Vol 19 No. 4 Nov. 1997

235 Th β 衰变端点能量测定中的放化分离 * 张天梅 李文新 袁双贵 徐树威

(中国科学院近代物理研究所, 兰州 730000)

采用 PM B P-CHC ls 溶剂萃取法从²³⁸U (n, α) ²³⁵Th 反应的靶材料、裂变产物及其它反应产物中 分离钍, 以测定其 β 端点能量。结果表明, 235 Th 的半衰期为 (7.3 ± 0.2) m in, 与文献值吻合。此流程 的分离时间约 $27\,\mathrm{m}$ in, 化学产额约 25%, $^{235}\mathrm{Th}$ 源的 Y谱中仅有少量的碘和碲沾污。测得的 $^{235}\mathrm{Th}$ 的 β端点能量为 (1.44 ± 0.04) M eV, 从而确定其 $Q = (1.47 \pm 0.07)$ M eV。

关键词 ²³⁵Th β端点能量 萃取 PMBP

迄今为止, 235 Th 的 β 端点能量尚未被确定。 为此, 选用 238 U (n, α) 235 Th 反应产生 235 Th, 并 测定其 β 衰变端点能量。由于在作为靶物质的硝酸铀酰中,天然铀母子体平衡时含有的大量 234 Th 子体会干扰 235 Th 的 β 测量; 同时, 反应产物中除 235 Th 之外, 还共存有大量的靶物质铀及裂 变产物, 这些裂变产物的产额比 235 Th 的产额大 3-4 个数量级(其截面比约为 3×10^{-4} , 即 0.6 $\times 10^{-27}$ cm²/2×10⁻²⁴ cm²), 如不除去, 将严重干扰²³⁵Th 的 γ 测量。为此, 本工作在文献[1]基 础上, 拟定一个用 PM B P-CHCl₃ 萃取纯化²³⁵Th 的程序并用于²³⁵Th 的 β 衰变端点能量测定。

1 实验部分

1.1 主要试剂和仪器

UO2(NO3)2·6H2O; 1-苯基-3-甲基-4-苯酰基吡唑啉酮-5 [5](PMBP), 分析纯, 使用时用 CHCl₃ (分析纯)配制成 0.05 mol/L; K-600 kV 高压倍加器, 上海先锋厂出品; HPGe 探测器, 相对效率 18%, 对⁶⁰Co 1.332 M eV 处的能量分辨率为 1.9 keV; 半导体望远镜 β 谱仪^[2]; PC-CAMAC多参数获取系统^[3]。

选用UX(²³⁴Th)作钍的放射性指示剂。该同位素半衰期为 24.1 d, 子体UX2(²³⁴Pa^m)的 $E = 2.29 \,\mathrm{M} \,\mathrm{eV}$,易于测量并可以从天然铀中制得。

1.2 化学分离流程的建立

1.2.1 铀靶UO2(NO3)2·6H2O 中总 Y放射性的测定 按图 1 所示流程将UO2(NO3)2·6H2O 转化成(NH4)zUzO7并测量其总 Y放射性(以N x表示), 以此作为未分离 Th 的计数标准。

^{*} 国家自然科学基金资助项目

图 1 UO₂(NO₃)₂·6H₂O 转化为(NH₄)₂U₂O₇的流程框图

1. 2. 2 PM BP-CHCl₃ 萃取²³⁴Th 按图 2 所示流程将UO₂ (NO₃)₂·6H₂O 用 PM BP-CHCl₃ 萃 取二次后, 在不同步骤制源测其放射性 $N_{\frac{1}{2}}N_{\frac{1}{3}}$ 和 $N_{\frac{1}{4}}$ 。将图 1, 2 各步测量结果列入表 1。由表 1 看出, 第一次萃取, Th 的萃取率为 93%, 二次萃取, Th 的萃取率可提高到 98%。

图 2 PMBP-CHCl3 二次萃取UO2(NO3)2·6H2O 的流程

表 1 PMBP-CHCl3 萃取UO2(NO3)2 前后的 Y放射性测量结果

	$N Y_1 / \text{m in}^{-1}$	$N \gamma_4 / \text{m in}^{-1}$	$N \gamma_4 / N \gamma_1$	$N Y_2 / \text{m in}^{-1}$	N Y ₃ /m in⁻¹
93 keV	18780	1006	~ 5%	17325	420
1001 keV	340	3	0.8%		

1. 2. 3 235 Th 的纯化 辐照后的靶子经 PM PB $^{-}$ CHCl₃ 一次萃取后, 大量的靶物质铀和裂变碎片被分离除去。但干扰 235 Th β 衰变端点能量测量的核素除了 234 Th $^{-}$ 外, 还有 10 M $^{-}$ 0、 $^{-101,104}$ T $^{-134}$ F 和 131 I 等。为此, 实验将硝酸铀酰转化为重铀酸铵(图 3)后进行辐照, 然后将辐照后的重铀酰铵溶解 PMBP 萃取纯化 235 Th (图 4)。 $^{-}$ 0 UO $^{-}$ 0 (NO $^{-}$ 3) $^{-}$ 2 转化成 (N H₄) $^{-}$ 2U $^{-}$ 0 $^{-}$ 6, 不仅除去了大量 234 Th, 而且也使铀靶中的铀含量由 $^{-}$ 40%增加到 $^{-}$ 76. 20%,从而提高了核反应的有效靶量。用

第4期

PMBP 萃取法将辐照过的铀靶进行萃取分离, 将极微量的反应产物 235 Th 从大量的靶物质铀及裂变产物中分离, 纯化出来, 进行 \mathcal{Y} 测量。由 \mathcal{Y} 射线的能量、半衰期及分支比等关系, 确认了 235 Th的存在。将分离纯化后的 235 Th 制成 β 源, 即可进行 β 端点能量的测量。

图 3 UO 2 (NO 3) 2 · 6H 2O 转化为固体 (NH 4) 2U 2O 7 流程图

2 结果与讨论

约 $7 \, \mathrm{g} \, (\mathrm{NH}_4) \, \mathrm{JU} \, \Omega_7$ 在中国科学院近代物理所高压倍加器上用 $14 \, \mathrm{M} \, \mathrm{eV}$ 中子照射 $20 \, \mathrm{m} \, \mathrm{in}$ 。 照射之后立即用图 4 给出的流程对样品进行化学分离并制成 β 源, 用一台半导体望远镜 β 谱仪和一台 HPGe 探测器分别探测 β 和 γ 放射性, 用M -20 多道分析器获取了时间序列谱并记录于磁带上。测到了文献[1]中给出的所有 $17 \, \mathrm{\%} \, \mathrm{Me}$ 。图 5 和图 6 分别给出了所测 $^{235} \mathrm{Th}$ 源最强峰 $417.0 \, \mathrm{keV}$ 的 γ 射线衰变曲线和部分 γ 谱。为了对 β 谱进行分解,测量时间持续了约 $5 \, \mathrm{h}$ ($^{235} \mathrm{Th}$ 的半衰期约为 $7 \, \mathrm{min}$)。在所测得的 β 谱中仅包含 $^{235} \mathrm{Th}$ 及其子体 $^{235} \mathrm{Pa}$ 和少量的 $^{234} \mathrm{Th}$ 及其子体 $^{234} \mathrm{Pa}$,利用它们半衰期不同的特点,可以对测得的 β 谱进行分解。 β 测量的结果及对 $^{235} \mathrm{Th}$ 和其子体 $^{235} \mathrm{Pa}$ 的 Fem "kurie 标绘参见文献[4]。由 γ 测量得到的 $^{235} \mathrm{Th}$ 的半衰期值 $(7.3 \pm 0.2) \, \mathrm{min}$ 与 β 测量得到的结果相符合,与文献[5]给出的值也吻合很好,进而得到了 $417 \, \mathrm{keV}$ γ 射线对跃迁到 $^{235} \mathrm{Th}$ 子体基态区域的 γ 射线的分支比为 $2\% \pm 1\%$,这一结论支持了由M irzadeh 等 $^{(1)}$ 用其它方法给出的 $^{235} \mathrm{Th}$ 的部分能级图。根据这个衰变纲图,确定了 $^{235} \mathrm{Th}$ 的 Q_F $(1.47 \pm 0.07) \, \mathrm{M}$ eV。这个结果与由 $\mathrm{A} \, \mathrm{sghar}$ 等 $^{(6)} \mathrm{R} \, \mathrm{R} \, Q_{\alpha}$ 测定值推出的 Q_B 值 $(1.44 \pm 0.08) \, \mathrm{M}$ eV 符合得很好。

图 4 238 U $(n, \infty)^{235}$ Th 反应中 235 Th 的化学分离流程

图 5 235Th 417 keV Y射线衰变曲线

图 6 235 Th 的部分 γ 谱

3 结 论

此流程的分离时间约 $27 \, \text{m in}$ (包括照射结束靶子被传出及制源后开始测量)。由于分离后的样品是用于测量 β 放射性,即必须制成对自吸收和散射作用可忽略不计的薄源,实验采用了 PMBP 萃取法,其化学产额约 25%。 尽管 235 Th 源的 γ 谱中有少量的碘和碲的沾污,但用此化学分离流程得到的 235 Th 样品完全能满足 235 Th β 端点能量的测量要求。

参考文献

- 1 武汉大学化学系等编著 稀土元素分析化学(上). 北京: 科学出版社, 1981. 149
- 2 袁双贵,徐树威,张天梅,等. 半导体望远镜β射线谱仪 核技术,1989,12(5),273
- 3 Du Yifei PC-CAMAC Multiparameter Data Acquisition System. Annual Report of Institute of Modern Physics 1990, 123
- 4 Yuan Shuanggui, Zhang Tiammei, Xu Shuwei, et al Determination of the ²³⁵Th βDecay Endpoint Energy. Phys Rev C, 1989, 39 (1): 256
- 5 M irzadeh S, Chu YY, Katcoff S, et al Decay of 7.3 m in ²³⁵Th and 24.6 m in ²³⁵Pa Phys RevC, 1986, 33: 2159
- 6 A sghar M , Em sallem A , Chery R , et al The 238 U (n, α) 235 Th Reaction W ith Thermal Neutrons Nucl Phys A , 1976, 259: 429

RAD IOCHEM ICAL SEPARATION AND INDENTIFICATION IN THE DETERM INATION OF 235 Th β DECAY ENDPO INT ENERGY

Zhang Tianmei LiWenxin Yuan Shuanggui Xu Shuwei (Institute of Modern Physics, the Chinese A cadeny of Sciences, Lanzhou 730000)

ABSTRACT

A radiochem ical method of solvent extraction with PMBP-CHCl₃ has been used to separate thorium from the fission products and irradiated target material in ²³⁸U (n, α) ²³⁵Th reaction for determination β decay endpoint energy of ²³⁵Th. The results indicate that the half-live of ²³⁵Th is (7.3 ± 0.2) m in which is in good agreement with the reference value. The separation time of this procedure is about 27 m in and the chemical yield is close to 25%. Measured β decay endpoint energy of ²³⁵Th is (1.44 ± 0.04) M eV and $Q\beta = (1.47 \pm 0.07)$ M eV.

Key words 235 Th β decay endpoint energy Solvent extraction PMBP