第20卷 第3期	核	化	学 与	放	射 化	学	Vol 20 No. 3
1998年8月	Journal	of	Nuclear	and	Radioc	hem istry	Aug. 1998

从辐照过的钍中分离镤的研究

方克明 杨维凡 牟万统 袁双贵 李宗伟 沈水法 张学谦

(中国科学院近代物理研究所, 兰州 730000)

研究了以 1-苯基-3-甲基-4-苯甲酰基吡唑啉酮-5 (PMBP) 和三异辛胺 (TDA) 为萃取剂, 盐酸-氢氟酸溶液为反萃剂, 从中子辐照过的钍中分离纯化镤的一个快速, 有效的流程。对流程的一些主 要步骤中的分离条件作了研究。以钍的裂变产物为多重示踪剂检验了该流程, 得到了主要杂质元 素的去污因子, 给出了镤的回收率。

关键词 镤 钍 PMBP TDA 中图分类号 TL · 243

从中子辐照过的钍中提纯镤, 需要将镤与钍、钍的衰变子体以及由中子引发的钍的裂变产物进行分离。以二氧化锰^[1,2]、氢氧化物^[2]、氟化物^[1,2]为沉淀剂的共沉淀法, 以噻吩甲酰三氟丙酮(TTA)^[3]、磷酸三丁酯(TBP)^[3]、二异丙基酮(DIPK)^[1,2,4,5]、二异丁基酮(DIBK)^[4,5]、二异丙基甲醇(DIPC)^[1-4]、二异丁基甲醇(DIBC)^[3]、PMBP^[6,7]、TDA^[8,9]、三辛胺(TOA)^[10]为萃取剂的溶剂萃取法, 可从特定的体系中对镤进行一定程度的分离。本文旨在研究以 PMBP-苯溶液和 TDA -二甲苯溶液为萃取剂, 盐酸-氢氟酸溶液为反萃剂, 从中子辐照过的硝酸钍中分离 镤的快速、有效的流程。

1 实验部分

7

1.1 试剂与仪器

1.1.1 试剂 1-苯基-3-甲基-4-苯甲酰基吡唑啉酮-5(PMBP), 化学纯, 北京化工厂; 三异辛 胺(TDA), 分析纯, 英国; 甲苯, 分析纯, 上海试剂一厂; 二甲苯, 分析纯, 北京化工厂; 盐酸, 分 析纯, 甘肃白银化学试剂厂; 氢氟酸, 分析纯, 北京化工厂; 硝酸钍, 分析纯; ²³⁴Th 示踪剂, 从硝 酸铀酰中提取; 硝酸铀酰, 分析纯, 国产。

1.1.2 仪器 Cockcroft-Walton 加速器, 中国制造; 高纯锗(HPGe) У探测器, 美国ORTEC 公司; PC-CAMAC 多参数数据获取系统, 中国科学院近代物理研究所研制。

收稿日期: 1997-01-02 收到修改稿日期: 1997-05-12 方克明: 男, 30岁, 实验核物理专业, 硕士, 研究实习员 1.2 ²³³Pa 示踪剂的制备

²³³Pa 示踪剂由中国原子能科学研究院提供, 在反应堆中通过²³²Th (n, 沙²³³Th ^{*b*}₂₃₃Pa反应产生。将照射过的钍样品溶于稀盐酸中, 制成 2 mol/L HCl 溶液, 转入塑料瓶中备用。 1.3 照射

在中国科学院近代物理研究所 Cockcroft W alton 加速器上用 14 M eV 中子照射 5—10 g 硝酸钍, 平均中子注量率为 1 × 10^{14} m⁻²/s, 照射 10 h。 放置 14 h 后进行化学分离。

1.4 镤的化学分离

将中子照射过的硝酸钍溶于 $4 \mod 1$ /L HC1 中, 然后制成 0.5 g/mL Th (NO₃)₄ 备用液。取 2 mL 备用液到离心试管中, $m 4 \mod 1$ /L HC1 至 5 mL 留作标准样品。分离流程如下:

(1) 取 2 mL 备用液到分液漏斗中,加 13 mL 4mol/L HCl,用经 4 mol/L 盐酸平衡过的 10 mL 0 05 mol/L PM BP-苯溶液萃取镤,离心分相。以去掉除锆、铌之外的钍的所有衰变及裂 变产物杂质,与此同时,银、锝和碘的绝大部分亦将被除去。

(2) 有机相用 5 mL 4mol/L HCl 洗涤 2 次, 然后, 用 5 mL 4mol/L HCl-1 mol/L HF 溶液 反萃, 离心分离。 镤及杂质铁 铌进入水相。残余的银、锝和碘留在有机相。

(3) 在含镤的HCI-HF 溶液中加入一滴 0.2 g/L 的 FeCl₃ 溶液, 用浓氨水调至碱性, 搅拌, 离心。分出 Fe (OH)₃ 沉淀, 它定量载带镤及杂质锆和铌。

(4) 用 5 mL 12 mol/L HCI-0 05 mol/L HF 溶液将 Fe (OH) 3 溶解, 所得溶液用 5 mL 5% (体积分数 97 DA - 二甲苯溶液萃取。分相后, 有机相用 5 mL 12 mol/L HCI-0 05 mol/L HF 溶液洗涤 2 次, 镤及杂质铌进入有机相, 锆则留在水相。

(5) 含镤及铌的 T DA -二甲苯有机相用 5 mL 4mol/L HCl-1 mol/L HF 溶液反萃。镤进 入水相, 铌则留在有机相。用等体积 5% (97 T DA -二甲苯溶液对水相连续萃取三次, 以便进一 步去除水相中可能残余的铌。分出镤水相, 用于 У射线谱测量。

整个分离过程用时 10—15 m in。²³³Pa 示踪实验表明, 镤的化学回收率约 80%。回收率较低的主要原因在于镤的吸附和残留损失。

1.5 镤样品源的测量

用高纯锗(HPGe) У射线探测器在相同的几何条件下对每次萃取、反萃后的两相以及用作标准的未分离的钍样品溶液进行 У射线单谱测量。测量时间为 1.5 h。该探测器在[®]Co 的 1332.5 keV 处的能量分辨率为 2.1 keV。测量数据储存于磁盘。解析测得的 У射线谱。根据单个峰的峰下计数率计算萃取率、反萃率和去污因子。

2 结果与讨论

PMBP-苯萃取²³³ Pa 的实验结果示于图 1。从图 1 看出, PMBP-苯溶液浓度大于 0.01 mol /L 时,从4 mol /L HC1中萃取²³³ Pa 的萃取率(E)高于 94%。HC1浓度对 PMBP-苯萃 取²³³ Pa,²³⁴ Th 的影响示于图 2。从图 2 看出,用 0.05 mol /L PMBP-苯溶液从 0.01—8 0 mol /L HC1中萃取²³³ Pa时,萃取率(E)均在 97%以上,但²³⁴ Th 的萃取率随 HC1浓度的增大迅速降低,当HC1浓度大于 4 mol /L 时,²³³ Pa 可与²³⁴ Th 定量分离。用 0.05 mol /L PMBP-苯溶液从含 有²³³ Pa 的 4 mol /L HC1溶液中萃取²³³ Pa 时,达到萃取平衡所需的时间列入表 1。从表 1 看出,平衡时间 10 s,²³³ Pa 萃取率可达 98%。HC1浓度对 5%(97 T DA -二甲苯萃取²³³ Pa 的结果示于 图 3。从图 3 看出,在大于 6 mol /L HC1溶液中,²³³ Pa 的萃取率高于 92%。在 12 mol /L HC1中,

HF 浓度对 5% T DA -二甲苯萃取²³³Pa 的影响示于图 4。从图 4 看出, 5% T DA -二甲苯从 HF 浓度小于 0.15 mol / 的 12 mol / HCl 溶液中萃取²³³Pa 时, ²³³Pa 的萃取率高于 95%。用 1 mol / HF-HCl 溶液从 5% (97 DA -二甲苯溶液中反萃²³³Pa 时, HCl 浓度对反萃²³³Pa 的影响 列入表 2。从表 2 看出, HCl 浓度约为 4 mol / 的反萃率(*E*)最大。用 HF-4 mol / HCl 溶液 从 5% (97 T DA -二甲苯溶液中反萃²³³Pa 时, HF 浓度对反萃²³³Pa 的影响列入表 3。从表 3 看

出, HF 浓度大于 0.1 mol/L 时的反萃率(E)高于 98%。表 4 列出了平衡时间与反萃取率的关系。从表 4 看出, 用 4 mol/L HCl⁻¹ mol/L HF 溶液从 0.05 mol/L PM BP-苯溶液中反萃²³³Pa 时, 能迅速达到平衡, 且²³³Pa 的反萃相当完全。

中子照射后未经分离的钍样品的 \mathcal{Y} 射线谱示于图 5。 从图 5 看出, 样品中除裂变产物外, 还存在²³²Th 的衰变子体 活度很高的²³²Th (14 M eV n, 2n)反应产物²³¹Th 以及²³²Th (n, \mathcal{Y} ²³³Th 反应所得²³³Th的活度较弱的 β 衰变产物²³³Pa。

表 1 ²³³Pa 萃取率与平衡时间之间的关系

Talbe 1	Relations of	the extraction	yield of ²	³³ Pa and	the equil ibr ium	tine
---------	--------------	----------------	-----------------------	----------------------	-------------------	------

t _{eq} /s	10	20	30	60	120	180	240
<i>E</i> (²³³ Pa)/%	98.3	98.9	99.1	99.4	99.7	100	100

注: 有机相为 0.05 mol/L PM BP-苯溶液, 水相为 4 mol/L HC1

表 2 233Pa 反萃率与 1 mol/L HF 中 HCl 浓度之间的关系

Talbe 2	Relations of	the inverse	ex traction	vield of	²³³ Pa and
---------	--------------	-------------	-------------	----------	-----------------------

the HCl concentra	tion in	1 mol/1	⊃ HF
-------------------	---------	---------	------

c(HCl) /mol ⋅ L - 1	0	0.5	1	2	4	6	8	10	12
<i>E</i> (²³³ Pa)/%	56	84	91	93	96	83	68	30	14

注: 有机相为 5% (9) T DA - 二甲苯溶液

表 3²³³Pa 反萃率与 4 mol/L HCl 中 HF 浓度之间的关系

Talbe 3 Relations of the inverse extraction yield of ²³³Pa and

the HF	concentraction	in 4 mol/L	HCI
--------	----------------	------------	-----

$c(\mathrm{HF})/\mathrm{mol}\cdot\mathrm{L}^{-1}$	0.015	0.03	0.06	0.12	0.25	0.5	1	2
$E (^{233}Pa) / \%$	87	90	91	99	98	100	99	100

注: 有机相为 5% (9) T DA -二甲苯溶液

|--|

$t_{\rm eq}/{\rm s}$	10	20	30	60	120	180
$E (^{233}Pa) / \%$	99.2	99.3	100	99.3	99.6	100

注: 有机相为 5% (9) T DA -二甲苯溶液, 水相为 4 mol/L HCl-1 mol/L HF 溶液

用所述流程从钍中分出的镤样品的 У射线谱示于图 6。从图 6 看出,样品中除了²³³Pa 和活 度很弱的⁹⁷N b外,其余都是铅室本底,这说明该流程对主要杂质元素的去污是满意的。 杂质核 素在未分离的钍样品和化学分离后的镤样品的 У射线谱中的能量相同的两个峰的峰下净计数 率之比为相应元素的去污因子。若某一同位素的 У线在化学分离后的样品谱中消失,取本底平 方根的 2.33 倍为相应同位素 У峰计数率的上限。

图 6 从钍中分出的镤样品源 У射线谱

Fig 6 为Ray spectra of ²³³Pa separated from thorium 在照射结束 17 h 后进行测量, 测量时间为 5400 s; 原始样中 Th (NO3)4 的含量为 1 g

核素	$T_{1/2}$	<i>E</i> /keV ^[11]	分支比/%	η
⁹¹ Sr	9.52 h	1024.3	33.4	$> 1 \times 10^5$
⁹³ Y	10.1 h	266.9	6.98	$> 5 \times 10^4$
⁹⁷ Zr	17.0 h	743.4	92.6	$> 6 \times 10^3$
⁹⁷ N b	72.1 m	657.9	98 5	$> 1 \times 10^3$
⁹⁹ M o	2.75 d	181.1	6.08	$> 5 \times 10^4$
⁹⁹ T c	6.01 h	140.5	90.7	$> 5 \times 10^4$
¹⁰³ R u	39.25 d	497.1	89.5	$> 1 \times 10^{3}$
¹⁰⁵ R h	35.36 h	318.9	19.2	$> 2 \times 10^4$
¹¹² A g	3.14 h	617.4	42.5	$> 1 \times 10^5$
¹¹⁵ In	4.49 h	336.2	45.8	$> 1 \times 10^5$
¹²⁷ Sb	3.85 d	685.7	35.3	$> 3 \times 10^4$
¹³² Te	3.26 d	772.6	78.7	$> 5 \times 10^4$
¹³³ I	20.8 d	529.9	87.0	$> 5 \times 10^4$
¹⁴⁰ Ba	12.75 d	537.3	24.4	$> 1 \times 10^5$
¹⁴⁰ L a	40.28 h	1596.5	95.5	$> 1 \times 10^4$
¹⁴³ Ce	33.0 h	293.3	42.8	$> 1 \times 10^{5}$
²¹² Pb	10.64 h	238.6	43.6	$> 5 \times 10^3$
²²⁸ A c	6.13 h	911.1	29.0	$> 4 \times 10^4$
²³¹ Th	25.52 h	84.2	6.60	$> 5 \times 10^{6}$

表 5 各种主要杂	;质的去污因子
-----------	---------

Table 5 The decontam ination factors of the main in purities

主要杂质的去污因子列入表 5。在用 PMBP-苯溶液萃取的过程中, 镤与大量的钛 各种稀 土及碱土元素²³²Th 的衰变子体, 硫 部分的钼及锝和碘等分离, 萃取后的洗涤对保证除尽碲 十分有效。用 4 mol/L HCl-1 mol/L HF溶液反萃能除掉残留的钼、锝和碘。Fe(OH)₃ 沉淀能 定量载带镤, 加入 FeCl₈ 溶液的量以刚能生成可见的沉淀为宜(20 µg), 量过多会严重影响下 一步对镤的萃取。用 5% (ዏT DA -二甲苯溶液从 12 mol/L HCl-0 05 mol/L HF 溶液中萃取 镤和铌时, 有很少量的锆亦被萃取, 但当 HCl 溶液中不含 HF 时三者都将被萃取。用 4 mol/L HCl-1 mol/L HF 溶液从 T DA -二甲苯中反萃时, 镤进入水相, 铌留在有机相。

3 结 论

(1) 该流程可以从 14 M eV 辐照硝酸钍中快速 有效地分离出镤。

(2) 用 14 M eV 中子引起的钍反应产物作多重示踪剂进行检验。结果表明, 该流程对主要 产物元素特别是锆, 铌的去污是满意的。

(3) 用 PMBP 和 T DA 萃取, 用 HCI-HF 溶液反萃, 不仅能有效地分离镤, 同时还可以获 得较高的镤回收率。

参考文献

1 Golden J, Maddock A G Protactinium - I Analytical Separations J Inorg Nucl Chem, 1956, 2: 46-59

2 Goble A G, M addock A G Protactinium -III Solvent Extraction From Halide Solutions J Inorg Nucl Chem, 1958, 7: 94-112

3 Elson RE The Chemistry of Protactinium. In: Seaborg GT, Katz JJ eds The Actinide Elements IV-14A: M cGraw -Hill Book Company Inc 1954 103- 129

4 Fletcher LM. Separation of Protactinium and Niobium by Liquid-liquid Extraction Analytical Chem, 1955,

© 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

-3-

-4-

27: 70-72

5 Casey AT, M addock AG. The Chemistry of Protactinium - V A Comparison of the Extraction of Protactinium, N iobium and Tantalum. J. Inorg Nucl Chem, 1959, 10: 289—305

6 彭春霖 . PM B P 萃取在分析化学中的应用 . 分析化学, 1975, 3: 240—246

-5

7

X , 1969, 24: 702- 706

(V)

8 Kratz JV, Zimmem an HP, Scherer UW, et al Chemical Properties of Element 105 in Aqueous Solution: Halide Complex Formation and Anion Exchange Into Triisoctyl Amine Radiochim Acta, 1989, 48: 121-133

10

, 1970, 25: 924-929

1-

11 Reus U, Westmeier W. Catalog of Gamma Rays From Radioactive Decay. A tom ic Data and Nuclear Data Tables, 1983, 29(2): 193-406

SEPARATION OF PROTACTINIUM FROM THORIUM IRRADIATED BY 14 M eV NEUTRONS

Fang Keming Yang Weifan Mou Wantong Yuan Shuanggui Li Zongwei Shen Shuifa Zhang Xueqian

(Institute of M odern Physics, the Chinese A cadeny of Sciences, Lanzhou 730000)

ABSTRACT

A rapid and efficient procedure for separation of trace protactinium from thorium irradiated by 14 MeV neutrons is described by using 1-phenyl-3-methyl-4-benzoylpyrazolone-5 (PMBP) and triisooctyl am ine (TDA) as extractants and hydrochloric-hydrofluoric acid solution as back-extractant The separating conditions in some main steps of this procedure has been studied The decontamination factors for principal impurity elements and the recovery efficiency for ²³³Pa has been obtained The procedure is verified by using the active products of thorium as multitracers

Key words Protactinium Thorium PMBP TDA

⁹ Paulus W, Zimmem an HP, Zauner S, et al Extraction of Zr, Nb, Ta, Pa and Np Into Trisoocyl Am ine From Pure HCl Solutions GS I Scientific Report 1993, 1994, 94(1): 245