HNO3介质中羟胺还原 微量 Pu(IV) 的动力学研究 罗隆俊 费洪澄

(中国原子能科学研究院放射化学研究所,北京 102413)

研究了HNO₃介质中羟胺还原微量 Pu(IV)(c(Pu(IV)) 10⁻⁵mol Λ)的动力学。测定了酸度、 羟胺、Pu(IV)、Pu(III)和NO⁵浓度对微量 Pu(IV)还原速率的影响,得到羟胺还原微量 Pu(IV)的 速率方程:

> $= k_{0} \frac{c^{2}(\operatorname{Pu}(\Pi V)) \cdot c^{1.8}(\operatorname{NH} \Omega H^{+})}{c^{2}(\operatorname{Pu}(\Pi I)) \cdot c^{3.6}(\operatorname{H}^{+}) \cdot (K_{d} + c(\operatorname{NO}_{3}^{-}))^{2}}$ dc(Pu(IV))

20 时,速率常数 k₀= (0.0188 ± 0.0028) mol^{4 8} · L^{-4 8} · m in⁻¹, Pu (IV) 的还原速率随温度提高而 显著加快,其表观活化能为147 kJ/mol。同时讨论了羟胺还原微量 Pu(IV)的反应机理。

关键词 还原动力学 微量 Pu(IV) 羟胺 HNO₃ **中图分类号** 0 614.353

Purex 流程中,U, Pu 分离都是通过将 Pu(IV)还原为不易被 TBP 萃取的 Pu(III)来实现。 但是有机相中微量 Pu(IV)(c(Pu(IV))< 10⁻⁵mol Λ)的还原反萃与常量 Pu(IV)(c(Pu(IV)) $= 10^{-3}$ - 10⁻² mol(L)的还原反萃有很大不同。有机相中微量 Pu(IV)的还原反萃率偏低、从而 导致铀线二循环中U、Pu 分离系数比共去污一循环中的U、Pu 分离系数低几十甚至上百倍。 有机相中微量 Pu(IV)的还原反萃率偏低的原因是微量 Pu(IV)的还原动力学行为具有特殊性 以及 TBP 降解产物对微量 Pu 相对高的保留。因此,研究 HNO3 介质中微量 Pu (IV)的还原动 力学行为具有重要的意义。

羟胺作为 Pu(IV)的还原剂,具有易被破坏,且分解产物为气体的优点,可以使流程无盐 化。对于羟胺还原常量 Pu(\mathbb{N}) ($c(Pu(\mathbb{N})) = 10^{-3} - 10^{-2} mol/L$)的动力学行为已有较多研 究^[1-5]。 但微量 Pu(IV)的动力学研究目前尚无报道。本文旨在研究 HNO3 介质中羟胺还原 $Pu(IV)(c(Pu(IV)) = 10^{-5} mol \Lambda)$ 的动力学行为,以得出微量 Pu(IV)的还原速率方程,速率常 数和表现活化能,并探讨可能的反应机理。

- 实验部分 1
- 1.1 试剂和仪器

Pu (NO3)4 溶液: 用阴离子树脂交换和 TTA 萃取, 8-9 mol/L HNO3 反萃纯化后备用: 硝

收稿日期: 1997-02-24 收到修改稿日期: 1997-11-13 费洪澄:男,35岁,物理化学专业,学士,付研究员

酸羟胺:用盐酸羟胺经阳离子树脂交换制备; PMBP:用二甲苯配制成 0 05 m ol/L 溶液备用; 所用试剂均为分析纯。

低温浴槽: 温度范围- 30—+ 50 , 控温精度+ 0 5 , 辽阳恒温仪器厂; PHS-2 型 pH 计: 上海分析仪器厂。

1.2 分析方法

用 PM B P 萃取法分析 Pu (IV) 和 Pu (III) 浓度^[6]; pH 滴定法分析硝酸羟胺中羟胺和自由酸 浓度; 溴代丁二稀亚胺滴定法测定肼浓度。

1.3 实验步骤

Pu (IV)的还原反应在自制的有恒温夹套的圆柱形玻璃反应器(100 mL)中进行,反应器中的反应液由电磁搅拌器进行搅拌。先在反应器中加入一定体积的所需浓度的 HNO₃和 Pu (IV)溶液,恒温 10—15 m in 后,加入一定量硝酸羟胺,定时从反应中取少量反应液分析 Pu (IV)或 Pu (III)浓度,每个样品均做平行分析。反应液中的硝酸根浓度用 N aNO₃ 调整;除特别注明外反应液中均不含肼。

2 结果和讨论

2.1 速率方程的确立

2.1.1 Pu(IV)和 Pu(III)浓度对 Pu(IV)还原速率的影响 硝酸介质中常量 Pu(IV)与羟胺的 反应由以下两种竞争方式进行^[1.5]

$$2NH_{3O}H^{+} + 2Pu^{4+} = 2Pu^{3+} + N_{2} + 2H_{2O} + 4H^{+}$$
(1)

$$2NH_{3}OH^{+} + 4Pu^{4+} = 4Pu^{3+} + N_{2}O + H_{2}O + 6H^{+}$$
(2)

当 c (NH₃OH⁺) > c (Pu (IV))时,反应(1)是主要的; 当 c (NH₃OH⁺) < c (Pu (IV))时,反应(2)占优。在羟胺大量过量时,常量 Pu (IV)的还原速率方程为^[1,4]:

$$\frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{IV}))}{\mathrm{d}t} = k \frac{c^{2}(\mathrm{Pu}(\mathrm{IV}))}{c^{2}(\mathrm{Pu}(\mathrm{III}))}$$
(3)

将公式(3)积分得到如下分式(4)、(5):

当 $c_0(\operatorname{Pu}(\operatorname{III})) = 0$ 时,

7

$$k t = (c_0(\operatorname{Pu}(\operatorname{IV})) + c_0(\operatorname{Pu}(\operatorname{III})) [2\ln(\frac{c(\operatorname{Pu}(\operatorname{IV}))}{c_0(\operatorname{Pu}(\operatorname{IV}))}) + \frac{c_0(\operatorname{Pu}(\operatorname{IV})) + c_0(\operatorname{Pu}(\operatorname{III}))}{c(\operatorname{Pu}(\operatorname{IV}))}] - c(\operatorname{Pu}(\operatorname{IV})) - \frac{c_0^2(\operatorname{Pu}(\operatorname{III}))}{c_0(\operatorname{Pu}(\operatorname{IV}))}$$
(5)
$$\Leftrightarrow F = c_0(\operatorname{Pu}(\operatorname{IV})) [2\ln(\frac{c(\operatorname{Pu}(\operatorname{IV}))}{c_0(\operatorname{Pu}(\operatorname{IV}))}) + \frac{c_0(\operatorname{Pu}(\operatorname{IV}))}{c(\operatorname{Pu}(\operatorname{IV}))}] - c(\operatorname{Pu}(\operatorname{IV})), (\mathcal{K}\Lambda\mathfrak{X}(4), \mathbb{N})$$

$$F = k t$$
(6)
$$c(\mathbf{u}(W)) = c(\mathbf{Pu}(W)) + c(\mathbf{Pu}(W))$$

$$\mathbf{\hat{a}}_{F} = (c_{0} (\operatorname{Pu}(\operatorname{IV})) + c_{0} (\operatorname{Pu}(\operatorname{III})) [2 \ln (\frac{c(\operatorname{Pu}(\operatorname{IV}))}{c_{0} (\operatorname{Pu}(\operatorname{IV}))}) + \frac{c_{0} (\operatorname{Pu}(\operatorname{IV})) + c_{0} (\operatorname{Pu}(\operatorname{IV}))}{c (\operatorname{Pu}(\operatorname{IV}))}] - c (\operatorname{Pu}(\operatorname{IV})) (\operatorname{A} \mathbf{\mathfrak{C}}(5), \mathbf{M})$$

$$F = k \ t + 2c_{0} (\operatorname{Pu}(\operatorname{III})) + \frac{c_{0}^{2} (\operatorname{Pu}(\operatorname{III}))}{c_{0} (\operatorname{Pu}(\operatorname{IV}))}$$

$$(7)$$

© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

66

式中, c_0 (Pu (IV))表示 Pu (IV)初 始浓度, c_0 (Pu (III))表示 Pu (III)初始 浓度, c (Pu (IV))表示反应时间为 t时 的 Pu (IV)浓度, k 为表观速率常数。

HNO³ 介 质 中 羟 胺 还 原 微 量 Pu (IV) 反应中, c(Pu(IV)) 随时间 t 的 变化示于图 1。由图 1 可见, 在反应开 始后, 由于 Pu (III) 产生和 Pu (IV) 浓度 的降低, Pu (IV) 还原速率急剧减慢, 说 明 Pu (III) 的产生对 Pu (IV) 的还原反 应有阻碍作用。以 F 和 F 分别对时间 t 作图并示于图 2, 3。由图 2, 3 可见, F或 F 与 t 呈良好的直线关系, 说明反 应对于 c(Pu(IV)) 和 c(Pu(III)) 的反 应级数分别为 2 和- 2。从图 3 看出, 在反应后期, F 值增大偏离直线, 这将 在机理中讨论。

2.1.2 H⁺ 浓度的影响 表观速率常 数 *k* 是酸度 羟胺和硝酸根浓度的函

7

图 1 Pu(IV) 浓度随时间 t 变化 Fig 1 The variation of c(Pu(IV)) with time $c(H^+) = 2 \ 01 \ mol/L, c(NO_3) = 2 \ 02 \ mol/L,$ $c(NH_3OH^+) = 9 \ 15 \ mmol/L, c_0(Pu(III)) = 0;$ $t = (20 \ 0 \pm 0 \ 5) \ ; c_0(Pu(IV))/\mu mol \cdot L^{-1}:$ 1—10.3, 2—5.15, 3—2.70

图 3 c(Pu(III)) 対 Pu(IV) 还原速率影响 Fig 3 Effect of c(Pu(III)) on reduction rate of Pu(IV) c(H⁺) = 1.01 mol/L, c(NO3) = 1.01 mol/L, c(NH3OH⁺) = 4.94 mmol/L, c₀(Pu(IV)) = 9.0 µmol/L; t= (20.0±0.5) ; c₀(Pu(III)) /µmol·L⁻¹: 1-2.72, 2-5.49 数^[1,4],即

 $10^{8} k$

$$k = k \circ c^{m} (\mathbf{H}^{+}) \cdot c^{n} (\mathbf{N} \mathbf{H}_{3} \mathbf{O} \mathbf{H}) \cdot (c (\mathbf{N} \mathbf{O}_{3}) + K_{d})^{p}$$

$$(8)$$

两边取对数: $\ln k = \ln k_0 + m \ln c (H^+) + n \ln c (N H_0 O H^+) + p \ln (c (N O_3) + K_d$ (9)

式中, k_0 为反应速率常数, $m_{n_s}p_s$ 分别为反应对 $c(H^+), c(NH_{3}OH^+)$ 和($c(NO_{3}) + K_{4}$)的反 应级数, K_{4} 为 PuNO³⁺ 的解离常数。

固定其它反应物浓度,改变酸度,以F对时间t作图,得到一组斜率不同的直线示于图4, 由图4求出的表观速率常数k列于表1。以 lnk对 lnc(H⁺)作图并示于图5,求出直线的斜率m= - 3.57 - 3.6。因此反应对c(H⁺)的反应级数是- 3.6。与文献中的常量 Pu(IV)反应级数 - 4略有不同。

	表	1 不同酸度下的 k			
	Table 1 The appar	en t ra te con stan ts a	t differen t $c(\mathbf{H}^+)$		
c(H ⁺)/mol ⋅ L ⁻¹	2.01	1.49	1.01	0.703	
$k \mod \cdot L^{-1} \cdot \min^{-1}$	2.07	5, 87	23.0	82.3	_

 $\exists : c_0(Pu(\mathbb{N})) = 5.0 \ \mu mol/L, c(\mathbb{N}H_3OH^+) = 4.94 \ mmol/L, c(\mathbb{N}O_3) = 2.01 \ mol/L, t = (20.0 \pm 0.5)$

Fig 4 Effect of $c(H^+)$ on reduction rate of Pu (IV) $c_0(Pu(IV)) = 5.0 \ \mu mol/L, c(NO_3^-) = 2.01 \ mol/L$ $c(NH_3OH^+) = 4.94 \ mmol/L, c_0(Pu(III)) = 0,$ $t = (20.0 \pm 0.5) ; c_0(H^+) / mol \cdot L^{-1}:$ 1 - 0.703, 2 - 1.01,3 - 1.49, 4 - 2.01

2.1.3 羟胺浓度的影响 保持其它反应物浓度不变,改变羟胺浓度,以 *F* 对时间 *t* 作图,得到 一组斜率不同的直线(见图 6),求出的表观速率常数 *k* 列于表 2。对 ln*k* -ln*c* (NH 3OH⁺)作图 7,求出直线斜率为 *n*= 1.82 1.8,因此反应对于 *c* (HN 3OH⁺)反应级数为 1.8,与文献[1,4]的 *c* (NH 3OH⁺)反应级数为 2 略有不同。

表 2 不同羟胺浓度时的 k 值

Table 2 The apparent rate constants at different c (NH3OH⁺)

$c(NH_{3}OH^{+})/mmol \cdot L^{-1}$	4.94	9.15	18.3	36.6
$10^{8}k /mol \cdot L^{-1} \cdot m in^{-1}$	2.07	6.52	22.67	77.64

2.1.4 NO3 浓度的影响 固定其它条件,改变NO3 浓度,以*F* 对时间 *t* 作图 8,得到一组不同斜率直线,由图 8 求出的表观速率常数 *k* 列于表 3。在NO3 浓度为 1—3 mol/L 的溶液中, Pu (IV) 部分以 PuNO³⁺ 存在,与羟胺反应时,PuNO³⁺ 先解离成 Pu⁴⁺: PuNO³⁺ = Pu⁴⁺ + NO³, 20 时,PuNO³⁺ 的解离常数 K_{d} = 0.182^[7]。根据公式(9),对 ln*k* -ln (*c* (NO³) + K_{d})作图 9。直线斜率 *p* = - 2.13 - 2,因此,Pu (IV) 还原反应对于 (*c* (NO³) + K_{d})反应级数为- 2,与文献[1,4]结果一致。

表3 不同 NO3	浓度下的 k	值
-----------	----------	---

	Table 3 The apparent	rent rate constants at	different $c(NO_3^{-1})$	
$c(NO_3)/mol \cdot L^{-1}$	1.01	2.02	2.50	3.01
$10^{8} k / mol \cdot L^{-1} \cdot m in^{-1}$	78.7	23.0	13.9	9.56

图 8 NO3 浓度对 Pu(IV)还原速率的影响

Fig 8 Effect of c (NO3) on reduction rate of Pu (IV)

 $c(\operatorname{Pu}(\operatorname{IV})) = 5 \ 07 \ \mu \operatorname{mol}(L, c(\operatorname{NH}_{3}\operatorname{OH}^{+})) = 4 \ 94 \ \operatorname{mmol}(L, c(\operatorname{H}^{+})) = 1 \ 01 \ \operatorname{mol}(L, c_{0}(\operatorname{Pu}(\operatorname{III}))) = 0, t = (20 \ 0 \pm 0 \ 5) ;$ $c(\operatorname{NO}_{3}) \ / \operatorname{mol} \cdot \operatorname{L}^{-1} : 1 - - 1 \cdot 01, 2 - 2 \cdot 02, 3 - 2 \cdot 50, 4 - 3 \ 01$

$$c$$
 (NO₃) = 2 02 mol/L;
 $t/$: 1-30, 2-25, 3-20, 4-10

E 11 $\ln k \circ T^{-1}$ Fig 11 Effect of temperature on the rate constants

由此得到羟胺还原微量 Pu(IV)的速率方程为:

$$\frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{IV}))}{\mathrm{d}t} = k_0 \frac{c^2(\mathrm{Pu}(\mathrm{IV})) \bullet c^{1.8}(\mathrm{NH}_{3}\mathrm{OH}^{+})}{c^2(\mathrm{Pu}(\mathrm{III})) \bullet c^{3.6}(\mathrm{H}^{+}) \bullet (K_{\mathrm{d}} + c(\mathrm{NO}_{3}^{-}))^2}$$
(10)

由速率方程(10)可知, 微量 Pu (IV)的还原速率与 Pu (IV)浓度的平方以及羟胺浓度的 1.8 次 方成正比; 与 Pu (III)浓度的平方和酸度的 3.6 次方及(c (NO₃) + K_a)的平方成反比。因此, 降 低酸度, 增加羟胺浓度, 对微量 Pu (IV)的还原有利。不同实验条件下, 速率常数 k_a 和 k 值列于 表 4。

耒	4	速 率5	と数
7.	-		D X.

Table 4	The	ra te	con stan ts	(<i>k</i>	$_0$ and	k) 1	
---------	-----	-------	-------------	------------	----------	---	-----	--

co(Pu(Ⅳ))/ μmol·L ⁻¹	co(Pu(Ⅲ))/ μmol·L ⁻¹	c(NH3OH ⁺) ²⁾ / mmol⋅L ⁻¹	$c(\mathrm{H}^+)/mol\cdot\mathrm{L}^{-1}$	c(NO₃)/ mol·L ⁻¹	t/	$10^{8}k$ / mol·L ⁻¹ ·min ⁻¹	$10^{2}k {\rm o}/{\rm mol}^{4 8} \cdot {\rm L}^{-4 8} \cdot {\rm m in}^{-1}$	r ³⁾
10.27	0	9.15	2.01	2.02	20	6. 52	1.83	0.998
2.70	0	9.15	2.01	2.02	20	5.97	1.67	0.988
5.16	0	9.15	2.01	2.02	_20	6.77	1.90	0.991
5.17	0	18.3	2.01	2.03	20	22.7	1.82	0.994
5.15	0	36.6	2.01	2.05	20	77.6	1.82	0.997
5.17	0	4.94	2.01	2.02	20	2.07	1.76	0.996
5.09	0	4.94	1.49	2.02	20	5.87	1.70	0.992
4.98	0	4.94	1.02	2.02	20	23.0	1.70	0.991
5.16	0	4.94	0.703	2.02	20	82.3	1.91	0.999
5.07	0	4.94	1.01	1.01	20	78.7	1.64	0.998
5.09	0	4.94	1.01	2.50	20	13.9	1.47	0.998
5.00	0	4.94	1.01	3.01	20	9.56	1.45	0.997
9.14	2.72	4.94	1.01	1.01	20	117	2.44	0.997
8.94	5.49	4.94	1.01	1.01	20	129	2.70	0.999
5.17	0	4.94	2.01	2.02	10	0.427	0.363	0.957
4.97	0	4.94	2.01	2.02	10	0.304	0.258	0.970
5.14	0	4.94	2.01	2.02	25	9.31	8.21	0.996
5.00	0	4.94	2.01	2.02	30	23.8	20.2	0.994
5.55 ²⁾	0	4.94	2.01	2.02	30	23.2	19.7	0.995
4.99	0	9.88	2.01	2.02	30	83.7	20.4	0.995

注: 1) $k = k_0 \frac{c^{1.8} (\text{NH}_3 \text{OH}^+)}{c^{3.6} (\text{H}^+) \cdot (K_{\text{d}} + c(\text{NO}_3))^2};$

2) 表示反应液中含肼 0.01 mol / , 实验结果表明, 加肼对钚的还原速率没有影响, 这是由于肼还原钚的速率很小;

3) F 对时间作图时的线性相关系数

2.2 温度对于微量 Pu(IV) 还原速率的影响

温度对于 Pu (IV) 还原速率的影响示于图 10。由图 10 可见, 温度升高, 表观速率常数 k 明 显增大, 说明 Pu (IV) 的还原速率显著加快, 不 同温度下的速率常数 k。值列于表 5, 表 5 给出 的 k。值是算术平均值, 误差是算术平均误差。 根据 A rrhenius 公式, 作 $\ln k$ 。- T^{-1} 图, 如图 11 所示, 表 5 不同温度时的 k o

Table 5The rate constants at differenttem pera tures

un pera un es						
t/	$10^{2}k \text{ o/mol}^{4 \text{ 8}} \cdot \text{L}^{-4 \text{ 8}} \cdot \text{m in}^{-1}$					
10	0.311 ± 0.053					
20	1.88 ± 0.28					
25	8.21					
30	20.1 ± 0.3					

由图上直线斜率求得 HNO₃ 介质中羟胺还原微量 Pu (IV) 反应的表观活化能 $E_a = 147 \text{ kJ/mol}$ 文献[1,4]给出的活化能 E_a 分别为 130, 188 kJ/mol, 30 和 25 下的速率常数 k_0 分别为 1.74, 0.338 mol⁵ · L⁻¹ · m in⁻¹。与文献[1,4]相比, HNO₃ 介质中羟胺还原微量 Pu (IV) 的反应 动力学, $c(Pu(IV)), c(Pu(III)) 和 (c(NO_3) + K_d)$ 的反应级数和反应活化能与常量 Pu (IV) 的 ② © 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net 相符合, c (NH₃OH⁺)和 c (H⁺)的反应级数略偏低,这可能是由于羟胺与微量 Pu (IV)的反应 中,反应(2)占有一定比例。速率常数 k_0 与文献[1,4]相比,分别低 8.7 和 4.1 倍,说明羟胺还 原微量Pu (IV)的反应速率相对较慢。

2.3 反应机理讨论

羟胺还原 Pu (IV) 的反应是由两个竞争反应(1) 和(2) 进行^[1-5], 因此羟胺还原微量 Pu (IV) 反应机理可能为:

$$PuNO_{3}^{3+} \underbrace{K_{ds}}{\longrightarrow} Pu^{4+} + NO_{3}^{5}$$
(11)

$$Pu^{4+} + H_{2}O \stackrel{\underline{K}_{h}}{\underbrace{\frown}} PuOH^{3+} + H^{+}$$
(12)

$$NH_{3}OH^{+} \stackrel{\Lambda a}{\longleftarrow} NH_{2}OH + H^{+}$$
(13)

$$PuOH^{3+} + NH_{2}OH = \frac{k_{3}}{k_{-3}}Pu^{3+} + NHOH + H_{2}O$$
 (14)

(较快可逆反应,初始反应控制步骤)

$$2NHOH \xrightarrow{k_4} N_2 + H_2O \quad (\texttt{B}) \tag{15}$$

$$u^{4+} + NHOH \xrightarrow{k_5} HNO + Pu^{3+} + H^+$$
 (慢) (16)
(不可逆 西个是终坨制先骤)

$$2HNO \longrightarrow (H_2N_2O_2) \longrightarrow N_2O + H_2O$$
(17)
(结束步骤)

上述反应中, PuOH³⁺、Pu⁴⁺和NH₂OH 是反应活性物质, NHOH 和HNO 是反应中间体, 由于在HNO₃介质中, Pu(IV)是以Pu⁴⁺、PuNO³⁺ 和PuOH³⁺离子形式存在; 而羟胺主要是以 NH₂OH⁺形式存在, 因此, 首先发生的是三个快平衡反应(12)、(13)、(14)^[1,4], 式中 Pu⁴⁺ 水解 常数^[8] $K_h = 0.054(25$ 时), NH₂OH⁺的电离常数^[9] $K_a = 1.1 \times 10^{-6}(25$ 时)。

在 Pu (IV)还原反应开始时,由于没有NHOH存在,因此较快的可逆反应(15)是初始反应 控制步骤,表现为反应开始时 Pu (IV)的还原速率很快^[1],随着NHOH的产生,慢反应(15)、 (16)成为两个平行控制步骤,可逆反应(13)建立平衡,此时 Pu (IV)的还原速率急剧下降。如果 反应(15)是主要的,则整个反应以反应(1)为主。如果反应(16)占优势,则整个反应以反应(2) 为主。

由于反应(15)、(16)是控制步骤,因此 Pu(IV)的还原速率:

$$-\frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{IV}))}{\mathrm{d}t} = \frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{III}))}{\mathrm{d}t} = 2\frac{\mathrm{d}c(\mathrm{N}_{2})}{\mathrm{d}t} + 2k_{5}c(\mathrm{Pu}^{4+})c(\mathrm{N}\mathrm{HOH})$$
$$= 2k_{4}c^{2}(\mathrm{N}\mathrm{HOH}) + 2k_{5}c(\mathrm{Pu}^{4+})c(\mathrm{N}\mathrm{HOH})$$
(18)

反应(14)是平衡反应,因此

$$c(\text{NHOH}) = K_3 \frac{c(\text{PuOH}^{3+})c(\text{NH}_2\text{OH})}{c(\text{Pu}^{3+})}$$
(19)

式中
$$K_{3} = k_{3}/k_{-3}$$
,将式(19)代入式(18)得:

$$- \frac{dc(Pu(IV))}{dt} = 2K_{3}^{2}k_{4} \frac{c^{2}(PuOH^{3+})c^{2}(NH_{2}OH)}{c^{2}(Pu^{3+})} + 2K_{3}k_{5} \frac{c(Pu^{4+})c(PuOH^{3+})c(NH_{2}OH)}{c(Pu^{3+})}$$

≽

(20)

© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

因为 $c(\operatorname{Pu}(\operatorname{IV})) = c(\operatorname{Pu}^{4+}) + c(\operatorname{PuNO}_{3}^{3+}) + c(\operatorname{PuOH}^{3+})$ (21)

反应(11)、(12)和式(21)求出:

$$c(\operatorname{PuOH}^{3+}) = \frac{K_{h}K_{d}c(\operatorname{Pu}(|V|))}{K_{h}K_{d} + c(H^{+})(K_{d} + c(\operatorname{NO}_{3}^{-}))} - \frac{K_{h}K_{d}c(\operatorname{Pu}(|V|))}{c(H^{+})(K_{d} + c(\operatorname{NO}_{3}^{-}))}$$
(22)

$$c(\mathrm{Pu}^{4+}) = \frac{K_{\mathrm{d}c}(\mathrm{H}^{+})c(\mathrm{Pu}(|V))}{K_{\mathrm{h}}K_{\mathrm{d}} + c(\mathrm{H}^{+})(K_{\mathrm{d}} + c(\mathrm{NO}_{3}^{-}))} \frac{K_{\mathrm{d}c}(\mathrm{Pu}(|V))}{K_{\mathrm{d}} + c(\mathrm{NO}_{3}^{-})}$$
(23)

因 K_hK_d≪ c(H⁺)(K_d+ c(NO₃)),式(22)和(23)中 K_hK_d 可忽略。由平衡反应(13)求出:

$$c(\mathbf{N}\mathbf{H}_{2}\mathbf{O}\mathbf{H}) = K_{a} \frac{c(\mathbf{N}\mathbf{H}_{3}\mathbf{O}\mathbf{H}^{+})}{c(\mathbf{H}^{+})}$$
(24)

将式(22)、(23)、(24)代入式(20),即得 Pu(IV)还原速率公式:

$$-\frac{dc(Pu(IV))}{dt} = 2K_{h}^{2}K_{d}^{2}K_{3}^{2}k_{4} \frac{c^{2}(Pu(IV))c^{2}(NH_{3}OH^{+})}{c^{2}(Pu(III))c^{4}(H^{+})(K_{d}+c(NO_{3}))^{2}} + 2K_{d}^{2}K_{h}K_{3}k_{5} \frac{c^{2}(Pu(IV))c(NH_{3}OH^{+})}{c(Pu(III))c^{2}(H^{+})(K_{d}+c(NO_{3}))^{2}} = k_{1} \frac{c^{2}(Pu(IV))c^{2}(NH_{3}OH^{+})}{c^{2}(Pu(III))c^{4}(H^{+})(K_{d}+c(NO_{3}))^{2}} + k_{2} \frac{c(Pu(IV))c(NH_{3}OH^{+})}{c(Pu(III))c^{2}(H^{+})(K_{d}+c(NO_{3}))^{2}}$$
(25)

由速率方程(25)可以看出, 羟胺还原微量 Pu (\mathbb{N})的反应是由对于羟胺和 H⁺ 浓度的反应 级数分别是 2, -4 和 1, -2 的两个竞争反应(1), (2)组成, 羟胺和 H⁺ 浓度反应级数分别是 1.8, -3.6, 因此反应(1)是主要的。说明此反应机理符合微量 Pu (\mathbb{N})的还原反应。

在反应(15)、(16)成为控制步骤后,由于羟胺大量过量,反应(15)是主要的^[1,4],因此羟胺 还原 Pu(IV)的反应主要是以反应(1)进行的,Pu(IV)还原速率应符合方程(3)。随着反应继续 进行,由于 Pu³⁺的大量产生,使反应(14)的平衡向左移动,因而使NHOH 平衡浓度降低。由于 NHOH 浓度对于反应(15)是二级反应,而对于反应(16)是一级反应,所以反应(15)的反应速 度减慢幅度要比反应(16)大得多,使反应(16)所占比例逐渐增加,最终成为混合控制反应,因 此在本实验中 Pu(IV)的还原率超过 80% 以后,*F* 值偏离直线(图 3, 6, 8),显示出如下规律:

$$-\frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{IV}))}{\mathrm{d}t} = k_{1}\frac{c^{2}(\mathrm{Pu}(\mathrm{IV}))}{c^{2}(\mathrm{Pu}(\mathrm{III}))} + k_{2}\frac{c^{2}(\mathrm{Pu}(\mathrm{IV}))}{c(\mathrm{Pu}(\mathrm{III}))}$$

3 结 论

(1) HNO₃ 介质中羟胺还原微量 Pu(IV)的速率方程为:

 $\frac{dc(Pu(IV))}{dt} = k_0 \frac{c^2(Pu(IV)) \cdot c^{1.8}(NH_{3}OH^{+})}{c^2(Pu(III)) \cdot c^{3.6}(H^{+}) \cdot (K_d + c(NO_{3}))^2}$

在 10、20、25、30 时, 速率常数 *k* 。分别为: 0.00311 ± 0.00053、0.0188 ± 0.0028、0.0821、 0.201 ± 0.003 mol^{4 8} · L^{-4 8} · m in⁻¹; 用不同温度下的 *k* 。, 求出表观活化能为: 147 kJ /m o l

(2) 羟胺还原微量 Pu (IV) 速率常数 k_0 与常量 Pu (IV) 的速率常数文献值^[1,4]相比分别低 8.7 和 4.1 倍。说明有机相中微量 Pu (IV) 的还原反萃率偏低的原因之一, 是由于羟胺还原微 量Pu (IV) 的速率相对较慢。

(3) 羟胺还原微量 Pu(IV)的反应速率方程中, c(H⁺)和 c(NH₂OH⁺)的反应级数分别是3.6和1.8, 与常量 Pu(IV)的-4和2不同。其原因可能是:当 c(NH₂OH⁺)> c(Pu(IV))时, 微
© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

量Pu(IV)的还原反应中,反应(1)是主要的,但反应(2)仍占一定比例并随反应的进行,反应 (2)所占比例有所增加。确切原因有待进一步研究。

(4) 根据本实验结果, 羟胺还原微量 Pu (IV) 的反应机理应有两个平行的控制步骤:

$$2NHOH - N_2 + H_2O \qquad (\texttt{B})$$

 $Pu^{4+} + NHOH \xrightarrow{k_5} HNO + Pu^{3+} + H^+ \qquad (\clubsuit)$ (16)

当 $c(NH_{3}OH^{+}) > c(Pu(IV))$ 时,式(15)是主要反应步骤,但式(16)占有不能忽略的分额。

- 1 Barney GS A Kin etic Study of The Reaction of Plutonium (IV) W ith Hydroxylam ine J Inorg Nucl Chem, 1976, 38(9): 1677
- 2 Barney GS The Kinetics and Mechanism of Plutonium (IV) Reaction by Hydroxylam ine U SAEC Report, ARH-SA-100 A tlantic Richfield Hanford Company, Aug, 1971
- 3 Barney GS Hydroxylam ine Nitrate Reaction of Plutonium (IV): Iron Catalysis USAEC Report, RPH-1920 A tlantic Richfield Hanford Company, 1971
- 4

5

(IV)

, 1978, 20(1): 94

, 1978, 20(5): 661

IV.

Ш

(IV)

3

6 隗秀芳, 张清轩. PMBP 萃取法分析硝酸介质中钚的价态. 原子能科学技术, 1991, 25(3): 66

- 7 London the Chemical Society. Stability Constants Special Publication 1964, 17: 172
- 8 Sherm an W R. The Hydrelysis of Plutom ium (IV). J Am Chem Soc, 1975, 79: 3675
- 9 Robinson RA, Bower VE. The bnization Constant of Hydroxylam ine J Phys Chem, 1961, 65: 1279

KINETICS STUDY ON THE REDUCTION OF TRACE PLUTONIUM (IV) BY HYDROXYLAM INE IN NITRIC AC D M ED IA

Fei Hongcheng Luo Longjun

(China Institute of A tom ic Energy, P. O. B ox 275(26), B eijing 102413)

ABSTRACT

Reaction kinetics of trace $Pu(IV)(c(Pu(IV)) = 10^{-5} \text{ mol}/L)$ with hydroxylam ine in nitric acid solution is investigated. The effects of concentrations of Pu(IV), Pu(III), NO_3^{-3} , H^+ and hydroxylam ine on the reduction rate of trace Pu(IV) are exam ined. The rate law of reaction of trace Pu(IV) with hydroxylam ine is as follow s:

$$- \frac{\mathrm{d}c(\mathrm{Pu}(\mathrm{IV}))}{\mathrm{d}t} = k_{0} \frac{c^{2}(\mathrm{Pu}(\mathrm{IV})) \bullet c^{1.8}(\mathrm{NH}_{3}\mathrm{OH}^{+})}{c^{2}(\mathrm{Pu}(\mathrm{III})) \bullet c^{3.6}(\mathrm{H}^{+}) \bullet (K_{\mathrm{d}} + c(\mathrm{NO}_{3}^{-}))^{2}}$$

The value of k_0 at 20 is (0 0188 ± 0 0028) mol^{4 8} · L^{-4 8} · m in⁻¹. The reduction rate of Pu(IV) increases obviously with increasing temperature and the apparent activation energy with k_0 is equal to 147 kJ/mol The reaction mechanism of trace Pu(IV) with hydroxylam ine is discussed

Key words Kinetics of reduction Trace Pu (IV) Hydroxylam ine Nitric acid © 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

 \geq