Nuclear

Vol. 28 No. 4 Nov. 2006

文章编号:0253-9950(2006)04-0193-14

Journal of

Pu 在地质环境中化学行为的研究进展

章英杰,范显华

中国原子能科学研究院 放射化学研究所,北京 102413

摘要:着重评述了近年来与高放废物深部地质处置有关的地质环境中 Pu 化学的研究进展,重点讨论了 Pu 从 高放玻璃固化体中的浸出行为、Pu 在地下水中的溶解度、配合反应(包括水解反应)、氧化还原反应、胶体的形 成等。提出了近期和长期应开展的若干研究课题。 关键词:高放废物; Pu; 化学行为; 地质环境

中图分类号: O614.353 文献标识码: A

Progress in the Study on Pu Chemical Behavior Under the Geological Environment

ZHANG Ying-jie, FAN Xian-hua

China Institute of Atomic Energy, P. O. Box 275(93), Beijing 102413, China

Abstract: The generation, characteristic, and disposal technology of the high level radioactive waste were discussed, and a progress in the study on the chemical behavior of Pu, a transuranic element possessing the long-term potential risk for the environment, under the geological repository was reviewed. Release behavior of Pu from the high level radioactive glass waste form, the basic chemical reactions of Pu possibly happening in groundwater, including solubility, complexation, redox reaction, and colloidal formation. Some proposals for the further work in China are also suggested.

Key words: HLW; Pu; chemical behavior; geological environment

高放废物(HLW)是核能应用过程中产生的 主要废物,它具有放射性活度大(占乏燃料后处理 废物中 98%以上的放射性)、比活度大(\geq 10¹⁰ Bq/kg,实际 HLW 达 10¹²~10¹³ Bq/kg),半衰期 长(如 $T_{1/2}$ (²³⁷ Np) = 2.14 × 10⁶ a, $T_{1/2}$ (⁹⁹ Tc) = 2.13×10⁵ a, $T_{1/2}$ (²³⁹ Pu) = 2.44×10⁴ a)、毒性大 等特性。若处置不当将严重危害人类生存环境。 因此,如何安全处置高放废物是目前有核国家所 关注的重点之一,并投入了大量的人力、物力和财 力进行研究。甚至有些国家,例如瑞典、瑞士、美 国等,已把核废物的安全处置,在法律上规定为继 续发展核电的先决条件。处置高放废物的方法很 多,可分为3大类:(1)分离嬗变法,该法是将后 处理厂产生的高放废液中毒性大、半衰期长的锕 系元素和裂片产物分离出来,经加速器或反应堆 进行二次"燃烧",将其嬗变为短半衰期或稳定的 元素^[1],使产生的核废物对环境的放射性危害水 平可以降到较低水平;(2)可回取处置,该法是将 乏燃料元件不经过后处理,直接将其进行深地质 储存,等技术成熟后或需要时,取出进行再处理, 如美国的 YMP(Yucca Mountain Project)^[2]等; (3) 不可回取处置,该法是将后处理厂产生的高 放废液进行玻璃固化,经过冷却,装入适当的容器 中,选择适当的深地质环境进行永久处置。第3 种方法目前被认为是可行的、较安全的方法[3]。 我国采取对乏燃料元件进行后处理产生的高放废 液进行玻璃固化后实施深地质处置的方案,目前 已有相关的法律颁布[4],并于 2003 年 10 月 1 日 开始实施。该法中规定"α废物、高水平放射性固 体废物实行集中的深地质处置"[4],即将废物置于 地下 500~1 000 m的核废物库中。深地质处置基 干"多层屏障"的概念,即通过人为设置的工程屏 障和天然屏障来阻止废物中的核素迁移到环境中 去,以期达到废物与生物圈的永久的安全隔离。 高放废物深地质处置涉及到放射化学、地球化学、 地质学、水文学、岩石学、生物学等学科,选定一个 合适的建造废物库的场址需要综合考虑各种因 素,且与高放废物处置有关的化学问题特别重要。 它涉及到高放废物中关键核素在地圈中的化学行 为,既包括宏观上核素在圈中的迁移行为,又包括 微观上核素在地圈中的化学形态以及它们与其它 物质的化学反应机理等,并在此基础上建立描述 核素在地圈中运动规律的模式。它在废物处置设 施选址阶段,提供各种地质岩层(包括地下水)对 核素吸附和阻滞性能的数据,为场址选择提供依 据:在处置场建造和对它进行试验的过程中,预测 可能的核素迁移,进一步证明处置方法的有效性 和可靠性;当处置场投入运行之后,要对它进行监测,并用监测结果来检查预测的可靠性。由于超 铀元素半衰期长、毒性指数高,研究其在地圈中的 化学行为更为重要。美国环境保护局(Environmental Protection Agency, EPA)提出了一个在 高放废物处置场场址的环境中放射性核素浓度的 标准,按此标准已将废物中的核素以它们可能的 危害(毒性、半衰期、可能的迁移能力)排列,Np, Pu,Am 等列入长期危害^[5]。

放射性同位素的相对生物危险指数与时间的 关系示于图 1^[6]。由图 1 可见,在放射性废物贮 存的最初数百年内,裂变产物⁹⁰ Sr 和¹³⁷ Cs 是主要 的毒性来源,之后超铀元素及其衰变产物将占主 导地位。大约百万年以后废物的总毒性指数才可 能降至地球中原生铀的毒性指数以下。因此,在 高放废物的最终处置研究和环境评价中,超铀元 素在地圈中的化学行为占有很重要的地位,引起 了各国科学家的重视^[7-18]。

一般认为,高放废物中的放射性核素进入环 境后的主要途径是:处置库一旦受到人为破坏(如 战争)或地质运动(如地震等),使地下水渗入废物 库中,包装容器被腐蚀。废物固化体受到地下水 的作用,开始腐蚀并释放出放射性核素,一些进入 地下水中的核素,特别是超铀核素与地下水及周 围地质材料,可能会发生氧化还原反应(包括歧化 反应)、有机或无机配体的配合反应(包括水解反 应)、沉淀-溶解、形成胶体、吸附和解吸等,使核素 在地下水中的存在形态(speciation)发生变化,最 终影响其在地下水中的浓度和迁移特性。本文拟

图 1 核废物中放射性同位素的相对生物危险指数与时间的关系

介绍并讨论 Pu 在地下水中的沉淀-溶解、氧化还 原、配合和水解反应、形成胶体等。

Pu 的同位素很多,主要的同位素是²³⁹ Pu,半 衰期为 2.44×10⁴ a,它在核燃料循环中具有重要 意义,²³⁹ Pu 产生于反应堆的运行过程中,核反应 如下:

238
 U(n, γ)²³⁹ U $\xrightarrow{\beta^{-}}$ 235 min 239 Np $\xrightarrow{\beta^{-}}$ 239 Pu

在燃耗较深的反应堆乏燃料中,还有²⁴⁰ Pu($T_{1/2} = 6.6 \times 10^3$ a),²⁴¹ Pu($T_{1/2} = 15.2$ a),²⁴² Pu($T_{1/2} = 3.87 \times 10^5$ a)等同位素存在。这些 Pu 的同位素 通过²³⁹ Pu 在反应堆中连续俘获几个中子产生: ²³⁹ Pu(n, γ)²⁴⁰ Pu(n, γ)²⁴¹ Pu(n, γ)²⁴² Pu······

Pu 的电子结构为 $5f^{6}6s^{2}6p^{6}7s^{2}$,在水溶液中 有从 III 价至 VI 价等 4 种氧化态,这些离子的稳定 程度受到 pH 值和配位体的影响。在酸性溶液 中, III 价和 IV 价以 Pu³⁺和 Pu⁴⁺的离子形态存在, V 价和 VI 价以 PuO₂⁺和 PuO₂²⁺的钚酰离子存在。 但也有文献报道^[7],用强氧化剂(O₃、过硫酸钾、 溴酸盐、高氟酸盐等)在碱性溶液中作用于 Pu(VI),生成 PuO₃⁻⁻离子形式的 Pu(VI)。在天 然水的条件下, III, IV, V和 VI 价可能共同存在,它 们以 Pu³⁺, Pu⁴⁺, PuO₂⁺, PuO₂²⁺的形式与其它物 质发生反应,形成一系列化合物存在于水体中。

1 环境中的 Pu

自然环境中 Pu 的浓度很低^[9],尽管由于核 武器试验(包括地上和地下)向环境中释放了约 10^{3} kg ^{239,240} Pu或更多的 Pu^[10]。Pu 在水体中的 活度浓度较低,如 Pu 在湖水中的平均活度浓度 范围在(0.37~1.85)×10⁻⁵ Bq/L 之间,湖底沉 积物中约有 3.7×10^{-3} Bq/g;在海水中为 $3.7 \times$ 10^{-5} Bq/L,海洋沉积物中为 1.85×10^{-4} Bq/L。 然而,在核废物,特别是高放废物地质处置过程 中,Pu 等超铀元素从处置库迁移到附近的岩层中 的源项浓度,比自然环境中存在的 Pu 浓度要大 得多,单个超铀元素通过地下水从固化体中浸出, 其浓度除了与自身的物化性质有关外,主要由介 质条件和环境条件决定。因此近几十年来,人们 通过各种模拟方法研究这些因素对超铀元素浸出 行为的影响^[19-30]。

浸出剂种类对核素浸出的影响方面,许多学者^[20-21]研究了浓盐水、去离子水、重碳酸盐地下水、模拟地下水中将 Pu 等元素从玻璃固化体中

的浸出。他们的研究表明,浸出液中 Pu 的浓度 大约为 $4 \times 10^{-8} \text{ mol/L}$,其中 90%的 Pu 以胶体形 式存在。

浸出剂中存在的一些固体物质会影响核素的 浓度。R7T7^[21]玻璃静态浸出实验表明,当固体 物质如砂子、花岗岩、膨润土、蒙脱石、伊利石和 Boom 粘土被加入到浸出剂中时,浸出液的化学 成分和玻璃体腐蚀速率均发生变化 $N_{\rm D}$ 和 Pu 被 这些固体吸附的量各不相同。蒙脱石、伊利石和 Boom 粘土能很好地吸附 Pu,被玻璃体表面和所 加固体吸附的 Pu 总量比 Np 大,通过过滤,从浸 出液中取出大部分颗粒,发现在砂子、花岗岩、膨 润土中 Pu 以相同的比例存在,而在蒙脱石、伊利 石和 Boom 粘土中比例变化较大。Bates^[23], Ebert^[26], Vernaz 和 Godon 等^[24] 在实验中也发 现,较高 pH 条件下, Pu 的浸出浓度很低 $(10^{-10} \sim$ 10^{-12} mol/L),并强烈地被金属物质吸附。一些 学者的研究成果[20-21]表明,在玻璃体的浸出实验 中发现,粘土的存在强烈地影响玻璃体的腐蚀和 浸出液中放射性核素的浓度。对 Boom 粘土的影 响研究表明,大部分 Pu 被粘土强烈地吸附,仅有 很少部分留在水相,水相中²³⁹Pu的平均浓度为 10⁻⁹ mol/L。研究发现可迁移形式的 Pu 浓度是 稳定的,不受其它核素浓度增大的影响。实验持 续进行到 4 年后表明,处于可迁移形式的 Pu 浓 度仅为浸出总量的 0.2%,当浸出液中加入 Fe_2O_3 腐蚀产物后,这些核素的浓度变得很低。浸出实 验的氧化还原条件变化对 Pu 的浸出浓度无明显 的影响,其浓度大约为 10^{-9} mol/L^[31]。

浸出液中有机或无机配体的存在,影响核素 的浓度和存在形式。Menard 等^[29-30,32]的研究结 果表明,超铀元素的迁移率与浸出剂中存在的阴 离子种类有关。他们发现,在氧化条件下 Pu 主 要以粒子形式存在,它的迁移能力与浸出液中阴 离子种类有关,碳酸根为最大,硫酸根居中,磷酸 根最小。Pu 在重碳酸盐溶液中的浸出率约为玻 璃体溶解率的 1/60,在磷酸盐溶液中浸出率约为 玻璃体溶解率的 1/180。在还原条件下,发现 Pu 浓度在碳酸盐浸出液中为 2×10^{-8} mol/L,在磷 酸盐浸出液中为 2×10^{-10} mol/L,在纯水中为 5×10^{-9} mol/L。

根据以上的文献报道,从高放玻璃固化体中 浸出的 Pu,浓度为 10⁻⁸~10⁻¹⁰ mol/L,不随浸出 时间的变化而变化。然而,处于低浓条件下的 Pu,化学行为复杂,难以用经典的热力学和动力 学原理来预测其在环境中的行为。

对于 Pu 等超铀元素在天然水环境中化学行 为的研究与普通实验室或化学工业上的研究过程 截然不同。主要区别有:(1)在近中性的天然水 中,超铀离子极易水解,很不稳定,除五价外,所有 其他氧化态的氧化物、氢氧化物和碳酸盐的溶解 度都较低(浓度<10⁻⁶ mol/L);(2) 天然水中存 在的一些重金属元素,其浓度几乎接近于超铀元 素的溶解度,这些物质的存在可与超铀元素发生 多组分竞争反应:(3) 天然水中存在的 CO²⁻等无 机阴离子及腐殖酸(humic acid)、富里酸(fulvic acid)等有机多电子聚合物,与超铀元素发生配合 反应,有机物的还原作用还影响超铀元素在地 下水中的价态:(4) 超铀元素在地下水中易形成 胶体或假胶体,从而使超铀元素在地下水中的 行为发生变化。而所有这些反应与超铀元素的 氧化态关系极大,每种氧化态的稳定性受特定 水环境性质的影响,从而使元素存在的形态多 种多样。

2 地下水组成

由于核废物,特别是高放废物的地质处置,有 明显的地区特性,因此地下水组成是影响核素与 地质材料相互作用及其迁移规律的重要因素。 Crowe^[31]指出地下水组成对吸附有重要影响。 Vine 等^[33]持同样观点。多年来,在放射性废物处 置安全评价研究领域中,人们已经不仅仅局限于 研究多孔介质中地下水物理特性(流速、弥散系数 等)对于核素迁移的影响,而且更注重研究地下水 中发生的化学作用对于核素迁移的影响。

所谓地下水是地质空隙中存在的水,地表以 下至1 500 m以上存在的水都可列入地下水的范 围。地下水的无机成分有以下 3 类:(1) 阳离子, 如 Na⁺, K⁺, Ca²⁺, Mg²⁺, Fe²⁺, Fe³⁺, NH₄⁺; (2) 阴 离 子, 如 HCO_3^- , CO_3^{2-} , SO_4^{2-} , Cl⁻, $H_2PO_4^-$, HPO_4^{2-} , F^- , SiO_3^{2-} , NO_3^- ; (3) 溶解气 体,如 CO_2 , N₂, O₂。其中 Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, HCO_3^- , CO_3^{2-} , SO_4^{2-} 是地下水中浓度最高的 8 种离子,约占水中离子总量的 95%~99%;除这 些成分外,还有地壳中存在少量或者溶解度低的 微量元素,可称为次要元素,可能在特定地区相应 存在。 在有生命存在的地带,地下水中也可能含有 一些有机物,如各种腐殖物质等。许多学者对地 下水的成分进行了取样分析,表1给出了几种不 同地区的水样组成的实测值。

表 2 为作者用 Aqua Chem 模式^[17]所计算的 表 1 中几种地下水的类型及可能溶解的矿物。由 这些数据的比较,可知不同地区地下水的成分是 不同的。

3 Pu 的溶解度

超铀元素在地下水中的溶解度是核废物地质 处置安全和环境评价中的重要参数之一,它是直 接影响超铀元素在岩层中迁移的关键。掌握了它 们的溶解度,可以给出超铀元素在地下水中的浓 度极限值,为超铀元素的吸附研究及其传输模式 计算提供参数。因此许多学者对超铀元素在水介 质中的溶解度从理论方面进行了计算和推测,并 通过实验进行了测定,对可能的影响因素进行了 探讨^[5,7-16,18,34-52]。

Nitsche 等^[45-47] 测定了美国 Yucca Mountain 场址 J13 井和 UE-25P[#] 井地下水中 Pu 等超铀元 素的溶解度和价态分布,并用相近 pH 值的高氯 酸钠[42] 溶液作对比实验。研究结果表明,随着温 度升高和 pH 值增大,对 Pu 溶解度几乎无影响, 控制 Pu 溶解度的固相为无定形的 Pu(OH)₄及 Pu(OH)₄与碳酸盐配合物。还发现水相中 Pu 主 要以 V、VI价存在,且随着 pH 值增大,Pu(V)浓 度增大,Pu(Ⅵ)浓度降低。Ewart 等^[38]系统研究 了在模拟处置场地下水中,Np,Pu,Am 等的化合 物在近场的溶解度随溶液 pH 的变化。研究结果 表明,当溶液的 pH 由 7 升高到 8.5 时,Pu(OH) 的溶解度急剧下降,而当 pH 继续提高到 13, $Pu(OH)_{i}$ 的溶解度基本保持不变。Kim 等^[8]的 研究结果表明,在 $0.1 \sim 5 \text{ mol/L}$ 的 NaCl 溶液中, 当 pH 值由 3 升高到 7 时,²³⁹ PuO₂ 的溶解度呈下 降趋势。在 $0.1 \sim 5 \text{ mol/L}$ 的 NaCl 溶液中,当 pH 值由 3 升高到 10 左右时,²³⁸ PuO2 的溶解度有 所下降,在 pH 值为 $6 \sim 10$ 时,实验点基本落在离 子强度为 1 mol/kg 的 HCO_3^- - CO_3^{2-} 溶液中 ²³⁸ PuO2的溶解度曲线上。对于玻璃固化体中 \mathbf{b}^{239} PuO₂来说,它在 0.1~5 mol/L NaCl 溶液、 蒸馏水及地下水中的溶解度随 pH 值增大而稍有 下降。

Tabl	mg/L			
项目(Item)	基岩地下水 ^{1)[16]} (Bedrock water) -	$YMP^{2)[16]}$		
		J13	UE-25	- BS033)
d/m	≪500			435
t/a	≥100			
$_{\rm pH}$	7~10	6.9	6.7	
Eh/V	-0.05	0.1	0.36	
O_2	<0.1	5.7		
Na^+	10~100	45	171	1 027
K^+	$1 \sim 5$	5.3	13.4	16.1
Ca ²⁺	20~60	11.5	87.8	206
Mg^{2+}	$15 \sim 30$	1.76	31.9	51.2
总 Fe(Total)	5~30	0.04	<0.1	0.25
F^-	0.5~2	2.1	3.5	1.89
Cl ⁻	5~50	6.4	37	1 155
Br^-				0.057
总 CO_3^{2-} (Total)	$5 \sim 400$	$118 \sim 143$	960	138
NO_3^-	<1	10.1	<0.1	30.2
总 $\mathrm{PO}_4^{3^-}$ (Total)	≪0.1			
总 SO_4^{2-} (Total)	1~15	18.1	129	1 074
总 SiO ₂ (Total)	5~30	66	66	13.1
SH^-	<1			
NH_3	<0.5			
有机碳(Organic carbon)	<1	0.15		

表 1 几种地下水的化学组成及分析条件

Table 1 Chemical composition of several kinds of underground water

注(Notes):1) 瑞典花岗岩 (Swedish granite);

2) 美国内华州尤卡山 (Yucca Mountain, Nevada wells);

3) 我国甘肃北山 3 号井的地下水(Underground water sampled from No. 3 well in Beishan region, Gansu province in China)

表 2 几种地下水的类型及溶解的矿物

Table 2 Type and dissolved minerals in several kinds of underground water

产地	类型	溶解的矿物	
(Source)	(Type)	(Dissolved minerals)	
	Na-Ca-Mg-HCO ₃	KCl, NaCl, CaSO ₄ ,	
Bedrock Water		$CaMg(CO_3)_2$, SiO_2 ,	
		$NaAlSi_3O_8$	
BS03	Na-Cl-SO ₄	KCl, NaCl, $CaSO_4$,	
		${ m SiO}_2$, ${ m NaAlSi}_3{ m O}_8$	
	Na-Ca-HCO ₃	KCl, NaCl, CaSO ₄ ,	
YMP UE-25		$CaMg(CO_3)_2$, SiO_2 ,	
		$NaAlSi_3O_8$	
	Na- HCO3	KCl, NaCl, CaSO ₄ ,	
YMP-J13		$CaMg(CO_3)_2$, $CaCO_3$,	
		${ m SiO}_2$, ${ m NaAlSi}_3{ m O}_8$	

由于受地下水中各种无机和有机离子的影 响,超铀元素在地下水中的溶解过程实际上包括 了一系列的平衡反应。其中最主要的是水解反 应,它可产生多种单核、多核水解产物及真(假)胶 体,从而影响超铀元素在地下水中的溶解行为。 其次是配合反应,其中主要的配位体有 CO_3^{2-} 离 子、腐殖酸以及可能的 F^- 和 SO_4^- 离子等,当它们 与进入水相的超铀离子发生配合,生成难溶化合 物^[9]时,也控制溶解度^[8,12,19]。

胶体的生成是伴随着超铀元素溶解过程的另 一重要反应,通过水解反应,超铀元素可生成真胶 体或与水中的天然胶体作用而生成假胶体,使实 验测得的溶解度数据与理论计算结果差别较大。 Kim 等^[8] 研究了 $PuO_2(s)$ 在 HCO_3^-/CO_3^{2-} 溶液、 1 mol/L NaClO₄溶液中的溶解度及模拟高放废 物玻璃固化体在 NaCl 溶液、重蒸水和几种地下 水中的浸出行为后,认为 Pu 等超铀元素在水溶 液中的溶解度不能简单地用热力学数据推测。因 为这些数据中没有考虑胶体的影响,特别是由 α 辐射作用产生的粒度极小的胶体颗粒的影响。

地下水中存在的可溶性有机物,可能在处置 场条件下由于化学作用或 α, β, γ 辐射作用而发生 降解,影响放射性核素在近场地下水中的释放。 Gaudie 等^[48]首先制备出了不同分解条件下的有 机物浸出液,利用这些浸出液进行 Pu 的溶解度 测定实验。结果表明,不同有机物含量及分解条 件可使 Pu 的总溶解度由 5×10^{-10} mol/L 提高 $1 \sim 3$ 个数量级。另外,在沉淀-溶解平衡过程中, 控制溶解度的固相与结晶度直接相关,晶体的溶 解度比相同组成的无定形固体的溶解度小,陈化 效应与辐射诱导效应是两个相互抵消的过程。陈 化可使无定形固相转化为晶体,溶解度下降,而辐 照使晶体上的原子发生位移,导致结晶度降低,溶 解度升高。许多文献报道^[34-41,42-52], Pu 在地下水 中的溶解度主要由四价 Pu 的无定形产物 $Pu(OH)_{4(am)}$ 或脱水产物 $PuO_2 \cdot xH_2O$ 控制。如 在 Yucca Mountain 的评价系统(TSPA)中^[51-52], 选择控制 Pu 向环境释放的固相为 $Pu(OH)_{4(am)}$ 和脱水产物 $PuO_2 \cdot xH_2O_0$ Neck 等^[37]在总结了 不同学者测定的四价锕系元素的溶解度,并进行 了计算比较后,认为在酸性溶液中,四价锕系元素 的溶解度强烈地依赖固相的晶体结构,在中性和 碱性溶液中, $An(OH)_{4(an)}$ 为主要的溶解形态, 控 制溶解度的固相为二氧化物和无定形的氢氧化物。

4 Pu 的配合反应

配合反应是发生于地下水中的非常重要的化 学反应之一。根据 Pu 等超铀元素自身的电子结 构特点,无论在还原性的地下水中,还是在氧化性 的地下水中,对于某一价态的超铀元素来说,一方 面发生水解反应,同时与地下水中存在的无机阴 离子如 CO²⁺ 等发生配合反应;另一方面地下水 中存在的有机多电子聚合物(如腐殖酸)不仅能与 部分高价超铀元素(如 Pu(IV),Pu(V),Pu(VI) 等)发生还原反应,而且也发生配合反应。

4.1 Pu 的水解反应

水解反应实质上是指被水解离子与 OH⁻ 的 配合反应,它是 Pu 在天然水中最普遍、最基本的 反应。表 3 给出了不同价态 Pu 可能的水解反应 及稳定常数。在无其它配合体存在的中性溶液 中,Pu(Ⅲ),Pu(Ⅳ)可生成单核、多核水解产物及 胶体。

由表 3 中数据看出,不同氧化态的 Pu 水解 能力是不同的,特别是四价的水解能力最强,是研 究 Pu 在环境中行为的关键。

表 3 不同价态 Pu 可能的水解反应及稳定常数

Table 3 Hydrolysis reactions and their constants of Pu

价态	反应	$\lg\beta$
(Valence state)	(Reaction)	
Pu(∭)	$Pu^{3+} + OH^{-} \Longrightarrow PuOH^{2+}$	7.2
	$Pu^{3+} + 2OH^{-} \Longrightarrow Pu(OH)_{2}^{+}$	12.1
	$Pu^{3+} + 3OH^{-} \Longrightarrow Pu(OH)_{3(aq)}$	16.7
	$Pu^{3+} + 3OH^{-} \longrightarrow Pu(OH)_{3(s)}$	-25
	$Pu^{3+} + 4OH^{-} \longrightarrow Pu(OH)_{4}^{-}$	20.2
Pu(]V)	$Pu^{4+} + OH^{-} \longrightarrow PuOH^{3+}$	13.7
	$Pu^{4+} + 2OH^{-} \longrightarrow Pu(OH)_2^{2+}$	25.7
	$Pu^{4+} + 3OH^{-} \Longrightarrow Pu(OH)_{3}^{+}$	36.7
	$Pu^{4+}+4OH^{-} \longrightarrow Pu(OH)_{4(aq)}$	46.5
	$Pu^{4+} + 4OH^{-} \longrightarrow Pu(OH)_{4(s)}$	-62.5
	$Pu^{4+} + 5OH^{-} \longrightarrow Pu(OH)_{5}^{-}$	55
Pu(V)	$PuO_2^+ + OH^- \longrightarrow PuO_2OH_{(aq)}$	4.3
	$PuO_2^+ + OH^- \longrightarrow PuO_2OH_{(s)}$	-9.3
	$PuO_2^+ + 2OH^- \Longrightarrow PuO_2(OH)_2^-$	9
Pu(\[])	$PuO_2^{2+} + OH^{-} \Longrightarrow PuO_2OH^{-}$	8.9
	$PuO_2^{2^+} + 2OH^- \longrightarrow PuO_2(OH)_{2(aq)}$	17.6
	$PuO_2^{2+} + 2OH^{-} \longrightarrow PuO_2(OH)_{2(s)}$	-22.8
	$PuO_2^{2+} + 3OH^{-} \Longrightarrow PuO_2(OH)_3^{-}$	22

注(Note):*I*=0;引自参考文献[8,10,12,16,18](Reference to literature [8,10,12,16,18])

4.2 Pu 与无机配体的配合反应

超铀元素与无机含氧配体(如硝酸盐、碳酸盐、硫酸盐及磷酸盐)及氟离子有强的配合能力, 而与硫离子及 Cl⁻,Br⁻,I⁻等配体的配合能力较弱。相同氧化态的超铀元素配合能力相似,但同 一元素不同氧化态配合能力相差很大,配合强度 随不同氧化态超铀离子有效电荷的增大而增大。 天然水含多种无机配合离子,如 OH⁻,HCO₃⁻, CO₃²⁻,H₂PO₄⁻,HPO₄²⁻,PO₄³⁻,SO₄²⁻,F⁻及 Cl⁻ 等。综合有关超铀离子的配合反应研究报道,将 超铀元素的各种离子与地下水中常见的几种配位 体的一级配合稳定常数之间的比较绘制于图 2, 稳定常数的值参见文献[8,53-59]。

Fig. 2 Logarithms of the stability constants β_1 for the formation of 1 : 1 complexes of the transuranic ions M^{3+} , M^{4+} , MO_2^+ and MO_2^{2+} with various anions

由图 2 看出,对某一氧化态的超铀元素,阴离 子与超铀元素的配合能力大小顺序为:OH⁻ \approx $CO_3^{-} > F^- \approx H_2 PO_4^- \approx SO_4^{-} > Cl^- \approx NO_3^-$ 。对 于某一阴离子配体,超铀元素不同氧化态的配合 能力为:4+>3+ \approx 6+>5+ \circ CO_3^{-}或HCO_3^-在 地下水中的浓度通常最高,且配位能力最强,被认 为是与超铀元素作用的一主要配体。尽管 F⁻, HPO_4^{-},SO_4^- 的配合能力较强,但是它们在地下 水中的浓度很小,起的作用不明显。Cl⁻,NO_3^- 的 配合能力很弱,只有在其浓度相当高的水体中才 显得重要。

地下水中总碳酸根的浓度随着 pH 值以及气 相中 CO₂的分压 $p(CO_2)$ 的变化而变化,如在美 国 Yucca Mountain 处置场评价(TSPA)中^[60],以 气相中 $p(CO_2)$ 来控制水相中碳酸氢根和碳酸根 的浓度。图 3 示出了不同基岩地下水中碳酸氢根 浓度($c(HCO_3^-)$)和 pH 值的实测值范围^[8]。从 图 3 可知,大多数地下水中碳酸氢根浓度在 1 mmol/L到 10 mmol/L 之间,这种相当高的浓度 对超铀元素离子的配合起到决定性作用。

Kim,Eiswirth 等^[8,61-62]认为在高碳酸根浓度 的溶液中,Pu(V)的碳酸盐配合物十分稳定,既 不会发生歧化反应,也不会发生还原反应。

由前面的分析和比较,尽管天然水体中能与 超铀元素配合的无机或有机配体很多,但是影响

超铀元素在地下水中存在形态的主要无机配体为 碳酸氢根和碳酸根。而对于 Pu,由于其特殊的化 学性质,人们主要研究重点为四价 Pu 与碳酸氢 根和碳酸根的配合。近几年,关于 Pu 与碳酸氢 根和碳酸根的配合常数陆续有报道,但是这些文 献报道的数值之间有很大出入^[8, 39, 43-44, 50, 54-56, 61,63]。

4.3 Pu 与有机配体的配合反应

地下水中存在的可溶性有机物主要为腐殖物 质,能与 Pu 等超铀元素发生配合等反 应^[57-58, 62, 64],配合能力因 Pu 等超铀元素的氧化 态不同而不同。腐殖物质是多电子有机高分子聚 合物的混合物,它们的浓度分布随着地质环境的 差异而不同,这些差异主要在于不同地区的气候、 存在介质的酸碱度、介质本身的特性以及存在时 间。例如在土壤中,腐殖物质的浓度为 $0 \sim 10\%$, 而在水中腐殖物质的质量浓度最高可达到 50 mg/L,从不同深度(100~700 m)的结晶岩水 中取样分析,可溶物(有机碳)的质量浓度范围为 0.1~8 mg/L^[64]。根据在水中的溶解度腐殖物质 (humic materials)可分为 3 种,即腐殖酸(humic acid),富里酸(fulvic acid),腐殖质(humin)。文 献报道天然水体中存在的腐殖酸可与 Pu(Ⅳ)发 生配合,其配合稳定常数与腐殖酸电离度 (α) 的关 系为^[64]:lg $\beta_1 = 9.8 + 9\alpha$,lg $\beta_2 = 16.0 + 9\alpha$ 。

在腐殖酸结构中存在一些不饱和官能团如醛 基、烯基醇等还原性官能团,可与高价 Pu(如 PuO₂²⁺,PuO₂⁺)发生还原反应^[64-67],从而改变 Pu 在水溶液中的价态。由于腐殖物质的分子量大, 而且溶解行为受溶液 pH 值的控制,因此在低浓 度时可形成胶体,对溶液中 Pu 等超铀元素进行 吸附,形成假胶体,影响 Pu 的存在形态和迁移 行为。

5 Pu 的氧化还原反应

对于以多价存在的超铀离子,特别是 Pu,地 下水的 Eh 大小决定它的存在形态。Baas 等^[68] 研究了地下水的 Eh 与 pH 值的关系,指出大部分 深层地下水的 pH 值为 $6 \sim 9$, Eh 值为 $-400 \sim$ 400 mV。在这个 pH 及 Eh 范围内,由于歧化和 还原反应,Pu 可能以多种价态存在。

Cleveland 等^[69-72] 研究了 Pu 在几种地下水 (玄武岩、页岩、花岗岩、凝灰岩)中的价态。结果 表明,在他们的实验条件下,地下水中溶解氧对 Pu 的形态几乎不影响,地下水的离子强度及地下 水中存在的 CO_3^{2-} , SO_4^{2-} 离子对 Pu 的形态影响较 小,F⁻离子对 Pu 的形态有明显影响。在氧化性 水溶液中 Pu 以 Pu(V)和 Pu(V)存在,在还原性 水溶液中 Pu 以 Pu(V)和 Pu(U)存在。 Nitsche^[73]研究表明,在 Yucca Mountain J13 井 地下水中,Pu 主要以 Pu(V)和 Pu(V)存在。

Choppin 等[64,74]研究表明,在天然水中 Pu 主要以五价存在,在Eh值为0.5V时,溶液中Pu 的存在形式主要为 Pu(V)和 Pu(V);在 Eh 值为 0.2 V 时,Pu(Ⅳ)是主要的存在价态,地下水中存 在的可溶性有机物(DOC)能明显地将 Pu(Ⅳ)还 原为 Pu(Ⅲ);Eh 值约为一0.2 V 时,Pu(Ⅲ)是主 要的存在形式。Allard^[12]在计算了地下水中 Pu 等锕系元素的存在形态与溶液的 Eh、pH 值以及 CO_3^{2-} 离子浓度的关系后,给出了两个体系: (1) 密闭的缺氧体系, $pH = 5 \sim 10$, Eh = 0.21 - 100.06pH(V);(2) 与空气平衡的开放体系或密闭 的含氧体系, $pH = 5 \sim 10$, Eh = 0.8 - 0.06 pH(V)。结果表明,在还原和氧化两种条件下,Pu 的溶解度控制固相均为 $PuO_2(s)$;在强还原条件 下和高碳酸根浓度时, $Pu_2(CO_3)_3(s)$ 为三价 Pu的可能存在形态;特别是在低 pH 值及还原条件 下(Eh < 0.3 - 0.06pH(V)), Pu 的三价形态 Pu^{3+} 和 $Pu(OH)^{2+}$ 及 $PuCO_3^+$ 是溶液中主要的存 在形态;在较高的电位时($Eh = (0.3 \sim 0.8)$)-0.06pH(V)),Pu(IV)的存在是主要的,可能的 存在形态是 $Pu(OH)_4$,此时溶解度控制相为 $Pu(OH)_4(s)$;在更高的电位下(有氧化剂存在, 或存在辐解作用,或碳酸根的浓度很高(开放体 系)时),五价形态 $PuO_2(CO_3)_2^{3-}$ 和 $PuO_2(CO_3)_3^{5-}$ 则为主要存在形式;在低 pH 值时,五价 Pu 的存 在形态为未配合的 PuO_2^{+} 。由此可以预测,在 Eh= $(0.4\sim0.8)-0.06pH(V),pH=7\sim8$ 时,Pu 的 溶解度最小。在通常的天然水体系($pH=7\sim9$) 和高浓度的碳酸根情况下,可能从大多数为 Pu (W)向大多数为 Pu(V)转变,这将导致其溶解度 增大,吸附减少和迁移加快。地下水中的有机物 对 Pu(W)/Pu(III)和 Pu(W)/Pu(V)两个平衡有 显著影响,在大分子有机物存在时可观察到还原 作用,可能的产物是 Pu(W)。

6 Pu的胶体行为

Pu 等超铀元素的胶体行为研究,主要涉及地 下水中天然胶体、超铀元素真胶体和超铀元素假 胶体。胶体的形成有多种途径:高放废物玻璃固 化体或乏燃料元件的腐蚀产物可能形成胶体;固 化体容器及包装容器腐蚀产物会形成胶体;回填/ 缓冲材料在地下水中也会产生胶体。所生成的胶 体特点与生成胶核的自身和外界地球化学条件 有关。

6.1 天然胶体

在地下水中普遍存在着天然胶体,其组成、结 构和粒径差别很大,与所在含水层体系的地球化 学性质有关,是核素由近场向远场迁移的主要载 体。在天然地下水中,无机胶体(如粘土、氧化物 矿物等)、有机胶体(如腐殖物质、微生物等)以及 无机物和有机物共同生成的胶体形成一个完整的 封闭系统。一些学者研究表明[75-76],影响天然胶 体稳定性的关键因素有:地下水的类型、pH、氧化 还原电位、地下水的盐度和硬度、可溶解的有机碳 及整个水系统的稳定性。Kingston 等^[75]研究发 现在 Yucca Mountain 邻近的地下水中有石英、长 石、硅石、方英石、无定形的硅石、铝硅酸盐、层状 硅石、沸石、斜长岩、碳酸盐、蒙脱石粘土、赤铁矿 和真铁矿胶体存在。矿物胶体中以蒙脱石粘土矿 物为主,因为观测到的主要胶体为蒙脱石胶体,故 能强烈吸附放射性核素。Degueldre 等^[76]研究了 世界上 12 种地下水(包括地下水的类型、基岩等) 中胶体分布,结果表明地下水中的盐 (Na^+, K^+) 浓度和总硬度(Ca²⁺,Mg²⁺)增大,天然胶体的稳

定性降低。Lu 等^[77]研究表明,赤铁矿、针铁矿、 蒙脱石和硅石生成的胶体可吸附²³⁹ Pu。

6.2 Pu 的真胶体

超铀元素真胶体是指超铀离子水解产物或与 地下水中其它一些配体形成难溶化合物,但其量 很小,不足以形成沉淀,而形成一些微小的聚集 体,分散在地下水中。价态不同的超铀离子水解 倾向为:An⁴⁺>AnO²⁺>An³⁺>AnO²。其中四 价超铀离子最容易形成真胶体。如Pu(IV),一旦 形成真胶体便很难复原为单核离子。真胶体的形 成,使氢氧化钚、氧化钚的地下水中钚的实测浓度 在相当宽的 pH 范围内比由它们沉淀-溶解平衡 的热力学数据估算出的浓度高出了几个数量级。 四价超铀离子形成胶体的机理可描述如下:

胶体(Colloids)

Ramsay 等^[78-89]研究了 Pu 等水解产物形成 聚合物的机理,认为形成了真胶体。Rundberg^[84]对 Pu 水解产物形成的胶体粒度和密度 进行了测定,Kosiewicz^[89]推荐了 Pu 生成胶体的 粒度。Bates 等[22,77] 进行的高放玻璃固化体浸 蚀研究表明,在所试验的地下水中,几乎100% 的 Pu, Am 富集于纳米级的胶体粒子上。Olofsson 和 Allard 等^[80-81] 综述了水溶液中放射性胶 体的生成和性质,作为进一步研究地质体系中 放射性胶体的生成和迁移的基础。他们用离 心、电迁移和扩散实验研究 Pu 等超铀元素在不 同条件下(如放置时间、温度、离子强度、核素浓 度、pH 值)形成胶体的情况,在感兴趣的 pH 值 范围内 $(7 \sim 9)$, Pu 均生成胶体颗粒(半径> 20 nm),但这些颗粒并不使迁移率有明显提高; $\mathbf{c}_{pH=5} \sim 9$ 的溶液中大部分 Pu 吸附在器壁 L, pH > 8时有能离心沉降的 Pu,可能是 Pu(OH)₄真胶体。Romanovski 等^[90-91]研究表 明, Pu 在 Yucca Mountain 地下水中生成了胶体,

胶体的量随 pH 值的增大而增大。

6.3 Pu的假胶体

放射性核素吸附到胶体的表面主要依赖静电 力、离子交换、表面配合反应和共沉淀。Lu 等[77] 研究了在天然地下水和人工合成地下水中,赤铁 $\hat{\mathbf{u}}$ 、针铁矿、蒙脱石和硅石形成的胶体对Pu(\mathbb{N}) $n_{Pu(V)}$ 的吸附。结果表明,5 d 后,赤铁矿胶体 吸附了溶液中全部的 Pu(W)和 Pu(V),针铁矿 胶体吸附了 97%~100%的 Pu,蒙脱石胶体吸附 了 $94\% \sim 100\%$ 的 Pu, 硅石胶体吸附了 $46\% \sim$ 86%的 Pu。对吸附 Pu 后的赤铁矿、针铁矿、蒙脱 石和硅石胶体分别进行解吸,结果表明,从赤铁矿 胶体上解吸 Pu 的速率比赤铁矿胶体吸附 Pu 的 速率要慢很多。如连续振荡 150 d,约有 0.02% 的 Pu(V)和少量的 Pu(W)从赤铁矿胶体上被解 吸下来。虽然从针铁矿胶体和蒙脱石胶体上解吸 Pu 的速率比从赤铁矿胶体上解吸 Pu 的速率快, 但是解吸率仍很低,如在 150 d 后,约有 1% 和 1.5%的 Pu 分别被解吸下来。

Nelson 等^[88]的研究表明,Pu(Ⅲ)和 Pu(Ⅳ) \mathbb{L} Pu(V)和 Pu(V)对颗粒物有较强的亲合力。 Apted 等^[92]的研究表明,地下水中铁的存在,使 Pu 等核素从玻璃固化体上的初始浸出率增大,浸 出液中胶体份额增大,而浸出液经过1.8 nm 滤膜 过滤后,滤液中 Pu 浓度下降。Shade 等^[93]研究 了铁硅石胶体、粘土胶体对 Pu 的吸附行为,表明 在两种胶体上表现了类似的吸附性质。Fortner 等[85]报道了用放射性玻璃固化体浸出试验时浸 出溶液中有胶体存在,含有胶体的浸出液经过滤 和光谱分析表明,80%以上的 Pu 和 Am 吸附在 能被 0.1 µm 过滤器截获的颗粒物上。结论是放 射性玻璃固化体在模拟处置场条件下发生溶解的 过程中形成了可吸附超铀元素的假胶体,胶体物 质可能是玻璃的腐蚀产物,包括蒙脱石、粘土、铁 硅酸盐和碱式铁硅酸盐等。

7 有关研究工作的建议

有关核废物,特别是高放废物处置化学的研 究在国内只是近二十年来才兴起的,由于种种原 因,目前该方面的工作仍处于起步阶段。因此,系 统地研究以下问题是十分必要的。

(1)关键核素的水溶液化学,特别是中性或 近中性溶液中低浓度条件下锕系元素的化学行 为,包括锕系元素与无机或有机配体的配合行为、 溶解行为、胶体行为、氧化还原反应等。具体内容 有:CO²⁻离子与锕系元素的配合行为研究;锕系 元素的溶解度测定,特别是温度对锕系元素溶解 度的影响及溶解平衡后固相的物化参数测定;地 下水的辐照产物及地下水中 Fe²⁺等对高价锕系 元素的动力学行为研究;锕系元素在中性或近中 性溶液中胶体行为研究;低浓度条件下,锕系元素 存在形态的分析方法。

(2)关键核素在地质材料中的迁移行为。该方面工作主要包括:关键核素在预选处置场围岩及成岩矿物、废物包装容器材料及腐蚀产物、侯选缓冲/回填材料上的吸附、扩散等。

(3)关键核素在地质材料上的界面化学行为研究,主要包括:关键核素与围岩及成岩矿物表面的氧化还原反应、配合反应等,特别是关键核素与预选场围岩的裂隙表面物质的化学反应,尤为重要;关键核素与胶体颗粒表面的化学行为等。

(4)地下水中存在的有机物对高放废物中关 键核素的化学行为的影响是安全和环境评价中不 可缺少的内容。因此,关于地下水中有机物的提 取、有机物的表征参数测定、有机物与关键核素化 学行为研究等工作也应开展,这些内容包括:地下 水中有机物的提取、纯化以及表征参数的测定;有 机物与关键核素的化学行为研究:氧化还原反应、 配合反应、胶体行为;有机物对关键核素在地质材 料中迁移的影响。

(5) 高放玻璃固化体可能的降解反应及浸出 过程中的胶体行为。

(6)建议开展有关高放废物地质处置地球化 学模式开发工作。

参考文献:

- [1] Croff A G, Blomeke J O, Finney B C. Actinide Partitioning-Transmutation Program Final Report.
 I. Overall Assessment: ORNL-5566 [R]. USA: Oak Ridge National Laboratory, 1980.
- [2] Bechel SAIC Company. Technical Basis Document No. 8: Colloids (Revision 2) [M]. Las Vegas (Nevada, USA): Bechel SAIC Company, 2003, 1-4.
- [3] 王 驹,张铁岭,郑华铃,等.世界放射性废物地 质处置[M].北京:原子能出版社,1999.
- [4] 全国人民代表大会常务委员会.中华人民共和国放 射性污染防治法[M].公报版.北京:中国民主法 制出版社,2003:12.
- [5] Nitsche H, Edelsteir N M. Solubilities and Specia-

tion of Selected Transuranium Ions: A Comparison of a Non-Complexing Solution With a Groundwater From the Nevada Tuff Site[J]. Radiochim Acta, 1985, 39:23-33.

- [6] 饶林峰. 锕系元素环境化学[J]. 核化学与放射化学,1986,8(3):188-192.
- [7] IAEA. Geochemistry of Long Lived Transuranic Actinides and Fission Products: IAEA-TECDOC-637[R]. Vienna: IAEA, 1992:9-47.
- [8] Kim J I. Chemical Behavior of Transuranic Elements in Natural Aquatic Systems [M]// Freeman A J, Keller C. Handbook on the Physics and Chemistry of the Actinides, Vol. 4. New York: Elsevier Science Publishers, 1986;413-455.
- [9] Guillacemont R, Adloff J P. Behaviour of Environmental Plutonium at Very Low Concentration[J]. Radiochim Acta, 1992, 58/59:53-60.
- [10] Choppin G R. Chemistry of Actinides in the Environment[J]. Radiochim Acta, 1988, 43(2):82-83.
- [11] Kudo A. Behavior of Plutonium at the Surface and in a Geologic Environment [J]. Radiochim Acta, 1998, 82:159-166.
- [12] Allard B. Solubility of Actinides in Neutral or Basic Solutions[C]// Edelstein N M. Actinides in Perspective, Actinides 1981 Conference. Pacific Grove: Pergamon Press, 1982:553-580.
- [13] Haire R G N, Runde W M. Plutonium Speciation, Solubilization, and Migration in Soils: EMSP-59996-98 [R]. USA: USDOE Office of Environmental Management (EM), 1998.
- [14] Nitsche H. Solubility Studies of Transuranium Elements for Nuclear Waste Disposal: Principles and Overview[J]. Radiochim Acta, 1991, 52/53:3-8.
- [15] Bates J K, Fortner J A, Finn P A, et al. Yucca Mountain Project - Argonne National Laboratory Annual Progress Report: ANL-94/42[R]. USA: Argonne National Lab, 1995.
- [16] Silva R J, Nitsche H. Actinide Environmental Chemistry[J]. Radiochimica Acta, 1995, 70/71: 377-396.
- [17] Watyerloo Hydrogeologic, Inc. AquaChem User's Manual[M]. Waterloo(Canada):Watyerloo Hydrogeologic, Inc, 1998.
- [18] Choppin G R. Actinide Speciation in the Environment[J]. Radiochim Acta, 2003, 91:645-649.
- [19] Allard B, Kipatsi H, Liljenzin J O. Expected Species of Uranium, Neptunium and Plutonium in Neutral Aqueous Solutions [J]. J Inorg Chem, 1980,

第4期

42:1015-1027.

- [20] Pirlet V. Overview of Actinides (Np,Pu,Am) and Tc Release From Waste Glasses: Influence of Solution Composition [J]. J Nucl Mater, 2001, 298: 47-54.
- [21] Vernaz E Y, Dussossoy J L. Current State of Knowledge of Nuclear Waste Glass Corrosion Mechanisms: the Case of R7T7 Glass [J]. Appl Geochem, 1992, (Suppl. 1):13-22.
- [22] Kim J I, Treiber W, Lierse Ch, et al. Solubility and Colloid Generation of Plutonium From Leaching of a HLW Glass in Salt Solutions[C]// Jantzen C M, Stone J A, Ewing R C. Scientific Basis for Nuclear Waste Management W. Pittsburgh; Mater Res Soc, 1985;359-368.
- [23] Bates J K, Gerding T J. Application of the NNWSI Unsaturated Test Method to Actinide-Doped SRL 165 Type Glass: ANL-89/24 [R]. USA: Argonne National Laboratory, 1990.
- [24] Vernaz E Y, Godon N. Leaching of Actinides From Nuclear Waste Glass: French Experience: CEA-CONF-10809(REV)[R]. Marcoule (France): CEA Centre d'Etudes de la Vallee du Rhone, 1991.
- [25] Inagaki Y, Sakata H, Furuya H, et al. Effects of Water Redox Conditions and Presence of Magnetite on Leaching of Pu and Np From HLW Glass[C]// Materials Research Society Symposium - Proceedings, V 506. Davos(Switz):Materials Research Society, 1997:177-184.
- [26] Ebert W L, Bates J K, Gerding T J. The Reaction of Glass During Gamma Irradiation in a Saturated Tuff Environment: ANL-88-14[R]. USA: Argonne National Laboratory, 1990.
- [27] Offermann P, Bidoglio G. Retention Properties of Pressed Salt for Tc, Np, Pu and Am Leached From Simulated HLW Glass[J]. Radiochim Acta, 1988, 44/45:271-276.
- [28] Jegou C, Gin S, Larche F. Alteration Kinetics of a Simplified Nuclear Glass in an Aqueous Medium: Effects of Solution Chemistry and of Protective Gel Properties on Diminishing the Alteration Rate[J]. J Nucl Mater, 2000, 280:216-229.
- [29] Menard O, Advocat T, Ambrosl, J P, et al. Behaviour of Actinides (Th, U, Np and Pu) and Rare Earths (La, Ce and Nd) During Aqueous Leaching of a Nuclear Glass Under Geological Disposal Conditions[J]. Appl Geochem, 1998, 13(1): 105-126.
- [30] Iseghem P V, Berghman K, Timmermans W. The

Interaction Between Nuclear Waste Glasses and Clay [[[C]// Oversby V M, Brown P W. Scientific Basis for Nuclear Waste Management XIII Symposium. Pittsburgh(USA): Mater Res Soc, 1990: 291-298.

- [31] Crowe B M. Research and Development Related to the Nevada Nuclear Waste Storage Investigations: LA-8152-PR [R]. USA: Los Alamos Sci Lab, 1981.
- [32] Gin S, Godon N, Mestre J P, et al. Experimental Investigation of Aqueous Corrosion of R7T7 Nuclear Glass at 90 ℃ in the Presence of Humic Acids: A Kinetic Approach [J]. Appl Geochem, 1994, 9: 255-269.
- [33] Vine E N, Bayhurst B P. Radionuclide Transport and Retardation in Tuff: LA-UR-80-2949 [R]. USA:Los Alamos Sci Lab, 1979.
- [34] Kim J I, Apostolidis C, Bueppelmann K, et al. Chemical Behaviour of Np, Pu and Am in Saline Solutions: Radiolysis, Solubility, Hydrolysis, Chloride Complexation and Speciation: RCM-00187[R]. Garching (Germany): Technische Univ Muenchen, 1987.
- [35] Clayton P R, Rees J H. The Theoretical Derivation of Limiting Solubilities of Long-Lived Radionuclides in Disposal: AERE R 10988[R]. Oxfordshire: Harwell Lab, 1983.
- [36] Pryke D C, Rees J H. Understanding the Behaviour of the Actinide Under Disposal Conditions: A Comparison Between Calculated and Experimental Solubilities[J]. Radiochim Acta, 1986, 40:27-33.
- [37] Neck V, Kim J I. Solubility and Hydrolysis of Tetravalent Actinides [J]. Radiochimica Acta, 2001, 89:1-16.
- [38] Ewart F T, Howse R M, Thomason H P, et al. The Solubility of Actinides in the Near-Field[C]// Werme L O. Scientific Basis for Nuclear Waste Management IX. Pittsburgh(USA): Materials Research Society, 1985:701-708.
- [39] Pryke D C, Rees J H. Calculated Solubilities of Actinides and Some Fission and Activation Products Under Disposal Conditions: AERE R 11753 [R]. Oxfordshire: Harwell Lab, 1985.
- [40] Nitsche H, Müller A, Standifer E M, et al. Dependence of Actinide Solubility and Speciation on Carbonate Concentration and Ionic Strength in Groundwater[J]. Radiochim Acta, 1992, 58/59: 27-32.

- [41] Hart K P, Glassley W E, Mcglinn P J. Solubility Control of Actinides Elements Leached From Synroc in pH-Buffered Solution[J]. Radiochim Acta,1992, 58/59:33-35.
- [42] Nitsche H. Effects of Temperature on the Solubility and Speciation of Selected Actinides in Near-Neutral Solutions[J]. Inorg Chim Acta, 1987, 127:121-129.
- [43] Rai D. Solubility Product of Pu(N) Hydrous Oxide and Equilibrium Constants of Pu(N)/Pu(V), Pu(N)/Pu(N), and Pu(V)/Pu(N) Couples[J]. Radiochim Acta, 1984, 35:97-106.
- [44] Rai D, Hess N J, Felmy A R, et al. Thremodynamic Model for the Solubility of PuO_{2(am)} in the Aqueous K-HCO₃⁻-CO₃²-OH⁻-H₂ O System[J]. Radiochimica Acta, 1999, 86:89-99.
- [45] Nitsche H. Solubility and Speciation Studies for Nuclear Repository Performance Assessment: LBL-31181[R]. USA:Lawrence Berkeley Lab, 1990.
- [46] Nitsche H, Gatti R C, Standifer E M. Measured Solubilities and Speciations of Neptunium, Plutonium, and Americium in a Typical Groundwater (J-13) From the Yucca Mountain Region: LA-12562-MS [R]. USA:Los Alamos National Lab, 1993.
- [47] Nitsche H, Roberts K, Prussin T, et al. Measured Solubilities and Speciations From Oversaturation Experiments of Neptunium, Plutonium, and Americium in UE-25p No. 1 Well Water From the Yucca Mountain Region: Milestone: LA-12563-MS [R]. USA:Los Alamos National Lab, 1994.
- [48] Gaudie S C, Greenfield B F, Spindler M W, et al. The Influence of Organic Waste Materials on the Near-Field Source Term [J]. Radiochim Acta, 1988, 44/45:251-255.
- [49] Means J L. Importance of Organic Compounds in Ground Water as Radionuclide-Mobilizing Agents: ONWI348 [R]. USA: Battelle Columbus Labs, 1982.
- [50] Ekberg C, Brown P, Comarmond J, et al. On the Hydrolysis of Tetravalent Metal Ions[C]// Hart K P, Lumpkin G R. Scientific Basis for Nuclear Waste Management XXIV, Vol. 663. USA: Mat Res Soc, 2000:1 091-1 099.
- [51] Schweingruber M. Solubility and Speciation Calculations for U, Pu, Np, and Th in Natural Groundwaters: Theory, Thermodynamic Data Files, and Initial Applications: ORNL-tr-4992 [R]. USA: Oak Ridge National Lab, 1983.

- [52] Runde W, Conradson S D, Efurd D W, et al. Solubility and Sorption of Redox-Sensitive Radionuclides (Np, Pu) in J-13 Water From the Yucca Mountain Site: Comparison Between Experiment and Theory [J]. Appl Geochem, 2002, 17:837-853.
- [53] Buffle J. Complexation Reactions in Aquatic Systems: An Analytical Approach [M]. USA: Ellis Horwood, 1988.
- [54] Clark D L, Hobart D E, Neu M P. Actinide Carbonate Complexes and Implications for Actinide Environmental Chemistry[J]. Chem Rev, 1995, 95: 25-48.
- [55] Moriyama H, Pratopo M I, Higashi K. Systematics of Hydrolysis and Canbonate Complexation Constants of Ions of Transuranium Elements[J]. Radiochim Acta, 1994, 66/67:73-79.
- [56] Clark D L, Conradson S D, Keogh D W, et al. Identification of the Limiting Species in the Plutonium(Ⅳ) Carbonate System. Solid State and Solution Molecular Structure of the [Pu(CO₃)₅]⁶⁻ Ion[J]. Inorg Chem, 1998, 37 (12):2 893-2 899.
- [57] Allard B, Karlsson F, Neretnieks I. Concentrations of Particulate Matter and Humic Substances in Deep Groundwaters and Estimated Effects on the Adsorption and Transport of Radionuclides: SKBTR9150
 [R]. Stockholm (Sweden): Swedish Nuclear Fuel and Waste Management Co, 1991.
- [58] Pettersson C, Ephraim J, Allard B, et al. Characterization of Humic Substances From Deep Groundwaters in Granitic Bedrock in Sweden: SKBTR9029
 [R]. Stockholm (Sweden): Swedish Nuclear Fuel and Waste Management Co, 1990.
- [59] Bennett D A. Stability Constants Important to the Understanding of Plutonium in Environmental:LBL-28963[R]. USA:Lawrence Berkeley Lab, 1990.
- [60] CRWMS M&O(Civilian Radioactive Waste Management System Management and Operating Contractor). In-Package Chemistry Abstraction for TSPA-LA:ANL-EBS-MD-000037 Rev 00[R]. Las Vegas (Nevada,USA):CRWMS M&O, 2000.
- [61] Kim J I, Buckau G B, Lierse C R. Chemical Behaviour of Np, Pu and Am in Aquatic Solutions. Hydrolysis, Carbonate Complexation, Alpha-Radiolysis, Colloid Generation, Humic Substance Characterization and Speciation; RCM-00988[R]. Garching (Germany): Technische Univ, Muenchen, 1988.
- [62] Bechtel SAIC Company LLC. In-Package Chemistry Abstraction for TSPA-LA: ANL-EBS-MD-000037

第4期

[R]. Las Vegsa(Nevada):Bechtel SAIC Company, 2000.

- [63] Eiswirth M, Kim J I, Lierse Ch. Optical Absorption Spectra of Pu(Ⅳ) in Carbonate/Bicarbonate Media[J]. Radiochim Acta, 1985, 38:197-201.
- [64] Choppin G R, Allard B. Complexes of Actinides With Naturally Occurring Organic Compounds [C]// Freeman A J, Keller C. The Handbook on the Physics and Chemistry of the Actinides, Vol. 3. Amsterdam:Elsevier, 1995:407-429.
- [65] André C, Choppin G R. Reduction of Pu(N) by Humic Acid[J]. Radiochim Acta, 2000, 88:613-616.
- [66] Tan Jianxin, Chen Yaozhong, Lin Zhangji. A Kinetic Study of the Reduction of Plutonium With Humic Acid[J]. Radiochim Acta, 1993, 61,73-75.
- [67] 魏连生,赵燕菊,孔令琴,等.模拟地下水中腐殖酸还原 Pu 的行为研究[J].核化学与放射化学, 1993,15(4):234-237.
- [68] Bass-Becking L G M, Kaplan I R, Moore D. Limits of the Natural Environment in Terms of pH and Oxidation-Reduction Potentials [J]. J Geology, 1960, 68(3):243-284.
- [69] Cleveland J M, Rees T F, Nash K L. Plutonium Speciation in Selected Basalt, Granite, Shale, and Tuff Groundwaters [J]. Nucl Technol, 1983, 62 (3):298-310.
- [70] Cleveland J M, Rees T F, Nash K L. Plutonium Speciation in Water From Mono Lake, Califoria[J]. Science, 1983, 222:1 323-1 325.
- [71] Rees T F, Cleveland J M, Nash K L, et al. The Effect of Composition of Selected Groundwaters From the Basin and Range Province on Plutonium, Neptunium, and Americium Speciation [J]. Nucl Technol, 1984, 65:131-137.
- [72] Rees T F, Cleveland J M, Nash K L. Plutonium, Americium, and Neptunium Speciation in Selected Groundwaters[J]. Nucl Technol, 1985, 69: 380-387.
- [73] Nitsche H, Lee S C, Gatti R C. Determination of Plutonium Oxidation States at Trace Levels Pertinent to Nuclear Waste Disposal [J]. J Radioanal Nucl Chem, Article, 1988, 124(1):171-185.
- [74] Choppin G R. Redox Speciation of Plutonium in Natural Water[J]. J Radioanal Nucl Chem, 1991, 147(1):109-116.
- [75] Kingston W L, Whitbeck M. Characterization of Colloids Found in Various Groundwater Environ-

ments in Central and Southern Nevada: DOE/NV/ 10384-36[R]. Las Vegas, Nevada: US Department of Energy, 1991.

- [76] Degueldre C, Triay I, Kim J I, et al. Groundwater Colloid Properties: A Global Approach [J]. Appl Geochem, 2000, 15(7):1 043-1 051.
- [77] Lu N, Reimus P W, Parke G R, et al. Sorption Kinetics and Impact of Temperature, Ionic Strength and Colloid Concentration on the Adsorption of Plutonium-239 by Inorganic Colloids [J]. Radiochim Acta, 2003, 91:713-720.
- [78] Ramsay J D, Russel P J. Actinide Colloid Generation in Groundwater: AERE-R-13385[R]. Oxfordshire: Harwell Lab, 1989.
- [79] Kepåk F K. Adsorption and Colloidal Properties of Radioactive Elements in Trace Concentration [J]. Chem Rev, 1971, 71:357-362.
- [80] Hobart D E, Morris D E, Palmer P D, et al. Formation, Characterization, and Stability of Plutonium (IV) Colloid: LA-UR-89-2541[R]. USA: Los Alamos National Lab, 1989.
- [81] Lloyd M H, Haire R G. The Chemistry of Plutonium in Sol-Gel Processes [J]. Radiochim Acta, 1978, 25(3/4):139-148.
- [82] Olofsson U, Allard B, Andersson K, et al. Formation and Properaties of Americium Colloids in Aqueous System[C]// Topp S. Scientific Basis for Nuclear Waste Management, Vol. 6. New York: Elsevier, 1982:191-198.
- [83] Olofsson U, Allard B, Torstenfelt B, et al. Properties and Mobilities of Actinide Colloids in Geologic Systems[C]// Topp S. Scientific Basis for Nuclear Waste Management, Vol. 5. 1982:755-764.
- [84] Rundberg R S, Mitchell A J, Torstenfelt N B. Size and Density of a ²⁴² Pu Colloid: LA-UR-87-3951
 [R]. USA:Los Alamos National Lab, 1987.
- [85] Fortner J A, Wolf S F, Buck E C, et al. Solution-Borne Colloids From Drip Tests Using Actinide-Doped and Fully-Radioactive Waste Glasses: ANL/ CMT/CP-90406[R]. USA: Argonne National Lab, 1996.
- [86] Hobart D E, Newton T W, Palmer P D. Formation of Plutonium(N) Colloid by the Alpha-Reduction of Aqueous Solutions of Pu(V) and Pu(N):LA-UR-85-3111 [R]. USA: Los Alamos National Lab, 1985.
- [87] Ledin A, Dueker A, Karlsson S, et al. Measurements of Colloid Concentrations in the Fracture

Zone:SKBTR9517[R]. Stockholm (Sweden): Aespoe Hard Rock Laboratory, 1995.

- [88] Nelson D M, Karttunen J O, Mehlhoff P. Influence of Colloidal Dissolved Organic Carbon (DOC) on the Sorption of Plutonium on Natural Sediments: ANL8185Pt3[R]. USA: Argonne National Lab, 1982.
- [89] Kosiewicz S T. Recommendations for Plutonium Colloid Size Determination:LA-9987[R]. USA:Los Alamos National Lab, 1984.
- [90] Romanovski V V, Brachmann A, Palmer C E, et al. Characterization of Pu Colloidal and Aqueous Species in Yucca Mountain Groundwater Surrogate: UCRL-JC-134460[R]. USA: Lawrence Livermore National Lab, 1999.
- [91] Zavarin M, Maxwell R M, Kersting B, et al. Plutonium Colloid-Facilitated Transport in the Environment-Experimental and Transport Modeling Evi-

dence for Plutonium Migration Mechanisms:UCRL-JC-151924[R]. USA:Lawrence Livermore National Lab, 2003.

- [92] Apted M J, Mcvay G L, Wald J W. Release of Actinides From Defense Waste Glass Under Simulated Repository Conditions[J]. Nucl Technol, 1986, 73 (2):165-178.
- [93] Shade J W, Ames L L, McGarrah J E. Actinide and Technetium Sorption on Iron-Silicate and Dispersed Clay Colloids [C]// Geochemical Behavior of Disposed Radioactive Waste. Based on a Symposium at the 185th Meeting of the American Chemical Society. Seattle(USA): ACS, Div of Nuclear Chemistry & Technology, Washington, DC, USA; ACS, Div of Industrial & Engineering Chemistry, Washington, DC, USA; ACS, Div of Geochemistry, Washington, DC, USA, 1984:67-77.