文章编号:0253-9950(2006)02-0072-08

H_2O_2 对 Pu(V)的还原动力学研究

章英杰,范显华,曾继述,苏锡光

中国原子能科学研究院 放射化学研究所,北京 102413

摘要:在 0.1 mol/L NaClO₄溶液中研究了 Pu(V)与 H₂O₂反应的动力学。测定了 Pu(V)与 H₂O₂的反应速 率。探讨了温度以及 Fe²⁺, SO²⁻, HCO⁻₃, F⁻等无机离子的存在对反应的影响。实验结果表明,反应对 Pu(V)与 H₂O₂呈一级,对溶液中 H⁺呈一1级;速率方程可表示为:

 $-\frac{dc(Pu(V))}{dt} = \frac{(3.93 \pm 1.93) \times 10^{-9} c(Pu(V)) c(H_2 O_2)}{c(H^+)},$

随着温度升高,反应速率明显加快,根据 Arrhenius 规律,计算出了反应的活化能为 $E_a = 84 \text{ kJ/mol}$ 。地下水 中 Fe^{2+} , SO_4^{2-} , HCO_5^{-} , F^{-} 等离子的存在,有利于 $\operatorname{Pu}(\mathbb{V})$ 的还原。

关键词: Pu(V); H_2O_2 ; 还原; 动力学

中图分类号: O614.353 文献标识码: A

Kinetic Study of Reduction of Pu(V) With H_2O_2

ZHANG Ying-jie, FAN Xian-hua, ZENG Ji-shu, SU Xi-guang

China Institute of Atomic Energy, P. O. Box 275(93), Beijing 102413, China

Abstract: Reaction kinetics of PuO_2^+ with hydrogen peroxide in 0.1 mol/L NaClO₄ solution is studied. Results of the kinetics of the reduction of PuO_2^+ with hydrogen peroxide indicate that the reduction of PuO_2^+ is first order with respect to hydrogen peroxide concentration and inverse first order with respect to hydrogen ion concentration. With these results and assuming a first order dependence with respect to the concentration of PuO_2^+ the reduction rate of PuO_2^+ increases with the increase of temperature. The velocity equation is as follow. The activation energy is deduced to be about 84 kJ/mol. The existence of Fe^{2+} , F^- , HCO_3^- and SO_4^{2-} accelerate the reduction of Pu(V) obviously. The reduction of PuO_2^+ with hydrogen peroxide in BS03 well underground water is studied. The reduction rate is obviously faster than that without hydrogen peroxide in the same underground water.

$$-\frac{dc(Pu(V))}{dt} = \frac{(3.93 \pm 1.93) \times 10^{-9} c(Pu(V)) c(H_2O_2)}{c(H^+)}$$

Key words: plutonium(V); H_2O_2 ; reduction; kinetic

在高放废物处置过程中,当工程屏障和废物 的包装容器受到破坏,导致地下水与高放废物固 化体接触,使固化体中的放射性核素进入地下水 中,同时由于高放废物的强辐照作用,可引发地下 水的辐解反应生成多种产物,如 H_2O_2 , H_2 , O_2 以 及 O_2^- , HO_2^- , OH^- , H^+ 等。这些水的辐解产物, 可进一步与溶解于水中的放射性核素发生氧化还 原反应^[1-8]。在这些水的辐解产物中,能在水相中 稳定存在的主要为 H_2O_2 。由于 Pu 的特殊化学 性质,在地下水中可能存在 4 种价态: III,IV, V, $VI^{[9]}$ 。因此,拟研究 H_2O_2 与高价 Pu 的还原反 应,探讨其反应机理,为高放废物地质处置环境及 安全评价提供技术参数。

1 实验部分

1.1 试剂和仪器

1.1.1 试剂 $KMnO_4$,标准试剂,北京化学试剂 二厂产品;30%过氧化氢(H_2O_2),分析纯,北京化 工厂产品,实验过程中 H_2O_2 浓度用 $KMnO_4$ 滴定 法测定;三羟甲基氨基甲烷(TRIS),分析纯,北京 化学试剂公司产品;Pu(V)溶液的制备方法参见 文献[10]。其余试剂均为市售分析纯,实验用水 为石英蒸馏器所制二次蒸馏水。

1.1.2 仪器 CS501-SP 型超级数显恒温器,重 庆四达实验仪器厂制造。HI 8424 型微电脑 pH/ mV/℃计,意大利 HANNA Instruments 公司产 品,附 HI1230B 型 pH 电极,HI 3130B 型(或 HI3230B 型) ORP 电极。FH408 型自动定标器, 北京核仪器厂产品。BH1216 型低本底 α,β测量 装置,北京核仪器厂产品。QUANTULUS 1220 液闪谱仪,美国 PE 公司产品。超速离心机,日本 Hitachi Koki 公司产品。超过滤器,美国 Millipore 公司产品。聚丙烯离心管和 10 mL 富硼玻 璃离心管,自行设计后由专业厂家生产,使用前, 依次用自来水、去离子水和重蒸水洗涤,室内自然 干燥后,在其内表面涂二氯二甲基硅烷。

1.2 实验方法

移取 40 mL 含已知浓度 $H_2 O_2$ 的 0.1 mol/L NaClO₄+0.01 mol/L TRIS 溶液于 50 mL 聚丙 烯离心管中,然后根据实验要求加入指定的离子。 再加入微量的 Pu(V)溶液,使最终混合液中 Pu(V)浓度为 0.656 nmol/L,迅速搅拌均匀,用 NaOH 或 HClO₄调 pH 至指定值,并立即将离心 管放入恒温水浴中开始还原反应。在温度(20± 0.1)℃下,每隔一定时间取 4.0 mL 反应混合物, 先用截留分子量为 10 000 的膜对样品进行过滤, 取 2 份滤液于 2 支 10 mL 富硼玻璃离心管中,每 份滤液的体积为 1.5 mL,分别用噻吩甲酰三氟丙 酮(TTA)萃取法^[11]和二苯甲酰甲烷(DBM)萃取 法^[12]分析 Pu 的价态,计算Pu(V)的还原速率。 同时以不加 H₂ O₂ 的 0.1 mol/L NaClO₄ + 0.01 mol/L TRIS 溶液重复上述实验过程,做对比实验。

2 结果和讨论

2.1 Pu(V)稳定性

从图 1 看出,在实验时间 0~540 min 范围内,有 H₂O₂存在的反应体系 1 中,Pu(V)浓度c(Pu(V))明 显降低,同时有 Pu(IV)生成,无三价和六价出现,说 明 H₂O₂可将 Pu(V)还原为四价,而无 H₂O₂存在的 反应体系 2 中,Pu(V)总浓度 c(Pu(V))_{total} 变化很 小。由于 H₂O₂ 与Pu(V)反应生成的 Pu(IV)进一步 水解,形成了胶体,样品经超滤后,大部分 Pu(IV)被 分离,使滤液中总 Pu 浓度明显低于无 H₂O₂存在的 反应体系 2 中的总 Pu(V)浓度 c(Pu(V))_{total}。

Fig. 1 Stability of Pu(V) in 0.1 mol/L NaClO₄ solution pH=8.39,θ=(20.0±0.1) °C; c(H₂O₂):1---5.50 mmol/L,2---0 mmol/L

2.2 H₂O₂浓度的影响

图 2 为在溶液 pH 值基本保持不变的条件 下, H_2O_2 浓度对溶液中 Pu(V)浓度的影响。从 图 2 可知,随着溶液中 H_2O_2 的浓度增大,Pu(V) 被 H_2O_2 还原的速率明显增大。

2.3 pH 值影响

图 3 为溶液 pH 值变化对Pu(V)稳定性的影响。从图 3 可知,随着溶液 pH 值增大,Pu(V)被 H₂O₂还原的速率明显增大,即溶液中 H⁺离子浓 度越小,Pu(V)在 H₂O₂溶液中越不稳定。

2.4 动力学参数及反应机理探讨

设 Pu(V)被 H_2O_2 还原的反应动力学表达式为:

$$\frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{V}))}{\mathrm{d}t} = k \times c^{t}(\mathrm{Pu}(\mathrm{V})) \times c^{m}(\mathrm{H}_{2}\mathrm{O}_{2}) \times c^{n}(\mathrm{H}^{+})_{\circ}$$
(1)

由于实验过程中钚浓度 c(Pu(V))比 $c(H_2O_2)$ 和 $c(H^+)$ 低得多,因此可认为 $c(H_2O_2)$ 和 $c(H^+)$ 在 整个反应过程中近似不变。故式(1)可写成:

$$-\frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{V}))}{\mathrm{d}t} = k' \times c^{l}(\mathrm{Pu}(\mathrm{V})), \quad (2)$$

 $k' = k \times c^{m} (H_{2}O_{2}) \times c^{n} (H^{+}).$ (3) 式中, k' 为表观速率常数。

将图 2 和图 3 中的实验数据再进行处理,即 以 $\ln[c(Pu(V))_t/c(Pu(V))_0]$ 对时间 t 作图, 得图 4 和图 5。由图 4 和图 5 给出的直线可以判 断,在给定的实验条件下,Pu(V)与 H_2O_2 的还原 化学反应为一级反应,即 l=1。故式(2)可写成:

$$-\frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{V}))}{\mathrm{d}t} = k' \times c(\mathrm{Pu}(\mathrm{V}))_{\circ} \quad (4)$$

由图 4 和图 5 中直线斜率可求得对应 k' 值, 结果列入表 1。

将式(3)两边取对数,得:

 $\lg k' = \lg k + m\lg c(H_2O_2) + n\lg c(H^+)_{\circ}(5)$ 则实验过程中保持溶液中 H⁺ 浓度不变,仅变化 H₂O₂ 浓度,测得系列 k'值,然后以 lg k' 对 lg c(H₂O₂) 作图,应得一直线,由直线斜率得到 m 值,结果示于图 6,m =1。

将 m=1 代入式(3),得:

图 3 pH 值变化对 Pu(V)稳定性的影响

$$k' = k \times c(H_2O_2) \times c^n(H^+), \qquad (6)$$

对式(6)移项,并两边取对数:

$$\lg \frac{k'}{c(\mathrm{H}_2\mathrm{O}_2)} = \lg k + n \lg c(\mathrm{H}^+)_{\circ} \qquad (7)$$

则按照式(7),对表 1 中变化溶液中 H⁺ 浓度 测得的表观速率常数 k'进行处理,结果示于图 7。 由图 7 看出,n 值为-1,则表观速率常数 k' 可用式 (8)表示:

$$k' = k \times c(\mathbf{H}_2\mathbf{O}_2) \times c^{-1}(\mathbf{H}^+)_{\circ}$$
(8)

将实验条件和测得的表观速率常数 k' 值直 接代入式(8),可得到 Pu(V)被 H_2O_2 还原的反应 速率常数 k 值,结果也列入表 1。则 Pu(V)被 H_2O_2 还原的反应动力学方程式为:

 $- dc(Pu(V))/dt = (3.93 \pm 1.93) \times 10^{-9} \times c(Pu(V))c(H_2O_2)/c(H^+), \qquad (9)$

由实验测得的 Pu(V)被 H_2O_3 还原的反应动

力学方程式(9)可看出,Pu(V)的反应速率与 H⁺ 浓度成反比,即随着溶液 H⁺浓度的降低,Pu(V)的反应速率增大;而与 H₂O₂ 和 Pu(V)的浓度成 正比,即随着 H₂O₂或 Pu(V)的浓度增大而增大。 因此,可得到如下的反应机理,其中式(12)为控速 反应。

表1 实验测得的速率常数 k

Table 1	Reduction	rate	constants	of	$P_{11}(V)$	
Table 1	Reduction	rate	constants	O1	IU(V)	

pН	$c(H_2O_2)/(mol \cdot L^{-1})$	k' / \min^{-1}	$k/{ m min}^{-1}$
8.38	1.29×10^{-3}	0.001	3.23×10^{-9}
8.35	3.30×10^{-3}	0.002 4	3.25×10^{-9}
8.39	5.50 $\times 10^{-3}$	0.003 9	2.89×10 ⁻⁹
8.37	7.40×10 ⁻³	0.006	3.46×10 ⁻⁹
8.41	9.05 $\times 10^{-3}$	0.007 8	3.35×10^{-9}
8.36	1.25×10^{-2}	0.010 8	3.77 $\times 10^{-9}$
8.38	2.55 $\times 10^{-2}$	0.012 6	2.06×10^{-9}
7.98	3.30×10^{-3}	0.002 2	6.98×10^{-9}
8.38	4.62 $\times 10^{-3}$	0.003 5	3.16×10^{-9}
8.62	3.30×10^{-3}	0.005 6	4.07×10^{-9}
9.07	2.21×10 ⁻³	0.008 2	3.16×10^{-9}
9.58	4.46×10 ⁻⁴	0.012	7.08 $\times 10^{-9}$
9.85	4.84×10^{-4}	0.015 7	4.58×10^{-9}
10.09	4.47 $\times 10^{-4}$	0.021 6	3.93×10^{-9}
		((3	$3.93\pm1.93\times10^{-9}$

注(Note):括号中数值为平均值(The data in bracket is the average)

pH 值变化对 Pu(V)还原速率的影响 冬 5 Fig. 5 Effect of pH value on the reduction rate of Pu(V) $1 - pH = 7.98, c(H_2O_2) = 3.30 \text{ mmol/L},$ $y = -0.002 \ 2x - 0.012 \ 2, R^2 = 0.995 \ 5;$ $2 - pH = 8.38, c(H_2O_2) = 4.62 \text{ mmol/L},$ $y = -0.003 5x - 0.001, R^2 = 0.994 8;$ $-pH=8.62, c(H_2O_2)=3.30 \text{ mmol/L},$ 3-- $y = -0.005 \ 6x - 0.021 \ 3, R^2 = 0.997 \ 7;$ $4 - - pH = 9.07, c(H_2O_2) = 2.21 \text{ mmol/L},$ $y = -0.008 \ 2x - 0.032 \ 7, R^2 = 0.991 \ 3;$ $-pH=9.58, c(H_2O_2)=0.446 \text{ mmol/L},$ 5-- $y = -0.012x - 0.0121, R^2 = 0.9945;$ $6 - pH = 9.85, c(H_2O_2) = 0.484 \text{ mmol/L},$ $y = -0.015 \ 7x - 0.001 \ 1, R^2 = 0.997 \ 5;$ 7-----pH=10.09, $c(H_2O_2)=0.447 \text{ mmol/L}$, $y = -0.021 \ 6x - 0.001, R^2 = 0.990 \ 9$

$$H_2O_2 \stackrel{k_1}{\longleftrightarrow} H^+ + HO_2^-, \qquad (10)$$

$$\operatorname{PuO}_{2}^{+} + \operatorname{HO}_{2}^{-} \rightleftharpoons \operatorname{PuO}_{2}\operatorname{O}_{2}\operatorname{H},$$
 (11)

$$\operatorname{PuO}_2\operatorname{O}_2\operatorname{H} \stackrel{\kappa_3}{\Longrightarrow} \operatorname{PuO}_2\operatorname{O}_2\operatorname{H}^{\neq}, \qquad (12)$$

 $PuO_2O_2H^{\neq} \longrightarrow Pu^{4+} + \textbf{还原产物}_{\circ}$ (13)

在以上反应中,式(10),(11)为可逆反应,由于 H_2O_2 为弱酸,在碱性溶液中可电离出 H^+ :

$$k_1 = \frac{c(\mathrm{H}^+) \times c(\mathrm{HO}_2^-)}{c(\mathrm{H}_2\mathrm{O}_2)},$$
 (14)

$$k_2 = \frac{c(\operatorname{PuO}_2\operatorname{O}_2\operatorname{H})}{c(\operatorname{Pu}(\operatorname{V})) \times c(\operatorname{HO}_2^-)}, \qquad (15)$$

式(12)为慢反应,由 PuO_2O_2H 生成 Pu^{4+} 过程中, 有 Pu=O 双键的断裂,需要一定的能量支持,因 此, PuO_2O_2H 先吸收一定的能量,生成中间活化 物 $PuO_2O_2H^{\neq}$,然后生成 Pu^{4+} 及一些还原产物。 则速率方程为:

$$-\frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{V}))}{\mathrm{d}t} = k_3 \times c(\mathrm{PuO}_2\mathrm{O}_2\mathrm{H})_{\circ} (16)$$

将式(15)和式(14)变形后代入式(16),得:

图 6 H_2O_2 浓度对表观速率常数 k' 的影响

Fig. 6 Effect of H₂O₂ concentration on the apparent reduction rate constants of Pu(V)

 $-\frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{V}))}{\mathrm{d}t} =$ $k_3 \times k_2 \times k_1 \times c(\operatorname{Pu}(V)) \times c(\operatorname{H}_2\operatorname{O}_2)$ $c(\mathrm{H}^+)$ $\frac{k \times c(\operatorname{Pu}(V)) \times c(H_2O_2)}{c(H^+)}$ (17)

这与实验结果一致。式(17)中表观速率常数 k = $k_3 imes k_2 imes k_1$ 。

2.5 温度对 Pu(V)还原速率的影响

实验过程中,基本保持相同的 H₂O₂浓度和 H^+ 浓度,在不同温度下测得 Pu(V)浓度随时间 的变化曲线示于图 8。由图 8 可以看出,随温度 的升高,Pu(V)的还原速率增大。由图 8 中直线 斜率可求得对应 k' 值, 由 k' 值及 pH, H₂O₂ 浓度 计算得到反应速率常数 k 值。

根据不同温度对应的速率常数 k,以 lg k 对 1/T作图,结果示于图 9。由图 9 可看出, lgk 对 1/T 为一直线,由直线斜率可求得反应体系活化 能 $E_a = 84 \text{ kJ} \cdot \text{mol}^{-1}$ 。由于反应过程中有Pu = O双键的断裂,消耗能量,则该反应的活化能较大, 这与反应机理一致。

 H₂O₂浓度和 pH 值对 Pu(V) 半还原反应时 间 $t_{1/2}$ 的影响

半还原反应时间 t1/2 是指反应物浓度消耗掉 一半所需的反应时间,它直接表征该反应进行的 难易程度。对速率方程式(8)进行积分,得

$$\int_{0}^{c} -\frac{dc(\operatorname{Pu}(V))}{c(\operatorname{Pu}(V))} = \frac{3.93 \times 10^{-9} \times c(\operatorname{H}_{2}\operatorname{O}_{2})}{c(\operatorname{H}^{+})} \int_{0}^{t} dt$$
$$\ln \frac{c(\operatorname{Pu}(V))_{0}}{c(\operatorname{Pu}(V))} = \frac{3.93 \times 10^{-9} \times c(\operatorname{H}_{2}\operatorname{O}_{2})}{c(\operatorname{H}^{+})} \times t,$$
$$t_{1/2} = \frac{\ln 2 \times c(\operatorname{H}^{+})}{3.93 \times 10^{-9} \times c(\operatorname{H}_{2}\operatorname{O}_{2})},$$
$$\lg t_{1/2} = 8.25 - \operatorname{pH} - \lg c(\operatorname{H}_{2}\operatorname{O}_{2}) \,. \quad (18)$$

图 7 H⁺ 浓度对表观速率常数 k' 的影响

Fig. 7 Effect of H⁺ concentration on the apparent reduction rate constants of Pu(V)

Fig. 9 lg k vs 1/T

由式(18)看出,Pu(V)被 H₂O₂还原的半反 应时间与 H₂O₂浓度及溶液的 pH 值有关。假定 在高放废物处置过程中,H₂O₂的产额浓度范围为 $1.0 \times 10^{-8} \sim 1.0 \times 10^{-2} \text{ mol/L}$,地下水 pH 值在 $7 \sim 9$ 之间变化,那么引起的 Pu(V)半反应时间 $(t_{1/2})$ 变化可用图 10 所示曲面表示。

Fig. 10 Effects of $H_2 O_2$ concentration and pH value on the half-time of the reduction reaction of Pu(V) c(Pu(V))=0.656 nmol/L

从图 10 看出,溶液 pH 值越高, H_2O_2 对 Pu(V)的还原速率越快,例如 H_2O_2 的产额浓度 达到 10^{-2} mol/L 时, $t_{1/2}$ 仅几十分钟。

2.7 无机离子对 Pu(V)还原的影响

2.7.1 阳离子的影响 地下水中常见的阳离子 有 K^+ , Na^+ , Ca^{2+} , Mg^{2+} , Fe^{2+} 等,可能对 Pu(V)还原速率有影响。因此,实验过程中分别研究了 K^+ , Ca^{2+} , Mg^{2+} , Fe^{2+} 等对 Pu(V)还原速率的影 响,同时与溶液中无这些阳离子时的反应参数进 行了比较,结果示于图 11。

由图 11 可以看出,当反应溶液中不存在其它 阳离子时,Pu(V)的半还原时间为 280 min。 K^+ , Ca^{2+} 和 Mg^{2+} 离子的存在对 Pu(V)的还原速 率没有明显影响,其半还原时间分别为 280,280 和 279 min。Fe²⁺离子的存在,导致 Pu(V)还原 速率明显加快,其半还原时间缩短至 86 min。 可能是 Fe²⁺离子的还原作用,将部分 Pu(V)还 原。

2.7.2 阴离子的影响 地下水中含有的阴离子 主要有 HCO_3^- , NO_3^- , F^- , CI^- , I^- , SO_4^{2-} 和 HPO_4^{2-} 等。钚离子能与许多阴离子生成稳定的 阴离子配合物。不同价态的钚离子与阴离子的配 合能力按 $Pu(\mathbb{N}) \ge Pu(\mathbb{N}) > Pu(\mathbb{N}) > Pu(\mathbb{N}) > Pu(\mathbb{N}) > Pu(\mathbb{N}) > Pu(\mathbb{N})$ 的 次序排列。因此,某些阴离子的存在,将有利于 $Pu(\mathbb{N})$ 的生成。实验研究了在 $HCO_3^-, NO_3^-,$ $F^-, Cl^- 和 SO_4^-$ 存在下, $Pu(\mathbb{N})$ 被 H_2O_2 还原的 反应情况,结果示于图 12。

图 12 阴离子对 Pu(V)还原速率的影响 Fig. 12 Effect of negative ion on reduction rate of Pu(V) pH=8.35, c(H₂O₂)=3.3 mmol/L;

・ — 不加其它无机阴离子(No other anions added), \diamondsuit — $-c(Cl^-)=50.0 \text{ mmol/L},$ \bigtriangleup — $-c(HCO_3^-)=2.26 \text{ mmol/L},$ \bigcirc — $-c(NO_3^-)=0.225 \text{ mmol/L},$ \Box — $-c(F^-)=0.994 \text{ mmol/L},$

由图 12 看出,在 $H_2 O_2 浓度相同的条件下,$ 阴离子种类不同,对 <math>Pu(V)还原速率的影响程度 不同,可能是阴离子与还原产物的配合能力不同 所造成,其还原的半反应时间 $t_{1/2}$ 列入表 2。

表 2 各阴离子对 Pu(V)还原半反应时间的影响

Table 2 Effects of anions on the half-time of the reduction of Pu(V)

阴离子(Anion)	$c/(\text{mol} \cdot L^{-1})$	$t_{1/2}/\min$
不加入阴离子(No anion)	0	280
Cl ⁻	5.0×10 ⁻²	279
NO_3^-	2.25×10^{-4}	280
HCO_3^-	2.26×10 ⁻³	192
SO_4^{2-}	1.25×10^{-2}	155
F^-	9.94×10^{-4}	123

2.8 Pu(V)在 BS03 井地下水中的稳定性

为考察 Pu(V)在 BS03 井地下水中的稳定性 (地下水成分见参考文献[10]),作了两组对比实 验,两组实验中 Pu(V)的初始浓度相同,一组加 入一定浓度的 H₂O₂,另一组不加 H₂O₂,所测结 果示于图 13。由图 13 可看出,在 $c(H_2O_2)=0$ 时,Pu(V)也能被还原,Pu(V)的半还原时间为 84 min;当在地下水中加入一定浓度的 H₂O₂后, Pu(V)被还原的速率加快,其半还原时间为 12 min。由于在地质环境下,地下水与岩石之间存 在复杂的水-岩反应^[13-14],这种水-岩间长期的化 学作用使地下水中含有大量的各类电解质盐类及 成岩矿物,如Fe²⁺,S²⁻,NO₂⁻,FeOOH,FeS,腐殖 酸等,这些物种的存在,使进入地下水的高价 Pu 得到还原^[15-22];同时由废物体的强辐照作用,产生 的 H₂O₂,更有利于 Pu(V)的快速还原。

3 结 论

Pu(V)与 $H_2 O_2$ 反应的实验结果表明,随着 溶液中 $H_2 O_2$ 浓度的增加和溶液 pH 值的增大, Pu(V)的还原速率明显加快。Pu(V)的还原反 应动力学表达式为:

 $- dc(Pu(V))/dt = (3.93 \pm 1.93) \times 10^{-9} \times c(Pu(V)) \times c(H_2O_2)/c(H^+)_{\circ}$

随着温度的升高,反应速率明显加快,反应的活化 能 $E_a = 84 \text{ kJ/mol}$ 。地下水中 Fe^{2+} , SO_4^{2-} , HCO_3^- , F^- 等离子的存在, 有利于 Pu(V)的还原。

图 13 Pu(V)在 BS03 井地下水中的稳定性 Fig. 13 Reduction behavior of Pu(V) in BS03 well underground water ◇----pH=8.09,c(H₂O₂)=0 mol/L; □----pH=8.09,c(H₂O₂)=3.33 mmol/L

参考文献:

- [1] Cooper W J, Zika R G. Photochemical Formation of Hydrogen Peroxide in Surface and Ground Waters Exposed to Sunlight[J]. Science, 1983, 220: 711-712.
- [2] Zika R G, Moffett J W, Petasne R G, et al. Spatial and Temporal Variation of Hydrogen Peroxide in Gulf of Mexico Waters [J]. Geochim Cosmochim Acta, 1985, 49:1 173-1 184.
- [3] Choppin G R. Redox Speciation of Plutonium in Natural Waters[J]. J Radioanal Nucl Chem, 1991, 147:109-116.
- [4] Van Baalen C, Marler J E. Occurrence of Hydrogen Peroxide in Seawater[J]. Nature, 1966, 211: 951.
- [5] Draganic I G. Radioactivity and Radiation Chemistry of Water [J]. Radiochim Acta, 1995, 70/71: 317-321.
- [6] Amme M. Contrary Effects of the Water Radiolysis Product H₂O₂ Upon the Dissolution of Nuclear Fuel in Natural Ground Water and Deionized Water[J]. Radiochim Acta,2002,90:399-406.
- [7] Christensen H, Sunder S. Current State of Knowledge of Water Radiolysis Effect on Spent Nuclear Fuel Corrosion[J]. Nucl Technol, 2000, 131:102-122.
- [8] Lindberg R, Runnells D. Ground Water Redox Reactions: An Analysis of Equilibrium State Applied to Eh Measurements and Geochemical Modeling[J]. Science, 1984, 225: 925-927.

- [9] 章英杰. Pu 在特定地质环境下的化学行为研究 [D]. 北京:中国原子能科学研究院,2005.
- [10] 章英杰,范显华,苏锡光,等. Pu 在花岗岩中的吸 附行为研究[J]. 核化学与放射化学,2005,27(3): 136-143.
- [11] Bertrand P A, Choppin G R. Separation of Actinides in Different Oxidation States by Solvent Extraction[J]. Radiochimica Acta, 1982, 31:135-137.
- [12] Saito A, Choppin G R. Separation of Actinides in Different Oxidation States From Neutral Solutions by Solvent Extraction[J]. Anal Chem, 1983, 55: 2 454-2 457.
- [13] 陈骏,王鹤年.地球化学[M].第一版.北京:科 学出版社,2004:201-202.
- [14] 韩吟文,马振东. 地球化学[M]. 第一版. 北京:地 质出版社,2003:93-96.
- [15] Marquardt C M, Seibert A, Artinger R, et al. The Redox Behaviour of Plutonium in Humic Rich Groundwater[J]. Radiochim Acta, 2004, 92:617-623.
- [16] Andr'e C, Choppin G R. Reduction of Pu(V) by Humic Acid[J]. Radiochim Acta, 2000, 88:613-616.

- [17] Morgenstern A, Choppin G R. Kinetics of the Oxidation of Pu(Ⅳ) by Manganese Dioxide[J]. Radiochim Acta,2002, 90:69-74.
- [18] Keeney-Kennicutt W L, Morse J W. The Redox-Chemistry of Pu(V)O₂⁺ Interaction With Common Mineral Surfaces in Dilute Solutions and Seawater
 [J]. Geochim Cosmochim Acta, 1985, 49: 2 577-2 588.
- [19] 魏连生,赵燕菊,孔令琴,等. 模拟地下水中腐殖酸还原 Pu 的行为研究[J]. 核化学与放射化学, 1993,15(4):234-239.
- [20] Tan Jianxin, Chen Yaozhong, Lin Zhangji. A Kinetic Study of the Reduction of Plutonium With Humic Acid[J]. Radiochimica Acta,1993,61, 73-75.
- [21] Nash K L, Cleveland J M, Sullivan J C, et al. Kinetics of Reduction of Plutonium(VI) and Neptunium(VI) by Sulfide in Neutral and Alkaline Solution[J]. Inorg Chem, 1986, 25:1 169-1 173.
- [22] Nitsche H, Lee S C, Gatti R C. Determination of Plutonium Oxidation States at Trace Levels Pertinent to Nuclear Waste Disposal[J]. J Radioanal Nucl Chem, 1988, 124:171-185.