三种铀酰-Salophen 配合物分子结构与 振动光谱的理论研究

肖云霞,聂长明*,李小龙,罗 娟,张方帅

南华大学化学化工学院,湖南 衡阳 421001

摘要:采用密度泛函理论(DFT)中的 B3LYP 方法,在 6-31G、6-31G**、6-311G** 三种基组水平上,对三种铀 酰-Salophen 配合物的分子结构进行优化,计算了它们的振动频率和化学位移,并对得到的几何构型、电子结构、红外光谱、热力学性质和化学位移进行了讨论分析。

关键词:密度泛函理论;铀酰-Salophen 配合物;分子结构;红外光谱;热力学性质;化学位移 中图分类号:O561.1;O641.121 文献标志码:A 文章编号:0253-9950(2014)02-0097-07 doi:10.7538/hhx.2014.36.02.0097

Theoretical Study on Molecular Structure and Vibrational Spectra of Three Uranyl-Salophen Complexes

XIAO Yun-xia, NIE Chang-ming*, LI Xiao-long, LUO Juan, ZHANG Fang-shuai

College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China

Abstract: In this paper, the molecular structures of three uranyl-Salophen complexes were optimized, and the vibrational frequencies and chemical shifts were also calculated using density functional theory (DFT) methods at B3LYP/6-31G, 6-31G^{**}, 6-311G^{**} levels. The geometries, electronic structure, IR spectrum, thermodynamic properties and chemical shifts were discussed and analyzed.

Key words: density functional theory; uranyl-Salophen complex; molecular structure; IR spectrum; thermodynamic properties; chemical shifts

铀及其化合物有着一些与其他元素及化合物 不同的特殊分子识别与催化性能,利用铀化合物 作催化剂已成为近年的研究热点^[1-4]。如 Castelli 等^[5-6]研究了 3 种铀酰-Salophen 配合物催化苯硫 酚与环烯酮共轭加成的反应动力学,结果表明,在 氯仿溶液中,三乙胺辅助下,三种铀化合物催化剂 对苯硫酚与环烯酮共轭加成反应有很好的对映选 择性。这是不对称合成领域的又一拓展,然而迄 今为止,关于它们的结构和性质及不对称手性催 化理论研究尚未见报道。本工作拟采用密度泛函

收稿日期:2013-10-14;修订日期:2014-01-29

基金项目:国家自然科学基金资助项目(11275090);湖南省自然科学基金资助项目(12JJ9006);湖南省工业支撑计划项目 (2012GK3131);湖南省教育厅重点资助项目(12A9116)

作者简介:肖云霞(1989一),女,湖南怀化人,硕士研究生,应用化学专业

^{*}通信联系人:聂长明(1961-),男,湖南衡阳人,教授,从事分子结构性能研究,E-mail: niecm196123@163.com

理论(DFT)对三种铀酰-Salophen 配合物进行量 子化学计算和研究,并对计算结果进行分析讨论。

计算方法 1

本文运用 Gaussian 09 量子化学计算软件, 采用密度泛函理论(DFT)中的 B3LYP 方法,结 合 6-31G、6-31G**、6-311G**(U原子采用准相对 论赝势(RECP)基组)三种基组,对三种配合物 (分子结构如图1所示)的几何构型进行了全优化 和振动频率计算,频率校正因子分别为 0.961 3^[7]、 0.967 0^[8]、0.967 9^[9]。比较结果发现,计算得到 的三种配合物几何构型几乎完全相同,其结构均 具有 C₁ 对称性。

结果与讨论 2

2.1 分子几何构型

图 2 给出了 6-311G** 基组水平上优化后的 三种化合物的能量最低几何构型。表 1 列出 6-31G、6-31G**、6-311G** 三种基组水平上三种 配合物的部分几何构型参数:键长(R)、键角(A)和 二面角(D),原子编号见图1(下同)。从表1可以

看出,配体 Salophen 中提供的两个 N 原子和两 个 O 原子与 U 原子几乎处于同一平面参与配位, 而 UO2⁺ 与此平面垂直,形成了四角双锥的构型。 U-N、U-O和U-O的键长与文献[10-11]值 相符合,U-N比U-O键长略长,故前者配位作 用略弱一些。三种配合物上苯环中的 C-C 键长 为 0.137 7~0.143 5 nm,并不是完全的正六边 形,而是稍微有些扭曲,可能是减少苯环与相邻基 团之间斥力的原因。此外,B3LYP/6-31G、6-31G**、 6-311G** 计算得到的三种配合物几何构型几乎完全 相同,3种方法求出的最大偏差键长为 0.002 8 nm, 键角则不足 2°,表明以 B3LYP 优化构型时当基 组达到较高水平后无需再行扩展。

2.2 电子结构

通过 DFT 方法,在 6-31G、6-31G**、6-311G** 基 组水平上对三种铀酰-Salophen 配合物进行振动 频率计算(已作校正),计算结果给出的简正振动 模式中没有虚频,表明优化得到的三种配合物几 何构型处于真正的位能面上极小点。表 2 列出了 三种配合物由 Mulliken 集居数分析所得到的 部分原子净电荷(Q),同时列出了它们的总能量E、

图 2 三种铀酰-Salophen 配合物的几何构型(6-311G**) Fig. 2 Geometry structure of three uranyl-Salophen complexes(6-311G**)

		Table I Part of	the molecular ge	eometry paramet	ers of three uran	yl-Salophen comp	lexes		
参数(Parameters)/	HELT.	配合物 1(Complex	(1)		配合物 2(Complex	2)	Ē	引合物 3(Complex 3	
单位(Unit)	6-31G	6-31G**	6-311G**	6-31G	6-31G **	6-311G **	6-31G	6-31G**	6-311G **
R(U = O)/nm	0.1810	0.1784	0.1783	0.1811	0.1784	0.1783	0. 181 1	0.1784	0.1783
$R(N_7-U)/nm$	0.2524	0.2533	0.2537	0.2521	0.2532	0.2536	0.2522	0.2531	0.2536
$R(N_8-U)/nm$	0. 252 4	0.2533	0.2538	0.2524	0.2533	0.2537	0.2522	0.2532	0.2536
$R({ m O}_{23}-{ m U})/{ m nm}$	0. 222 4	0.2246	0.2250	0.2221	0.2244	0.2249	0. 222 2	0.2244	0.2249
$R({ m O}_{24}{ m -U})/{ m nm}$	0.2224	0.2246	0.2250	0.2225	0.2245	0.2250	0.2222	0.2244	0.2249
R(C = C)/nm	0. 138 6 \sim 0. 143 3	0.1381 \sim 0.1435	0. 137 $8 \sim 0.1433$	0.138 $4 \sim 0.143$	i 0.1380∼0.1435	$0.1377 \sim 0.1433$	0. 138 $4 \sim 0.1432$	0. 138 0 \sim 0. 143 4	0. 137 7 \sim 0. 143 2
A(0 = U = 0)/(°)	179.2	179.7	179.9	179.1	179.8	179.9	179.3	179.7	179.9
$A(C_4 - C_3 - N_7) / (^{\circ})$	117.9	117.6	117.8	117.9	117.5	117.7	117.8	117.5	117.7
A($C_3-C_4-N_8$) /(°)	117.9	117.6	117.8	117.9	117.6	117.7	117.8	117.5	117.7
$A(C_9 - C_{11} - C_{12}) / (^{\circ})$	123.7	123.6	123.5	123.5	123.4	123.3	123.5	123.3	123.2
$A(C_{10}-C_{17}-C_{18})/(^{\circ})$	123.7	123.6	123.5	123.7	123.6	123.5	123.5	123.3	123.2
$A(N_7-U-N_8) / (^{\circ})$	66.1	65.2	65.2	66.1	65.1	65.2	66.0	65.1	65.0
$A(O_{23}-U-O_{24})/(^{\circ})$	148.1	149.6	150.0	148.8	150.4	150.8	149.8	151.4	151.8
$A(C_{12}-C_{13}-C_{25})/(^{\circ})$	I	I	I	121.7	121.3	121.1	121.7	121.4	121.2
$A(C_{18}-C_{19}-C_{31})/(^{\circ})$	I	ı	I	ı	I	I	121.7	121.4	121.2
$D(N_7 - O_{23} - O_{24} - N_8) / (^{\circ})$	0.0	-0.0	-0.0	-0.0	-0.1	-0.2	0.0	-0.0	0.0
$D(N_8 - N_7 - O_{23} - O_{24}) / (^{\circ})$	-0.0	0.0	0.0	0.3	0.2	0.2	-0.0	0.0	-0.0
$D(0_{23}-0_{24}-N_8-U)/(^{\circ})$	-2.5	-1.8	-2.1	-2.3	-1.7	-2.0	-2.2	-1.5	-1.8
$D(0_{23}-N_7-0_{24}-U)/(^{\circ})$	5.7	4.0	4.7	5.5	3.9	4.7	4.9	3. 3	4.0
$D(C_3 - N_7 - C_9 - C_{11})/(^{\circ})$	171.1	172.5	172.0	171.2	172.8	172.3	171.5	172.7	172.2
$D(C_4 - N_8 - C_{10} - C_{17})/(\degree)$	-171.1	-172.5	-172.0	-171.4	-172.7	-172.3	-171.5	-172.7	-172.2
$D(C_{12}-N_{13}-C_{25}-C_{26})/(°)$	I	I	I	137.6	135.7	134.2	137.3	136.0	134.9
$D(C_{18}-N_{19}-C_{31}-C_{32})/(\degree)$	I	I	I	ı	ı	I	-137.3	-136.07	-134.9

第2期

三种铀酰-Salophen 配合物的部分分子几何构型参数

表 1 前线分子轨道的能量 E_{HOMO} 和 E_{LUMO} 、能隙 ΔE_{H-L} (ΔE_{H-L} 为 E_{HOMO} 与 E_{LUMO} 之差的绝对值)、偶极矩 p、极化率 α 、硬度 η 、化学势 μ 、电负性 χ 及亲电指 数 ω 。其中, E、 E_{HOMO} 、 E_{LUMO} 、 ΔE_{H-L} 、 η 、 μ 、 ω 和 χ 的单位为 eV, p单位为 C · m, η 、 μ 、 χ 和 ω 通过以 下公式^[12]计算得到。

$$I = -E_{\text{HOMO}}; A = -E_{\text{LUMO}}$$
(1)

$$\eta \approx \frac{1}{2} (E_{\text{LUMO}} - E_{\text{HOMO}}) = \frac{1}{2} (I - A)$$
 (2)

$$\mu \approx \frac{1}{2} (E_{\text{LUMO}} + E_{\text{HOMO}}) = -\frac{1}{2} (I + A)$$
 (3)

$$\chi = (I + A)/2 \tag{4}$$

$$\omega = \mu^2 / (2\eta) \tag{5}$$

从表 2 可知,不同基组下,三种配合物的各原 子净电荷(无论正负)差异不是很大,三种配合物 中的 U 原子带正电荷,而与它配位的 O、N 原子 均具负电荷,U处于 O、N 原子形成的负电荷空 穴的中心。且配合物中 U 的净电荷不是原来的 +6,说明 N、O 提供的孤对电子与 U 配位,使 U 的正电荷部分离域到配位原子上,因而 U 原子的 空轨道与 O、N 原子孤对电子的轨道相互作用,形 成了配位键。根据其净电荷可以预见,配合物中 的 U 仍具有成键能力^[5-6],如具有接受 O:的孤 对电子的能力,因而可以削弱 O = C 键,起到活 化烯酮类分子的作用,有关理论研究另文报道。 同时,比较三种配合物不同基组下的总能量可知: 6-311G** 基组水平上计算得到的总能量是最低 的,即得到了最稳定的构象。

HOMO 能级的负值反映第一电离能(*I*), E_{HOMO} 越高,越容易失去电子;LUMO 能级的负 值近似等于物质的电子亲和能(*A*), E_{LUMO} 越低, 越容易得到电子^[12]。表 2 中,不同基组水平上 的 E_{HOMO} 和 E_{LUMO} 相差不大, ΔE_{HL} 、 η 、 μ 、 χ 及 ω 相 近,最大偏差能隙、硬度、化学势、电负性和亲电 指数分别为 0.073 4、0.036 7、0.181 0、0.181 0、 0.611 2 eV。三种配合物在同一基组下的 ΔE_{HL} 和 η 的高低顺序为:配合物 1>配合物 2>配合 物 3; $|\mu| \times \eta$ 和 ω 的高低顺序为:配合物 3>配 合物 1> 配合物 2。此外,同一基组下,随着侧 基上苯环数量的增加,三种配合物的偶极矩变 小,即极性减小。

2.3 红外光谱

红外光谱是物质定性的重要方法,B3LYP/

6-311G** 水平上计算得到的三种配合物的红外 光谱图示于图 3,同时,表 3 给出了配体及配合物 的主要红外光谱数据。从表 3 可知,各相应的特 征振动与配体相比,配合物中的 C - N 伸缩振动 频率分别移动了 52、52、60 cm⁻¹,说明三种配体 中 C = N 上的 N 原子均与 U 发生了配位作用, 形成了 U-N 键。C-O 伸缩振动频率分别移动 了-21、-3、24 cm⁻¹,这说明配体中 C-O 上的 O原子参加了配位,图 3 中 452、476、492 cm⁻¹处 出现吸收峰,证实形成了 U-O 键^[13]。这些变化 是由于配位原子参与配位而影响了配体中相关基 团的键力常数,导致振动频率发生了变化。同时, 配合物1、2、3分别在940 cm⁻¹出现强吸收峰,可认 为这是铀酰基团 UO2⁺ 的不对称伸缩振动。此 外,在1564、1572、1572 cm⁻¹处的强吸收峰为三 种配合物苯环骨架 C --- C 键的伸缩振动吸收峰, 表 3中配体及配合物分别在 1 696、1 644、1 636 cm⁻¹ 处的吸收峰,归属于C == N的振动吸收峰,该吸收 峰为席夫碱配合物的特征峰。

2.4 热力学性质

表4列出了 B3LYP/6-311G** 方法计算的三 种配合物在298.15 K、1.013×10⁵ Pa下的热力学 性质。从表4可知:随着取代苯环数目的增加,分 子恒压热容、恒容热容和熵增加,而焓却减小。

2.5 化学位移

本文在 B3LYP/6-311G** 水平上用规范无关 原子轨道(gauge-independent atomic orbital,GIAO) 方法计算了三种配体、三种配合物和四甲基硅烷 (TMS)的核磁共振氢谱和碳谱。其中,TMS中H 的屏蔽值为 31.995 5,C 的屏蔽值为 184.372 1,铀 酰-Salophen 配体与配合物的¹H NMR 及¹³C NMR 化学位移(TMS的屏蔽值减去化合物的计算屏 蔽值)列于表 5, 原子编号见图 1。由表 5 可知, 在三种配体的¹H NMR 谱中,分别在 4.04、 5.50、4.10、5.56 ppm 处出现酚 O-H 的质子信 号,而在配合物中该信号消失,证实了配体中 O-H上的 O 原子均与 U 发生配位作用,形成 U—O键。在¹³C NMR 谱中,配合物中的 δ (C = N) 比相应的配体向低场分别移动了 9.31、9.40、 9.37、9.53 ppm, 而 δ(Ar-C)没有发生明显变 化,由此可以推测配体中 C = N 上的 N 原子与 U 配位成键。配合物中的δ(C-O)与相应的配 体相比明显移向低场,也证实了 U-O 键的 形成。

物的电子结构	
en 配合4	
-Saloph	
三种铀酰	
表 ²	į
	,

			Table 2 Elect	tronic structure of	three uranyl-Salor	hen complexes			
参数(Parameters)/		配合物 1(Complex	1)		配合物 2(Complex 2	2)		配合物 3(Complex 3	3)
单位(Unit)	6-31G	6-31G **	6-311G**	6-31G	6-31G **	6-311G **	6-31G	6-31G**	6-311G**
Q(U)	1.3111	1.6016	1.6137	1.3247	1.6110	1. 630 8	1.3395	1.6218	1.6510
$Q(N_7)$	-0.6367	-0.5367	-0.5802	-0.6358	-0.5344	-0.5783	-0.6355	-0.5339	-0.5783
$Q(N_8)$	-0.6367	-0.5367	-0.5801	-0.6369	-0.5362	-0.5798	-0.6355	-0.5339	-0.5783
Q(C ₉)	0.0616	0.0821	0.2047	0.0574	0.0787	0.2054	0.0572	0.0781	0.2047
$Q(C_{10})$	0.0617	0.0821	0.2047	0.0614	0.0818	0.2042	0.0572	0.0781	0.2048
$Q(O_{23})$	-0.6689	-0.6201	-0.5727	-0.6745	-0.6250	-0.5855	-0.6745	-0.6257	-0.5869
$Q(O_{24})$	-0.6689	-0.6201	-0.5728	-0.6691	-0.6207	-0.5732	-0.6745	-0.6257	-0.5868
$10^{-4} E/\mathrm{eV}$	-4.510	-4.511	-4.512	-5.139	-5.140	-5.141	-5.768	-5.769	-5.770
$E_{ m HOMO}/ m eV$	-5.8069	-5.7198	-5.9239	-5.6845	-5.6164	-5.8396	-5.6763	-5.6083	-5.8287
$E_{ m LUMO}/{ m eV}$	-2.6069	-2.5688	-2.7973	-2.6014	-2.5660	-2.8001	-2.5960	-2.5688	-2.8055
$\Delta E_{ m H-L}/{ m eV}$	3.2000	3.1510	3.1266	3. 083 1	3.0504	3.0395	3.0803	3.0395	3. 023 2
$10^{29} p/({ m C} \cdot { m m})$	1.742	1.481	1.400	1.696	1.457	1.398	1.646	1.420	1. 380
α	322.6147	325.986	337. 593 3	390.4507	395.121	409.5243	454.603	461.168	478.7237
η/eV	1.6000	1.5755	1.5633	1.5415	1.5252	1.5200	1.5402	1.5200	1.5116
μ/eV	-4.2069	-4.1443	-4.3606	-4.1429	-4.0912	-4.3198	-4.1361	-4.0885	-4.3171
χ/eV	4.2069	4.1443	4.3606	4.1429	4.0912	4.3198	4.1361	4.0885	4.3171
ω/eV	5.5305	5.4507	6.0816	5.5672	5.4871	6.1384	5.5536	5.4986	6.1648

 cm^{-1}

ppm

图 3 三种铀酰-Salophen 配合物的红外光谱

Fig. 3 IR spectra of three uranyl-Salophen complexes

3 结 论

本 文 对 三 种 铀 酰-Salophen 配 合 物 在 B3LYP/6-31G、6-31G**、6-311G**(U 原子采用 准相对论赝势(RECP)基组)基组水平上进行了 量子化学计算,分别从分子几何构型、电子结构、 红外光谱、热力学性质及化学位移方面进行了讨 论。得到如下结论:

(1) B3LYP/6-31G、6-31G**、6-311G** 计算
 得到的三种配合物几何构型几乎完全相同,其结
 构均具有 C₁ 对称性;

(2) 三种配合物中的 U 仍具有成键能力,如 具有接受 O:的孤对电子的能力,因而可以削弱 O=C键,起到活化烯酮类分子的作用;

(3) 通过分析计算得到的红外光谱和核磁共振数据,证实了三种配合物中 U—N 及 U—O 键的形成。

此研究初步从理论上阐明了这三种配合物的结构,同时为实验研究提供了参考依据,为深入研究铀 酰-Salophen 配合物结构与性能关系打下了基础。

表 3 配体及配合物的主要红外光谱数据 Table 3 Major IR data of ligands and complexes

配体及配合物(Ligands and complexes)	ν (C = N)	ν (C = C)	ν (C — O)	$\nu(\mathrm{U-O})$	$\nu (U = O)$
配体 1(Ligand 1)	1 696	1 615	1 327	-	-
配合物 1(Complex 1)	1 644	1 564	1 348	452	940
配体 2(Ligand 2)	1 696	1 615	1 345	-	-
配合物 2(Complex 2)	1 644	1 572	1 348	476	940
配体 3(Ligand 3)	1 696	1 633	1 372	-	-
配合物 3(Complex 3)	1 636	1 572	1 348	492	940

表 4 三种铀酰-Salophen 配合物的热力学性质

Fig. 4 Thermal properties of three uranyl-Salophen complexes

配合物(Complexes)	$c_p^{\ominus}/(\mathbf{J}\cdot\mathbf{mol}^{-1}\cdot\mathbf{K}^{-1})$	$c_v^{\ominus}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1})$	$S^{\ominus}/(J \cdot mol^{-1} \cdot K^{-1})$	$10^{-4} H^{\ominus} / \mathrm{eV}$
1	384.528	376.213	664.612	-4.512
2	468.572	460.257	775.417	-5.141
3	550.256	541.941	870.285	-5.770

注(Note):T=298.15 K,p=1.013×10⁵ Pa

表 5 配体及配合物的¹ H NMR 及¹³ C NMR 化学位移

Table 5 $^{-1}\,\text{H}$ NMR and $^{13}\,\text{C}$ NMR chemical shift of ligands and complexes

配体及配合物			¹ H NMR			
(Ligands and complexes)	δ(Ar−H)	$\delta(C_9 - H)$	$\delta(C_{10}-H)$	δ(O ₂₃ —H)	δ(O ₂₄ —H)	
配体 1(Ligand 1)	6.50~7.59	8.40	8.40	4.04	4.04	
配合物 1(Complex 1)	6.92~7.71	8.75	8.75		-	
配体 2(Ligand 2)	6.55~7.69	8.49	8.41	5.50	4.10	
配合物 2(Complex 2)	6.89~8.71	8.86	8.73		-	
配体 3(Ligand 3)	6.69~7.71	8.50	8.50	5.56	5.56	
配合物 3(Complex 3)	7.01~8.67	8.85	8.85		-	

		续表 5				
配体及配合物			¹³ C NMR			
(Ligands and complexes)	δ(Ar−C)	$\delta(C_{12}-O)$	$\delta(C_{18}-O)$	$\delta(C_9 = N)$	$\delta(C_{10}=N)$	
配体 1(Ligand 1)	119.22~157.16	164.80	164.80	160.78	160.78	
配合物 1(Complex 1)	122.40~154.93	181.20	181.20	170.09	170.09	
配体 2(Ligand 2)	119.20~157.52	161.53	164.83	161.12	160.82	
配合物 2(Complex 2)	122.39~155.02	178.24	178.25	170.52	170.19	
配体 3(Ligand 3)	121.42~157.32	161.56	161.56	161.03	161.03	
配合物 3(Complex 3)	122.83~155.04	178.23	178.24	170.56	170.56	

参考文献:

- Fox A R, Bart S C, Meyer K, et al. Towards uranium catalysts[J]. Nature, 2008, 455(7211): 341-349.
- [2] Andrea T, Eisen M S. Recent advances in organothorium and organouranium catalysis[J]. Chem Soc Rev, 2008, 37: 550-567.
- [3] Enthaler S. Straightforward uranium-catalyzed dehydration of primary amides to nitriles[J]. Chem Eur J, 2011, 17(34): 9316-9319.
- [4] Hayes C E, Leznoff D B. Diamido-ether uranium(N) alkyl complexes as single-component ethylene polymerization catalysts[J]. Organometallics, 2010, 29 (4): 767-774.
- [5] Castelli V V A, Cort A D, Mandolini L, et al. A kinetic study of the conjugate addition of benzenethiol to cyclic enones catalyzed by a nonsymmetrical uranyl-salophen complex[J]. J Org Chem, 2007, 72: 5383-5386.
- [6] Cort A D, Mandolini L, Schiaffino L. The role of attractive van der waals forces in the catalysis of Michael addition by a phenyldecorated uranyl-salophen complex[J]. J Org Chem, 2008, 73: 9439-9442.
- [7] Ramos J M, Versiane O, Felcman J, et al. FT-IR vibrational spectrum and DFT: B3LYP/6-31G

structure and vibrational analysis of guanidinoaceticserinenickel([]) complex: [Ni(GAA)(Ser)][J]. Spectrochim Acta, Part A, 2007, 67: 1037-1045.

- [8] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03, Revision C. 02 [M]. Wallingford: Gauaaian, 2004.
- [9] Andersson M P, Uvdal P. New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p)[J]. J Phys Chem A, 2005, 109: 2937-2941.
- [10] Enriquez A E, Scott B L, Neu M P. Base-driven assembly of large uranium oxo/hydroxo clusters[J]. Inorg Chem, 2005, 44: 7403-7413.
- [11] Stemmler A J, Kampf J W, Pecoraro V L. A planar 15-metallakrone-5 that selectively binds the uranyl cation[J]. Angew Chem Int Ed Engl, 1996, 35(23-24): 2841-2843.
- [12] Liu Y, Ke Z F, Cui J F, et al. Synthesis, inhibitory activities, and QSAR study of xanthone derivatives as α-glucosidase inhibitors [J]. Bioorg Med Chem, 2008, 16: 7185-7192.
- [13] Agarwal R K, Arora K, Dutt P. Studies on thorium(N) and dicxouranium(N) complexes of schiff bases derived from 4-aminoantipyrine[J]. Synth React Inorg Met-Org Chem, 1994, 24(2): 301.