ¹⁾	190 ²⁾	1235 ¹⁾	-	2660 ¹⁾	140 ²⁾
	本工作	2090	128	1046	59	2217	128
T ₂ O	R			10244)	1019 ⁵⁾		

是不能直接与拉曼光谱和红外光谱实验得到的振动光谱相比较的。

注:统计误差为±10 cm⁻¹; IR、R 分别表示红外光谱和拉曼光谱实验值;

1) 引自文献[16],2)引自文献[17],3)引自文献[18],4) 引自文献[1],5) 引自文献[2]

本研究工作是由德国DAADK.C.Wong 资助, 在Max-Planck 化学所进行的, 在此表示感 谢。

参考文献

- 1 Genty C, Reversat G Isotopic Analysis of Tritiated Water Anal Chem, 1973, 45(9): 1710
- 2 吕廷海, 王祖泽, 茅庆南. 液态H₂O, HDO, D₂O, HTO, DTO, T₂O 的红外吸收光谱. 原子能科学技术, 1982, 1: 73-81
- 3 Bigelisen J, Cragg CB, Jeevanandam M. V apor Pressures of Isotopic M ethanes-evidence for H indered Rotation J Chem Phys, 1967, 47: 4335
- 4 Popow icz A, O i T, Shu m an J, et al V apor Pressure Isotope Effects in L iquid Fluoroform. J Chem Phys, 1982, 76: 3732
- 5 Bopp P, Jancoso' G, Heinzinger K An Improved Potential for Non-rigid W ater Molecules in the Liquid Phase Chem Phys Lett, 1983, 98: 129
- 6 Demontis P, Suffritti GB, Fois ES, et al An Implemented Potential of Non-rigid Water Molecules for Molecular Dynamics Smulations Chem PhysLett, 1986, 127: 456
- 7 Wallqvist A, Teleman O. Properties of Flexible Water Models Mol Phys, 1991: 74: 515
- 8 Stillinger FH, Rahm an A. Revised Central Force Potentials for Water J Chem Phys, 1978, 68: 666
- 9 Bopp P. A Study of the V ibrational M otions of W ater in an A queous CaCl₂ Solution Chem Phys, 1986, 106: 205
- 10 Spohr E Computer Simulation of the Water/Platinum Interface: Dynamical Results J Chem Phys, 1990, 141: 87
- 11 Kalinichev AG, Heinzinger K Molecular Dynamics of Supercritical Water: A Computer Simulation of Vibrational Spectra With the Flexible BJH Potential Geochim Cosmochim Acta, 1995, 59: 641
- 12 Carney GD, Curtiss LA, Langhoff SR. Inproved Potential Functions for Bent AB₂M olecules: W ater and O zone J M ol Spectr, 1976, 61: 371
- 13 L indsay RB. American Institute of Physics Handbook. 3rd ed New York: M c-Grew-Hill Book Company, 1982, 152-154
- © 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r

- 14 Goldblatt M. The Density of L iquid T2O. J Phys Chem, 1964, 68: 147
- 15 A llen M P, Tildesley DJ. Computer Simulation of Liquids Oxford: Clarendon Press, 1987. 145—146; 340—342
- 16 W alrafen GE Ram an Spectral Studies of the Effects of Electrolytes on W ater J Chem Phys, 1962, 36: 1035
- 17 Walrafen GE Continuum Model of Water-An Erroneous Interpretation J Chem Phys, 1969, 50: 567
- 18 Eisenberg D, Kauzman W. The Structrue and Properties of Water Oxford: Clarendon Press, 1969. Table
 4, 10

STUDY ON VIBRATIONAL SPECTRA OF LIQUID T20 WITH MD SMULATION

Lu Tinghai

(Chan ical Engineering Department, Beijing Institute of Petrochan ical Technology, Beijing 102600)

ABSTRACT

The intramolecular vibrations have been calculated from molecular dynamics simulation of tritiated water T_2O with the flexible BJH water model by Fourier transformations of the corresponding velocity autocorrelation fuctions at room temperatrue. The results obtained from the simulations are compared with the experimental values. The fequencies for the stretching vibrations of T_2O are predicted

Key words Molecular dynamics simulation Tritiated water V ibrational spectrum V elocity autocorrelation function