文章编号:0253-9950(2011)04-0224-06

双羟基脲与 Fe(Ⅲ)的络合及氧化还原反应

晏太红,张柏青,郑卫芳,张 虎,左 臣,张 宇, 鲜 亮,卞晓艳,李传博

中国原子能科学研究院 放射化学研究所,北京 102413

摘要:用分光光度法和循环伏安分析法研究了双羟基脲(DHU)与 Fe(Ⅲ)的作用,结果表明,DHU 与 Fe³⁺能 形成紫色配合物,配合物有二级或以上络合,形成的 1:1 配合物分解速率对配合物来说为 1 级,在 10 ℃下, c_0 (DHU)= c_0 (FeCl₃)=1.0×10⁻³ mol/L 时,配合物表观一级分解速率常数 k'=0.031 min⁻¹。其配位方式 可能是其分子中的 N一O上的氧原子和另一个 N一O上的氮原子与 Fe³⁺ 配位。但形成的配合物不稳定,会 发生配合物分子内氧化还原反应,电子从 DHU 分子转移到 Fe(Ⅲ),Fe(Ⅲ)被还原为 Fe(Ⅱ),而 DHU 被 氧化。

关键词:双羟基脲;Fe(Ⅲ);配位;氧化还原;反应动力学 中图分类号:O641.4 文献标志码:A

Coordination and Redox Reaction of Dihydroxyurea With Fe(III)

YAN Tai-hong, ZHANG Bai-qing, ZHENG Wei-fang, ZHANG Hu, ZUO Chen, ZHANG Yu, XIAN Liang, BIAN Xiao-yan, LI Chuan-bo

China Institute of Atomic Energy, P. O. Box 275(26), Beijing 102413, China

Abstract: The interaction of dihydroxyurea(DHU) with Fe(\blacksquare) was studied by spectrophotometry and cyclic voltammetry. The results show that DHU forms dark purple complex quickly after mixing with Fe(\blacksquare). Whereas the complex formed is relatively unstable. The decomposition rate constant of the complex k' is estimated to be 0.031 min⁻¹ at 10 °C and $c_0(DHU) = c_0(FeCl_3) = 1.0 \times 10^{-3}$ mol/L. Chelation through the N—O oxygen atom and N—O nitrogen atom can be assumed for the complex. It is found that the innermolecular redox occurred between DHU and Fe(\blacksquare) after the formation of complex in solution. The one-electron transfer from DHU to Fe(\blacksquare) is assumed. Fe(\blacksquare) is reduced to Fe(\blacksquare), at the same time DHU oxidation occurred.

Key words: dihydroxyurea; Fe(Ⅲ); coordination; redox; reaction kinetic

双羟基脲(DHU)作为一种新型有机还原剂, 能快速还原 Pu(Ⅳ)和 Np(Ⅵ),在 Purex 流程铀 钚分离中具有潜在的应用前景^[1-3]。同时其分子 结构(HOHNCONHOH)与羟肟酸、羟基脲类似, 具有一CONHOH 基团,其络合性质可能与羟肟酸、羟基脲相似,对一些锕系元素离子具有一定的

收稿日期:2010-04-13;修订日期:2011-04-11

作者简介:晏太红(1979一),男,甘肃临洮人,博士,副研究员,核燃料循环与材料专业

络合能力[4-6],早在 20 世纪 60-70 年代, Boyland 等[7-8] 报道了 DHU 的合成及作为药物其在诱导 染色体变异方面的初步研究。但目前尚未见关于 DHU 与金属离子的络合性质的公开报道,人们 对其络合及其氧化还原性质的了解非常有限。 Harmon等^[9]报道了羟基脲(HU)及乙基羟基脲 与金属离子如 Fe(Ⅲ)等的配位行为,研究表明, 羟基脲及乙基羟基脲首先与 Fe(Ⅲ)形成 1:1 的 配合物,配合物在560 nm 处有吸收。乙基羟基脲 与 Fe(Ⅲ)形成的配合物在水溶液中不稳定,迅速 分解放出 N₂O、CO₂等气体,配合物分解涉及分子 内氧化还原反应。近年来关于羟基脲与 Fe(Ⅲ) 的配位及氧化还原机理研究较多,Bedrica 等^[10] 研究了高氯酸体系中 HU 与 Fe(Ⅲ)的配位行为, 发现 HU 对 Fe(Ⅲ)的络合能力要低于羟肟酸的 络合能力。Nigović等^[11]采用循环伏安法和电子 顺磁共振(EPR)技术研究了羟基脲与Fe(Ⅲ)配 合物氧化还原反应中的电子转移机理,配合物分 子内配体单电子转移到 Fe(Ⅲ),Fe(Ⅲ)被还原到 Fe(Ⅱ),EPR 谱显示反应过程中有自由基H₂N-CO-NHO·产生。但到目前为止尚未见 DHU 与 Fe(Ⅲ)反应的报道。本工作拟通过分光光度 法和循环伏安法系统研究 DHU 与 FeCl₃ 的络合 及氧化还原作用,以期获取 DHU 与金属离子的 络合及氧化还原反应数据,深入认识 DHU 的络 合及氧化还原性质,为其在锕系元素分离等方面 的实际应用提供指导。

1 实验部分

1.1 主要仪器与试剂

Specord600 型二极管阵列分光光度计,德国 Jena 公司产品;CHI660C 电化学工作站,上海辰 华仪器有限公司产品,工作电极为 CHI102 型铂 电极,辅助电极为 CHI115 型铂丝电极,参比电极 为饱和甘汞电极;5973 型气相色谱-质谱联用仪, 美国 Agilent 公司产品。

双羟基脲(DHU),本实验室合成,纯度大于 97%;FeCl₃•6H₂O,分析纯,广东汕头西陇化工 厂产品;其余试剂均为分析纯。

1.2 实验方法

1.2.1 分光光度法研究双羟基脲与 Fe(Ⅲ)的反应 分别将 2.0×10⁻⁴ mol/L 和 1.0×10⁻³ mol/L FeCl₃水溶液加入石英比色池中,然后分别加入一 定量的 DHU 水溶液,用分光光度计监测溶液吸

收光谱的变化。同样方法研究水-乙醇体系中该 反应。反应后气态产物采用气相色谱-质谱联用 仪进行检测。

1.2.2 电化学方法研究双羟基脲与 Fe(Ⅲ)的反应 以 0.1 mol/L KCl 作支持电解质,向 5.0×10⁻³ mol/L FeCl₃中加入不同量的 DHU,然后在电化学工作站用循环伏安法测量溶液的循环伏安曲线。甘汞电极作参比电极,铂电极作工作电极,扫描速率为 100 mV/s。

2 结果与讨论

2.1 分光光度法研究双羟基脲对 Fe(Ⅲ)的配位 及还原

与其它羟肟酸一样,室温(20℃)下,向 2.0× 10⁻⁴ mol/L FeCl₃水溶液中加入 1.2×10⁻⁴ mol/L DHU 水溶液后,溶液立即呈深紫色,这是由于 DHU 分子结构中含有一C=ONHOH 基团,它与 Fe(Ⅲ)形成紫色配合物,但随后溶液深紫色逐渐 褪去。反应过程中溶液吸收光谱变化示于图 1。 由图 1 可以看出, FeCl。水溶液在 300 nm 处有吸 收,该峰可以归属为电荷迁移跃迁带。加入 DHU 后,300 nm 处的吸收峰迅速变弱,在360 nm 处的较弱吸收峰显现,而在 525 nm 左右出现宽的 吸收峰,该峰可以归属为 d-d 跃迁谱带,电子从中 心原子的 d 轨道跃迁到较高能级的 d 轨道,这种 跃迁是对称性禁阻的,电子运动与振动的耦合使 得这种禁阻得以暂时解除,但强度较小。与羟基 脲相比,其 d-d 跃迁向短波移,这可能是因为 DHU产生的配位场较羟基脲强,当水被配位较 强的配体取代时,d-d轨道间能级差变大,导致d-d

图 1 FeCl₃水溶液中加入 DHU 后吸收光谱的变化 Fig. 1 Variation of UV-Vis spectra of FeCl₃ solution after addition of DHU c₀(FeCl₃)=2.0×10⁻⁴ mol/L,c₀(DHU)=1.2×10⁻⁴ mol/L,Δt=1 s

跃迁向短波移。同样在水-乙醇体系中也可以看 出类似的变化(图 2)。通过高斯多峰模拟可以更 清楚地看到 300~400 nm 范围内其实有300 nm、 360 nm 两个吸收峰。

由图 1、2 还可看出,525 nm 处出现的吸收峰 又很快消失,这说明形成的配合物又快速分解,与 羟基脲一样,这可能是由于络合后配合物中配体 的电子转移到 Fe(Ⅲ)上而发生氧化还原反应。 反应完成后用气相色谱-质谱联用仪检测反应产 物。图 3 为气态产物气相色谱分离后的质谱图。 由图 3 可看出,质谱检测出了 N₂O 的分子离子 峰,这表明气态产物中有 N₂O。

由于在 525 nm 左右的吸收峰较弱,反应不易

 c_0 (DHU) $/ c_0$ (FeCl₃) · --0.5 · --0.5

图 3 气态产物经气相色谱分离后 N₂O 的质谱图 Fig. 3 Mass spectra of N₂O separated from the gas products by gas chromatography 下图为 N₂O 标准谱

(The lower half of the figure is the standard spectra of $\mathrm{N}_2\mathrm{O})$

监测,另外 20 ℃下该反应进行较快,不易检测反 应初始过程,因此实验时提高 FeCl₃ 初始浓度为 1.0×10^{-3} mol/L,然后分别加入不同量的 DHU, 在 10 ℃下考察反应液在 525 nm 处吸光度随时间 的变化情况,示于图 4(a)。由图 4(a)可看出,随 着 DHU 浓度的增加,配合物形成速率加快, c_0 (DHU)= 5.0×10^{-4} mol/L 时,吸光度在反应 3 min 后达到最大, c_0 (DHU)= 1.0×10^{-3} mol/L 时,吸光度在反应几秒钟时达到最大。而当 c_0 (DHU)/ c_0 (FeCl₃)>1 时,仪器就监测不到吸 光度的最大值;随着 DHU 浓度的增加,形成的配 合物分解速度也加快。 c_0 (DHU)/ c_0 (FeCl₃)≤1

图 4 c_0 (FeCl₃)=1.0×10⁻³ mol/L 时不同 DHU 初始浓度时溶液在 525 nm 处吸光度随时间的变化 Fig. 4 Variation of absorbance at 525 nm with time at different initial concentration of DHU and c_0 (FeCl₃)=1.0×10⁻³ mol/L

--0.75, ▲----1.0, ▼----2.0, ◇----5.0, ○----7.5, □----10, △--

-15

时,配合物形成后数分钟内吸光度未见下降。 $c_0(DHU)/c_0(FeCl_3)>1时,随着DHU浓度的增加,吸光度迅速下降,配合物分解速度加快。$

以 ln A 对时间作图示于图 4(b)。由图 4(b) 可见, c_0 (DHU)/ c_0 (FeCl₃) \leq 2 时,配合物形成后 ln A 对 时 间 为 线 性 关 系,而 当 c_0 (DHU)/ c_0 (FeCl₃)更大时则偏离线性关系,推测 DHU 与 FeCl₃首先形成 1:1 的配合物,该配合物分解速 率对配合物来说为 1 级,而当 c_0 (DHU)更大时, 则会形成 2:1 或更高的配合物,这种配合物在 525 nm 左右也有吸收峰,且这种配合物分解速度 更快,那么这种情况下的吸光度 $A_{3, 2} = \varepsilon_1 bc$ (Fe• DHU²⁺)+ $\varepsilon_2 bc$ (Fe•2DHU⁺),其中 b 为液池厚 度,Fe•DHU²⁺和 Fe•2DHU⁺同时分解,而 Fe•2DHU⁺分解又会产生 Fe•DHU²⁺,因此 ln $A_{3, 2}$ 对时间偏离线性关系。

以 c_0 (DHU)/ c_0 (FeCl₃) 对吸光度A 作图 (图 5),在 c_0 (DHU)/ c_0 (FeCl₃) 《1时,据A= ϵbc 可求得1:1配合物摩尔消光系数 ϵ 约为611.5 L/ (mol·cm),但当 c_0 (DHU)/ c_0 (FeCl₃)继续增大 时吸光度继续呈线性增大,两条直线相交对应 首先形成1:1的配合物,然后又形成2:1的配 合物。

进一步提高溶液 FeCl₃初始浓度为 2.5×10⁻³ mol/L,考察 c_0 (DHU)/ c_0 (FeCl₃)较低时的情况,得到反应溶液在 525 nm 处吸光度随时间的变化情况示于图 6。与前述结果一致, c_0 (DHU)/ c_0 (FeCl₃) \leq 1 时,主要形成 1:1 的配合物,配合物形成后 ln A 对时间为线性关系,而当 c_0 (DHU)/ c_0 (FeCl₃)更大时则偏离线性关系。

前面提到,形成的1:1配合物分解速率对配合物来说为1级,这也可以从下面的分析得到印证,当 c_0 (DHU)/ c_0 (FeCl₃) \leq 1时,配合物形成反应可以表示为:

 $FeCl_3$ + DHU → [FeCl_3 • DHU] (1) 假定该反应进行得较完全,那么 c_0 (DHU) = $c(FeCl_3 • DHU), 对于配合物分解反应:$

 $[FeCl₃ • DHU] \longrightarrow Fe²⁺ + N₂O₄ + 其它产物$ (2)

以图 6(b)中配合物形成后得到的直线斜率 与 ln c₀ (DHU)作图,示于图 7,线性模拟得一直 线斜率为 1.1,在实验误差范围内可以认为为 1, 这同样说明分解反应对于配合物来说为 1 级。

对于一级反应来说,其速率方程可以写为: $\ln(c(FeCl_3 \cdot DHU)/(c(FeCl_3 \cdot DHU) - x)) = k't$ (3)

图 6 c_0 (FeCl₃)=2.5×10⁻³ mol/L 时不同 DHU 初始浓度时溶液在 525 nm 处吸光度随时间的变化 Fig. 6 Variation of absorbance at 525 nm with time at different initial concentration of DHU and c_0 (FeCl₃)=2.5×10⁻³ mol/L

 c_0 (DHU)/ c_0 (FeCl₃) : ---0. 4, ---0. 6, ---1. 0, ---1. 4, ---2. 0, ---4. 0

其中 x 为分解掉的配合物的浓度。但显然分解 反应并不属于简单的一级反应,还有其它副反应 发生。因此只能得到表观一级分解速率常数,在 c_0 (DHU) = c_0 (FeCl₃) = 1.0×10⁻³ mol/L 时, k'=0.031 min⁻¹。

由于该反应是连续反应,且还涉及到 Fe³⁺的 水解及其它副反应,因此要得到其真实的反应机 理,尚需作进一步深入的研究。

2.2 循环伏安法分析

采用循环伏安法进一步研究了 DHU 与 FeCl₃的配位以及配合物的电子转移机理。图 8 为 FeCl₃及 DHU 配合物的循环伏安曲线。由图 8 可以看出,DHU 有一较强的氧化峰。 I_c/I_a 峰为 Fe³⁺/Fe²⁺的准可逆峰,阳极阴极峰电势相 差 85 mV,这表明此为扩散控制的单电子电荷转

1---- c_0 (FeCl₃) = 5. 0×10⁻³ mol/L, 2---- c_0 (DHU) = 5. 0×10⁻³ mol/L,

 $3 - c_0 (FeCl_3) = c_0 (DHU) = 5.0 \times 10^{-3} mol/L$

移过程^[10]。当 DHU 与 FeCl₃ 按 1:1 混合后, I_c/I_a峰位变化不大,阴极支I。峰位略向负 移,但I_a峰位并没有变化,这说明 DHU 与 FeCl₃配位较弱。与羟基脲和 Fe³⁺配位的循环伏 安曲线类似,出现两个阴极峰II_c、III_c,这可归属 于 DHU 氧化产物的还原峰。

进一步改变溶液中 DHU 与 FeCl₃的比例, 结果示于图 9, c_0 (DHU)/ c_0 (FeCl₃)为 0.5 和 1 时基本没有区别,而当 DHU 浓度更高时 (c_0 (DHU)/ c_0 (FeCl₃)=4), I₂变弱而出现I[']₂, 这可归属为与 DHU 配位的 Fe³⁺的还原峰, I[']₂ 比I₂偏负约 130 mV,而羟基脲相应峰偏负约 100 mV 左右,这说明 DHU 对 Fe³⁺ 的配位比羟 基脲更强一些。

图 9 DHU 配合物的循环伏安曲线 Fig. 9 Cyclic voltammograms of complex with Fe(Ⅲ) for different c₀ (DHU)/c₀ (Fe) ratio c₀ (FeCl₃)=5.0×10⁻³ mol/L c₀ (DHU)/c₀ (Fe):1--0.5,2----1,3----4

乙羟肟酸与 Fe³⁺ 配合物的电化学行为表明 配合物还原电势更负,有较高的稳定常数,说明其 与 Fe³⁺ 配位较双羟基脲更强^[12]。由于配合物键 合方式对氧化还原反应的影响要大于配体取代基 效应的影响^[13]。对于乙羟肟酸而言,其与 Fe³⁺ 配 位较强,其分子中的 2 个氧原子与 Fe³⁺ 配位 (图 10(a)),而 DHU 配位则不同(图 10(b)),其 配位方式可能是其分子中的 N-O上的氧原子和 另一个 N-O上的氮原子与 Fe³⁺ 配位。

对比这些结果可知,在 DHU 与 $FeCl_3$ 间发生 了氧化还原反应,电子从 DHU 转移到 Fe^{3+} , Fe^{3+} 被还原为 Fe^{2+} ,而 DHU 给出电子,被氧化 为 $N_2O_xCO_2$ 等产物。

acetohydroxamic acid(a) and DHU(b)

3 结 论

用分光光度法和电化学分析方法研究的结果 表明,DHU 与 Fe^{3+} 能形成紫色配合物。配合物 可能有二级或以上配位,其配位方式可能是其分 子中的 N—O 上的氧原子和另一个 N—O 上的氮 原子与 Fe^{3+} 配位。热力学分析表明形成的配合 物不稳定,会发生配合物分子内氧化还原反应,电 子从 DHU 转移到 Fe^{3+} , Fe^{3+} 被还原为 Fe^{2+} ,而 DHU 给出 2 个电子,被氧化为 N₂O 等产物。由 于该反应是连续反应,且还涉及到 Fe^{3+} 的水解及 其它副反应,因此要得到其真实的反应机理,尚需 作进一步的深入研究。

参考文献:

- [1] Yan Taihong, Zheng Weifang, Zuo Chen, et al. The Reduction of Np(V]) and Np(V) by Dihydroxyurea and Its Application to the U/Np Separation in the PUREX Process[J]. Radiochim Acta, 2010, 98(1): 35-38.
- [2] Yan Tai-hong, Zuo Chen, Zheng Weifang, et al. Kinetics of Reductive Stripping of Pu(Ⅳ) in the TBP/OK-HNO₃ System Using Dihydroxyurea[J]. J Radioanal Nucl Chem, 2009, 280(3): 585-588.

- [3] Yan Taihong, Zheng Weifang, Ye Guo-an, et al. Synthesis of Dihydroxyurea and Its Application to the U/Pu Split in the PUREX Process[J]. J Radioanal Nucl Chem, 2009, 279(1): 293-299.
- [4] May I, Taylor R, Denniss J I S, et al. Neptunium([V) and Uranium (V]) Complexation by Hydroxamic Acids[J]. J Alloys Comps, 1998, 275 277: 769-772.
- [5] Sinkov S I, Choppin G R, Taylor R J. Spectrophotometry and Luminescence Spectroscopy of Acetohydroxamate Complexes of Trivalent Lanthanide and Actinide Ions[J]. J Solution Chem, 2007, 36: 815-830.
- [6] 朱兆武.羟基脲——新型无盐试剂在 Purex 流程中的应用研究[D].北京:中国原子能科学研究院,2003.
- [7] Boyland E, Nery R. The Synthesis and Some Reactions of Dihydroxyurea[J]. J Chem Soc(C), 1966: 350-353.
- [8] Boyland E, Nery R. Biochemistry Dihydroxyurea [J]. Nature, 1964, 26(4 952): 1 379-1 380.
- [9] Harmon R E, Dabrowiak J C, Brown D J, et al. Metal Complexes of 1-Substituted 3-Hydroxyureas[J].
 J Med Chem, 1970, 13(3): 577-579.
- [10] Bedrica A, Birus M, Kujundzic N. Iron(Ⅲ) Complexation by Hydroxyurea in Acidic Aqueous Perchlorate Solution[J]. Croatica Chem, 1988, 61(1): 21-31.
- [11] Nigović B, Kujundžić N, Krešimir S. Electron Transfer in N-Hydroxyurea Complexes With Iron(Ⅲ)[J]. Euro J Med Chem, 2005, 40: 51-55.
- [12] Escot M T, Pouillen P, Martinet P. Etude, par voie Electrochinque, de l'Influence du fer([]) sue la Reduction de Cetones en Solution dans le N, N-Dimethylformamide[J]. Electrochim Acta, 1983, 28(12): 1 697-1 702.
- [13] Nigović B, Kujundžžić N. Electrochimical Behavior of Iron(Ⅲ) Complexes With Aminohydroxamic Acids[J]. Polyhedron, 2002, 21(16): 1 661-1 666.