铀(Ⅲ)的拉曼光谱定量分析

白 雪,李定明,常志远,谈树苹,张倩慈

中国原子能科学研究院 放射化学研究所,北京 102413

摘要:建立了 Purex 后处理工艺水相和有机相料液中 U(YI)的拉曼光谱分析方法。对于水相体系,870 cm⁻¹ 处 UO^{§+} 的拉曼谱峰强度与 U(YI)质量浓度在 5.0~450.0 g/L 范围内呈现良好的线性关系, $r^2 = 0.999$ 9,检 出限为 1.2 g/L。增加仪器的积分时间可以使 U(YI)的检出限降至 0.2 g/L。硝酸、其他锕系元素与裂片元素 的存在对 U(YI)的检测无影响。对于含 0.5~4.0 mol/L 硝酸的 70.0 g/L U(YI)溶液,6 次检测的相对标准 偏差均不高于 1.4%。进行含有裂片元素的重加回收实验,重加回收率在 98.3%~101.6%之间。在有机相 体系,拉曼信号强度与 U(YI)质量浓度在 5.0~107.0 g/L 范围内呈现线性关系, $r^2 = 0.999$ 0,检出限为 0.7 g/L。该方法具有测定简便、无需考虑干扰、绿色无损等优点,可实现现场的快速检测,适用于水相和有机 相中常量U(YI)的定量检测。

关键词:拉曼光谱;U(N)定量;水相体系;有机相体系

中图分类号:O657.37,O614.62 文献标志码:A 文章编号:0253-9950(2014)S0-0027-08 doi:10.7538/hhx.2014.36.S0.0027

Determination of U(M) by Raman Spectroscopy

BAI Xue, LI Ding-ming, CHANG Zhi-yuan, TAN Shu-ping, ZHANG Qian-ci

China Institute of Atomic Energy, P. O. Box 275(88), Beijing 102413, China

Abstract: A new method via Raman spectroscopy for determination of U(V] in aqueous and organic solutions was developed. The concentration of U(V] can be quantified by the Raman band of UO_2^{2+} , which is 870 cm⁻¹ in aqueous solutions and 860 cm⁻¹ in organic solutions. In the aqueous phase, a good linear relationship is obtained between the Raman signal and concentration of U(V] in the range of 5.0-450.0 g/L, with the $r^2 = 0.999$ 9. The detection limit is 1.2 g/L. The detection limit can be reduced to 0.2 g/L by increasing the integration time. The existence of nitric acid and fission products has no effect on the detection of U(V]. The s_r is no more than 1.4% (n=6) for detection of 70.0 g/L U(V]), with 0.5-4.0 mol/L HNO₃. The recoveries are in the range of 98.3%-101.6%. In organic solutions, the linearity is observed in the range of 5.0-107.0 g/L with $r^2=0.999$ 0 and a limit of detection of 0.7 g/L. With the advantage of simple, rapid, green and no interference of internal substance, the method is applicable for in situ detection of U(VI) in aqueous and organic solutions.

Key words: Raman spectra; the quantitatively detection of U(VI); aqueous phase; organic phase

在 Purex 后处理工艺流程中,铀的浓度是非 常重要的控制参数,它与产品质量、经济效益、生 产安全等均有着直接关系,能充分说明流程的合 理性和实用性,它的准确性直接影响整个工艺是 否可以安全可靠地运行。因此,快速准确地测定 铀浓度一直是令人关注的问题。

水相中常量 U(N)的定量方法包括滴定 法^[1-2]、分光光度法^[3-4]、γ吸收法^[5]、L_{II}吸收法^[6] 等。上述方法在 U(N)的定量分析中各有优 势,但也存在一定的不足:或操作繁琐、耗时较 长;或产生废液、难以回收;或存在共存物质的 干扰,在实际应用中仍显出一定的不足。对于 有机相中U(N)的定量,多把 U(N)反萃至水相 中进行检测^[7]。

拉曼光谱作为一种简便快捷、绿色无损的分 析方法,近年来得到越来越广泛的应用。锕系元 素拉曼光谱的研究始于 20 世纪 70 年代,Basile 等^[8]研究了不同价态下铀及超铀元素的拉曼光 谱,确定了其 ν_1 对称伸缩振动频率与键强度及稳 定性的关系。文献[9]研究了一系列无机及有机 配体与 U(VI)的络合,以及络合产物中 U — O 键 的减 弱 对 ν_1 对称 伸 缩 振 动 频 率 的 影 响。 Toshiyuki 等^[10]用拉曼光谱研究了 U(VI)在不同 pH 值的水解产物。国外有关对 U(VI)的拉曼光 谱研究主要集中在水相中的定性研究,定量研究 较少且不系统^[11]。在国内没有相关文献报道。

本工作拟系统地研究水相和有机相中 U(\[) 的拉曼光谱,以建立一种快速无损分析 U(\[)的 方法,并研究体系中硝酸及共存离子对 U(\[)定 量测量的影响。

1 实验部分

1.1 仪器及工作条件

Raman 便携式拉曼光谱仪, B&WTEK 公司。 激光波长 785 nm, 激光功率 300 mW。探头工作距 离为 5 mm。光纤长度为 10 m。分辨率 3 cm⁻¹, 扫 描次数 2 次, 扫描范围: 175~2 700 cm⁻¹。

MS204S 电子天平, Mettler Toledo 公司, 精度 0.1 mg。

1.2 试剂及样品配制

U₃O₈,GBW04205,北京化工冶金研究院; HNO₃、磷酸三丁酯(TBP),分析纯,国药集团化学 试剂有限公司;240 #加氢煤油(OK),锦州化工厂; 其他试剂均为分析纯;高纯水,18.2 MΩ・cm。 硝酸铀酰水相母液(HNO₃介质):450.0g/L U,3.0mol/LHNO₃。U₃O₈经浓HNO₃加热溶 解配制而成。采用TiCl₃还原-K₂Cr₂O₇氧化滴 定法标定U(VI)浓度,近红外光谱法标定HNO₃ 浓度^[12]。

30%TBP/煤油,按体积配制,使用前经5% Na₂CO₃溶液处理。

硝酸铀酰有机相母液(溶剂为 30% TBP/煤 油):107.0g/LU,0.20 mol/LHNO3。在高浓度 HNO3条件下由 30% TBP/煤油萃取铀水相母液 得到,采用 TiCl3 还原-K2Cr2O7 氧化滴定法标定 U(VI)浓度,近红外光谱法标定 HNO3 浓度。

不同浓度硝酸铀酰及 HNO₃ 的水相与有机 相溶液由各自的母液稀释配制。

配制模拟裂变产物溶液,主要成分及浓度列 于表1(为两倍高放废液浓度)。元素模拟样品按 照表1数据,由相应的硝酸盐或氧化物配制而成。

表 1 样	莫拟裂变产	物溶液的组成
-------	-------	--------

Table 1 Main composition of simulated samp	bl
--	----

元素	ho/	元素	ho/
(Elements)	$(g \bullet L^{-1})$	(Elements)	$(g \bullet L^{-1})$
Zr	1.37	Pr	0.282
Cs	0.65	Sr	0.20
Ba	0.60	Rh	0.095
Nd	0.91	Te	0.1334
Ce	0.64	Y	0.109
Fe	0.49	Gd	0.024
Na	3.20	Eu	0.0428
Mo	0.50	Ce	0.012
Ru	0.54	HNO_3	2.0 mol/L

2 结果与讨论

2.1 水相中硝酸铀酰的拉曼定量分析

2.1.1 水相中硝酸铀酰的拉曼光谱 $UO_2(NO_3)_2$ 在水溶液中离解为 NO_3^- 和 UO_2^{2+} ,两者均具有拉 曼活性。 NO_3^- 具有对称的平面等边三角结构,其 ν_1 对称伸缩振动在拉曼光谱中具有强散射。而 UO_2^{2+} 属于 Y—X—Y 型线型离子,各种振动模型 中只有 U—O 键的 ν_1 对称伸缩振动是拉曼活性 的。HNO₃ 溶液与硝酸铀酰溶液的拉曼光谱示于 图 1。HNO₃ 溶液特征振动峰在 1 047 cm⁻¹,为

2.1.2 拉曼光谱测定水相中硝酸铀酰的标准曲 拉曼散射光的强度公式为: $I = I_0 \cdot A(\gamma) \cdot$ 线 $J(\gamma) \cdot \gamma^4 \cdot c$,公式中 $I_0 \setminus A(\gamma) \setminus J(\gamma) \setminus \gamma \setminus c$ 分别为 入射光强度、分子自吸收系数、分子散射参数、入 射光频率、样品浓度。由公式可知:在一定条件 下,拉曼信号的强度与待测物浓度呈现线性关系。 配制一系列 HNO₃ 浓度相同而硝酸铀酰浓度不 同的溶液(铀质量浓度范围为 5.0~450.0 g/L), 采集其拉曼光谱,将 870 cm⁻¹处 U(VI)的光谱特 征峰信号强度对 UO2⁺ 浓度作图,结果示于图 2, U(N)质量浓度在 5.0~450.0 g/L 范围内线性 方程为 $y=122.6x+712.3, r^2=0.9999, 呈现良$ 好的线性关系。空白实验为同等浓度硝酸水溶液 的拉曼光谱实验,光谱条件与绘制工作曲线时相 同。按空白实验所对应谱峰强度的3倍标准偏 差,可得此条件下的检出限为1.2g/L。

of UO_2^{2+} in aqueous phase

低浓度 U(VI)的标准曲线 2.1.3 增加拉曼光 谱仪的积分时间,可以增加待测物的拉曼信号强 度,在分析检测低浓度铀溶液时更为有利。图 3 为同一份硝酸铀酰溶液(5.0 g/L UO₂(NO₃)₂, 3.0 mol/L HNO₃)在不同积分时间下的拉曼光谱 对比,积分时间的增加除了使得背景抬高、噪声变 大外,UO2⁺ 位于 870 cm⁻¹ 处的拉曼信号明显增 $m, m NO_3^-$ 位于 1 047 cm⁻¹ 处的拉曼信号超出测 试量程。在检测溶液中 U(VI)的浓度时,只需关 注 870 cm⁻¹ 处 UO₂²⁺ 的拉曼信号,NO₃⁻ 拉曼特征 峰饱和并不影响 U(VI)的定量检测。在图 2 所示 的检测中,拉曼光谱仪的积分时间为4s,是以最 高浓度的溶液(450.0 g/L U)870 cm⁻¹ 处拉曼信 号不超出最大量程而定。对于较低浓度硝酸铀酰 溶液,增加仪器的积分时间至 60 s,采集一系列不 同铀浓度溶液的拉曼光谱,结果示于图 4。与高 浓度铀相比,拉曼光谱不够平滑,呈现锯齿状,这 是由于仪器分辨率的局限造成的,但仍可见光谱 强度随着 UO2⁺ 浓度的增高而增高。将 UO2⁺ 浓 度对 870 cm^{-1} 处的拉曼信号强度作图,如图5所

图 3 不同积分时间对硝酸铀酰溶液拉曼光谱的影响 Fig. 3 Effect of integral time on the Raman spectra of UO₂ (NO₃)₂ solution

示,r²=0.9993,线性关系良好,该实验条件下的 检出限为0.2g/L,低于积分时间为4s条件下的 检出限,说明可通过增加积分时间达到定量检测 较低浓度硝酸铀酰溶液的目的。

2.1.4 HNO₃ 对硝酸铀酰定量的影响 Purex 后处理工艺流程为 HNO₃ 体系,而 UO₂²⁺ 与 NO₃⁻ 可形成一系列络合物,如 UO₂NO₃⁺、UO₂(NO₃)₂、 [UO₂(NO₃)₃]⁻等,从而影响UO₂²⁺的浓度。为了 研究 HNO₃ 浓度对铀定量的影响,配制一系列铀 浓度相同而硝酸浓度不同的溶液,铀质量浓度为 70.0 g/L,硝酸浓度分别为 0.5、1.0、2.0、3.0、 4.0 mol/L,采集每种溶液的拉曼光谱。1 047 cm⁻¹ 处 NO₃⁻ 的拉曼谱峰随着 HNO₃ 浓度的增高而增 高,而 870 cm⁻¹处 UO₂²⁺ 的拉曼谱峰强度并未发 生变化(见图 6),说明 UO₂²⁺ 与 NO₃⁻ 的络合并不 影响其₄对称伸缩振动峰的位置及高度,870 cm⁻¹ 处的拉曼谱峰对 UO_2^{2+} 与 NO_3^- 的络合不敏感。 每种溶液平行测 6 次拉曼光谱,用标准曲线计算 每次测定的铀浓度,结果列于表 2。由表 2 结果 看出,5 种溶液的平均铀质量浓度分别为 69.6、 70.7、70.5、70.3、69.3 g/L,与实际值的相对误差 分别为-0.6%、1.0%、0.7%、0.4%、-1.0%, 6 次检测的相对标准偏差 s_r 分别为 0.5%、 0.4%、1.4%、0.7%、0.4%,说明该方法分析水相 中的 UO_3^{2+} 具有良好的准确度与精密度。

图 6 不同 HNO₃ 浓度的铀溶液拉曼光谱 Fig. 6 Raman spectra of uranyl nitrate solutions with different concentrations of HNO₃

2.1.5 共存离子对硝酸铀酰定量的影响 除了 U(\I)以外,Purex 后处理工艺流程水相体系中 主要含有 Pu(\IV)、Pu(\II)、Np(\V)、Np(\V)、Np(\II) 与大量裂变产物等。Pu(\IV)、Np(\V)、Np(\V)不具有拉曼活 性,而 Pu(\II)、Np(\V)、Np(\II)的拉曼位移特征峰 距 U(\II)较远,不会影响 U(\II)的检测^[13-14]。裂变 产物组成复杂,在1A槽共去污循环中含量尤其

表 2 不同 HNO₃ 浓度下拉曼光谱测定水相硝酸铀酰浓度的准确度及精密度

Fig. 2	Determination	accuracy and	precision of	uranyl	nitrate in aqueous	solutions	under	different	HNO_3	concentrations
--------	---------------	--------------	--------------	--------	--------------------	-----------	-------	-----------	---------	----------------

Ne			$ ho(\mathrm{U})/(\mathrm{g}\cdot\mathrm{L}^{-1})$		
110.	0.5 mol/L	1.0 mol/L	2.0 mol/L	3.0 mol/L	4.0 mol/L
1	70.4	70.0	68.8	70.4	69.5
2	69.4	70.8	69.8	69.4	69.1
3	69.9	70.8	70.9	70.8	69.2
4	69.3	70.6	71.7	69.9	69.8
5	69.4	71.3	71.2	70.7	69.1
6	69.2	70.5	70.6	70.4	69.1
平均值(Average value)	69.6	70.7	70.5	70.3	69.3
$s_r / \frac{0}{2}$	0.5	0.4	1.4	0.7	0.4
相对误差(Relative error)/%	-0.6	1.0	0.7	0.4	-1.0

31

多,故应研究裂变产物的存在是否会对硝酸铀酰 的定量检测产生影响。使用配制的模拟混合裂变 产物溶液检验其对 U(II)定量测量的影响,结果 示于图 7。模拟裂变产物溶液为 HNO₃ 体系,故 其拉曼光谱中含有 NO3 的 v1 对称伸缩振动谱峰 (1047 cm⁻¹),以及1180 cm⁻¹的拉曼特征峰(即 模拟裂变产物溶液的拉曼信号),而在 UO₂²⁺ 的 μ 对称伸缩振动谱峰处(870 cm⁻¹)没有拉曼信号。 10 g/L 硝酸铀酰溶液与模拟裂变产物溶液的混 合溶液为两种拉曼信号的叠加,由于 UO2⁺ 浓度 保持不变,870 cm⁻¹处拉曼信号强度不会发生改 变(见图7中箭头所示),说明共存离子的存在不 会对铀的信号强度带来影响。为了进一步验证共 存离子对硝酸铀酰定量检测的影响,进行了重加 回收实验,结果列于表3和表4。由表3、4结果 看出,铀质量浓度分别为 220.0g/L 和 10.0g/L, 选择不同加入量分别进行实验时,重加回收率均 在 98.3%~101.6%之间,相对标准偏差分别为 0.6%和1.1%(n=6),进一步说明了共存离子不 会对硝酸铀酰的定量造成影响。因此该方法适用 范围较广,只要U(VI)浓度在上述线性范围以内, 均可使用拉曼光谱法进行检测,而无需预先进行 分离。

2.2 有机相中硝酸铀酰的拉曼定量分析

2.2.1 有机相中硝酸铀酰的拉曼光谱 与硝酸 铀酰水溶液相比,硝酸铀酰有机溶液(溶剂为 30%TBP/煤油)的拉曼光谱要复杂很多,这是由 于TBP和煤油也是拉曼活性的,硝酸铀酰有机溶 液的拉曼光谱除了硝酸铀酰的拉曼峰外,还包含 TBP和煤油的拉曼特征峰。图 8 为 30%TBP/煤 油和硝酸铀酰有机溶液的拉曼光谱对比,硝酸铀 酰有机溶液主要多出两个拉曼谱峰,分别为位于 860 cm⁻¹的 $UO_2^{2+}\nu_1$ 对称伸缩振动谱峰和位于 $1\,030$ cm⁻¹的 $NO_3^{-}\nu_1$ 对称伸缩振动谱峰。

表 3 高浓度(220.0g/L)硝酸铀酰样品的重加回收实验 Fig. 3 Results of recovery of adding weighed amounts of uranyl nitrate sample with high concentration (220.0g/L)

待测样品 (Samples)	加入量 (Added mass)/g	回收量 (Measured mass)/g	回收率 (Recovery)/ %	<i>s</i> _r / ⁰ ⁄ ₀
1	0.5678	0.5713	100.6	
2	0.5678	0.5635	99.2	
3	0.5678	0.5631	99.2	0.6
4	0.5678	0.5683	100.1	
5	0.5678	0.5705	100.5	
6	0.5678	0.5695	100.3	

表 4 低浓度(10.0g/L)硝酸铀酰样品的重加回收实验 Fig. 4 Results of recovery of adding weighed amounts of uranyl nitrate sample with low concentration(10.0g/L)

待测样品 (Samples)	加入量 (Added mass)/g	回收量 (Measured mass)/g	回收率 (Recovery)/ %	<i>s</i> _r / %
1	10.88	10.92	100.4	
2	10.88	10.83	99.6	
3	10.88	11.05	101.6	1.1
4	10.88	10.93	100.6	
5	10.88	10.86	99.8	
6	10.88	10.69	98.3	

2.2.2 硝酸铀酰在有机相与水相中拉曼光谱的 区别 硝酸铀酰水溶液和有机溶液的拉曼光谱, 除了后者多出溶剂的拉曼光谱外, UO_2^{2+} 和 NO_3^{-} 的 ν_1 对称伸缩振动谱峰位置发生改变, UO_2^{2+} 由 870 cm⁻¹移至860 cm⁻¹处, 而 NO_3^{-} 由1047 cm⁻¹ 移至1030 cm⁻¹处(图9)。这是因为在水相和有 机相中, UO_2^{2+} 和 NO_3^{-} 所处的化学环境不同,导 致拉曼位移发生轻微的移动。

Fig. 9 Raman spectra of uranyl nitrate in aqueous solution and 30%TBP/OK

2.2.3 拉曼光谱测定有机相中硝酸铀酰的标准 曲线 配制一系列硝酸浓度相同而铀浓度不同的 有机相溶液(铀质量浓度范围 5.0~107.0 g/L), 采集其拉曼光谱,结果示于图 10。由图 10 可以 看出,与水溶液中情况类似,随着有机相中硝酸铀 酰浓度的提高,860 cm⁻¹处 UO₂²⁺ 的拉曼信号增 强;同时由于体系中 NO₃⁻⁻ 浓度的增加,其位于

1 030 cm⁻¹处的拉曼谱峰也增高。有机相中硝酸 铀酰的浓度可以由 860 cm⁻¹处的拉曼信号强度进 行定量,拉曼光谱强度与硝酸铀酰浓度呈现良好的 线性关系(图 11),线性范围为 5.0~107.0 g/L,其 标准曲线为 y=500.7x+6796,线性相关系数 $r^2=$ 0.999 0。空白实验为同等硝酸浓度的有机溶液的 拉曼光谱实验,光谱条件与绘制工作曲线时相同。 根据空白实验结果的 3 倍标准偏差,计算得检出限 为 0.7 g/L。

2.2.4 HNO。对硝酸铀酰定量的影响 有机相体系的成分构成比水相体系简单很多,因为大部分裂片元素无法被 TBP 萃取,即使被萃取浓度也很低,故无需考虑裂片元素对硝酸铀酰定量分析的影响。在后处理流程中的不同工艺点,有机相中的 HNO。浓度各不相同,需要研究 HNO。浓度是否会对硝酸铀酰的定量检测带来影响。图 12 是含有不同浓度 HNO。的 30% TBP/煤油的拉曼

图 12 HNO3 对 30% TBP/煤油拉曼光谱的影响 Fig. 12 Influence of HNO3 on Raman spectra of 30% TBP/OK

光谱。由图 12 可以看出,3 条光谱曲线基本重 合,只是在 920~960 cm⁻¹、1 160~1 260 cm⁻¹范 围内存在差异,随着体系中 HNO₃ 浓度的升高, 在上述两区间内的拉曼光谱信号增强。3 条光谱 均没有 NO₃⁻ 位于 1 030 cm⁻¹处的拉曼特征峰,这 是因为在有机相中,UO₂(NO₃)₂和 HNO₃ 中的 NO₃⁻ 均不是离解状态,两种 NO₃⁻ 所处的化学环 境不同,由于与外界的相互作用不同,导致拉曼位 移不同。有机体系中 HNO₃ 与 TBP 形成溶剂化 物,硝酸铀酰以中性络合物的形式被 TBP 萃取。 而水相中 UO₂(NO₃)₂和 HNO₃ 均可离解出 NO₃⁻,两者在溶液中所处的化学环境相同,故拉 曼位移均在 1 047 cm⁻¹处。

在 Purex 后处理体系的有机相中,由于铀等元 素的萃取,自由 TBP 浓度下降,因此有机相中的 HNO₃ 浓度不会很高。采集铀浓度相同(50.0 g/L) 而 HNO₃ 浓度不同的 4 种有机相溶液的拉曼光谱 (HNO₃ 浓度分别为 0.05、0.10、0.20、0.30 mol/L), 结果示于图 13。由图 13 可知,HNO₃ 浓度的改 变只引起了 920~960 cm⁻¹、1 160~1260 cm⁻¹范 围内拉曼光谱的轻微变化,并不影响860 cm⁻¹处 UO_2^{2+} 的拉曼信号强度,即不影响铀浓度的定量 检测。每种溶液平行检测 6次,由标准曲线计算 得到其对应的铀浓度,结果列于表 5。4种溶液中 铀的 平均质量浓度分别为 49.5、50.2、50.7、 50.2 g/L,6次测量的 s_r均小于 1%,相对误差均 小于 1.4%,说明该方法测定有机相中 U(VI)的 准确性及重现性良好。

	$ ho(\mathrm{U})/(\mathrm{g} \boldsymbol{\cdot} \mathrm{L}^{-1})$					
No.	0.05 mol/L	0.10 mol/L	0.20 mol/L	0.30 mol/L		
1	49.0	51.1	51.0	50.4		
2	49.1	49.7	51.0	50.1		
3	49.4	50.1	50.5	50.1		
4	50.0	50.1	50.6	50.3		
5	49.8	49.9	51.0	50.4		
6	49.8	50.3	50.3	49.9		
平均值(Average value)	49.5	50.2	50.7	50.2		
$s_r / \frac{1}{2}$	0.8	1.0	0.6	0.4		
相对误差(Relative error)/%	-1.0	0.4	1.4	0.4		

表 5 拉曼光谱测定不同 HNO₃ 浓度下有机相硝酸铀酰浓度的准确度及精密度 Fig. 5 Determination accuracy and precision of uranyl nitrate in 30% TBP/OK under different HNO₃ concentrations

3 结 论

(1) 建立了用拉曼光纤光谱仪定量分析水相 和有机相中常量 U(VI)的方法。水相体系的线性 范围为 5.0~450.0 g/L,检出限为 1.2 g/L,增加 仪器的积分时间可以使检出限降至 0.2 g/L。有 机相体系的线性范围为 5.0~107.0 g/L,检出限

为 0.7 g/L。

(2)体系中共存物质的存在不会影响 U(W)的检测,因此分析时无需预分离。测试时间为几秒至几十秒(由拉曼光谱仪积分时间决定),方法快速简便且准确度高,分析方法绿色无损、不会产生废液。拉曼光纤光谱仪体积小巧、便于携带,通过增加光纤长度可以实现远程监控,可用于手套

箱及热室中 U(Ⅱ)的定量检测,有望进一步用于 在线实时监测料液中的 U(Ⅱ)浓度。

参考文献:

- Wahlberg J S, Skinner D L, Jr Rader L F. Volumetric determination of uranium [J]. Anal Chem, 1957, 29(6): 954-957.
- [2] Chadwick P H, McGowan I R. Determination of plutonium and uranium in mixed oxide fuels by sequential redox titration[J]. Talanta, 1972, 19: 1335-1348.
- [3] Joshi J M, Pathak P N, Pandey A K, et al. Optode for uranium(VI) determination in aqueous medium[J]. Talanta, 2008, 76: 60-65.
- [4] Yan R, Lu Y, Song G L, et al. Spectrophotometric determination of uranium in natural water with the new chromogenic reagent p-carboxychloro-pho-sphonazo[J]. Anal Chim Acta, 1995, 314(1-2): 95.
- [5] 董焱武,由文职,周其荣,等.流线分析[G]1977年流
 线分析会议资料选编.北京:原子能出版社,1978:
 147.
- [6] 宋游,郑维明,刘桂娇,等.L_Ⅲ吸收边法测定台架试 验中的铀[J].原子能科学技术,2014,48(8):1351-1355.
- [7] 张丽华,郭魁生,刘焕良,等.后处理工艺中铀的快速分析[J].核化学与放射化学,2004,26(4):230-233.
- \cite{B} Basile L J, Sullivan J C, Ferraro J R, et al. The

Raman scattering of uranyl and transuranium V , VI and VI ions[J]. Appl Spectroscopy, 1974, 28:142-145.

- [9] Nguyen-Trung C, Begun G M, Palmer D A. Aqueous uranium complexes 2: Raman-spectroscopic study of the complex-formation of the dioxouranium (VI) ion with a variety of inorganic and organic lig-ands[J]. Inorg Chem, 1992, 31: 5280-5287.
- [10] Toshiyuki Fujii, Kenso Fujiwara, Hajimu Yamana, et al. Raman spectroscopic determination of formation constant of uranyl hydrolysis species (UO₂)₂ (OH)²⁺₂ [J]. J Alloys Compounds, 2001, 323-324; 859-863.
- [11] Gantner E, Steinert D. Applications of laser Raman spectrometry in process control, using optical fibers[J]. Fresenius' J Anal Chem, 1990, 338: 2-8.
- [12] 李定明,王玲,张丽华,等.近红外光谱法直接测定 后处理水相料液中硝酸浓度[J].核化学与放射化 学,2013,35(2):96-105.
- [13] Madic C, Begun G M, Hobart D E, et al. Raman spectroscopy of neptunyl and plutonyl ions in aqueous solution: hydrolysis of Np(V]) and Pu(V]) and disproportionation of Pu(V)[J]. Inorg Chem, 1984, 23: 1914-1921.
- [14] Madic C, Hobart D E, Begun G M. Raman spectrometric studies of actinide(V) and -(VI) complexes in aqueous sodium carbonate solution and of solid sodium actinide(V) carbonate compounds[J]. Inorg Chem, 1983, 22: 1494-1503.