高温熔盐中氧化物乏燃料的电化学还原研究进展

程仲平,何 辉,林如山,贾艳虹,肖益群,叶国安*

中国原子能科学研究院 放射化学研究所,北京 102413

摘要:干法后处理流程可应用于快堆乏燃料后处理。由美国开发的熔盐电解精炼流程是目前最具应用前景的 干法后处理流程之一。为了将电解精炼流程应用于氧化物乏燃料后处理,需要将氧化物乏燃料转化为金属。 目前电化学还原是应用最广的氧化物乏燃料还原方法,但是该过程仍然存在亟待解决的关键科学与技术问 题。本文针对氧化物乏燃料电化学还原研究进展进行综合阐述,主要包括过程简介、研究现状及电化学还原 机理等几个方面。

关键词:氧化物乏燃料;电解精炼流程;电化学还原机理;电化学还原速率及效率 中图分类号:TL241.2 文献标志码:A 文章编号:0253-9950(2018)06-0349-10 doi:10.7538/hhx.2018.YX.2018012

Research Progress on Spent Oxide Fuels by Electrochemical Reduction in Molten Salts

CHENG Zhong-ping, HE Hui, LIN Ru-shan, JIA Yan-hong, XIAO Yi-qun, YE Guo-an*

China Institute of Atomic Energy, P. O. Box 275(26), Beijing 102413, China

Abstract: Pyrometallurgical process can be applied to the reprocessing of fast reactor spent fuels. The molten salt electrorefining process developed by Argonne National Laboratory (ANL) is currently one of the most promising pyrometallurgical process. In order to apply the electrorefining process to the reprocessing of spent oxide fuels, it is necessary to convert spent oxide fuels into metals. At present, the electrochemical reduction technique is the most widely used to reduce the spent oxide fuels, while there are still key scientific and technical problems to be solved in this process. This review is focused on the research progress concerning the electrochemical reduction of spent oxide fuels, and is involved in the following main parts: process introduction, current research status and electrochemical reduction mechanism.

Key words: spent oxide fuels; the electrorefining process; electrochemical reduction mechanism; electrochemical reduction rate and efficiency

收稿日期:2018-02-05;修订日期:2018-05-09

作者简介:程仲平(1991—),男,江西抚州临川人,博士研究生,核燃料循环与材料专业,E-mail: czp20160526@sina.com *通信联系人:叶国安(1964—),男,安徽芜湖南陵人,博士,研究员,核燃料循环与材料专业,E-mail: yeguoan@ciae.ac.cn 网络出版时间:2018-09-10;网络出版地址:http://kns.cnki.net/kcms/detail/11.2045.TL.20180907.1713.002.html

快中子增殖反应堆(简称快堆)是世界上第四 代先进核能系统的首选堆型之一,它可以提高铀 资源的利用率,也可使长寿命核废料产生量大大 降低,实现放射性废物最小化^[1-4]。基于快堆乏燃 料高燃耗、高辐照、高 Pu 含量等特点,传统的基 于水法后处理的 PUREX (plutonium uranium extraction)流程难以满足先进核燃料循环的需 要^[5-7]。干法后处理(或称高温化学后处理、高温 冶金过程)是一种高温处理过程,因可处理燃耗 深、冷却时间短的乏燃料,并且具有耐高温、辐照 稳定性好、低临界风险、放射性废物少等优点^[8-10] 而备受关注。

干法后处理技术经过几十年发展,依据工艺 不同已开发了近百个流程[11-21]。典型的是以美国 为代表而开发的以金属燃料作为处理对象的电解 精炼流程[17,20]和以俄罗斯为代表而开发的以氧 化物燃料作为处理对象的氧化物电沉积流 程^[18,21]。为了将电解精炼流程推广应用于轻水 堆(light water reactor, LWR)氧化物乏燃料的 后处理,美国阿贡国家实验室(Argonne National Laboratory, ANL)借鉴 Fray 等提出的 Fray Farthing Chen(FFC)剑桥工艺^[22],成功地在 LiCl-1%(质量分数,下同)Li2O熔盐中将氧化铀电化学 还原为金属铀^[23]。然后结合电解精炼技术形成了 一个干法处理 LWR 氧化物乏燃料的流程---Pvrochemical Reduction Process (PYROX)流程。 此后,许多国家相继报道了首端使用 Li 还原或电 还原的乏燃料还原过程[24-35]。氧化物乏燃料含有 多种锕系氧化物混合物、稀土氧化物及易挥发的 裂变产物。它们经电化学还原成粗金属或合金, 再通过电解精炼技术分离出锕系金属,然后重新 进行元件制造在反应堆使用,从而实现了先进核 燃料循环。本文针对这一电化学还原过程进行相 关阐述,主要包括电化学还原过程简介,电化学还 原机理、电化学还原速率影响因素等研究现状几 个方面。

1 高温熔盐电化学还原过程简介

早前,Fray等提出了FFC剑桥工艺,可将固态氧化物电化学还原为金属并得到了广泛应用^[22,36-39]。ANL 仿照此法成功应用于固态 UO₂ 氧化物还原^[23],从而制得了金属 U。此后,爱达荷 国家实验室(Idaho National Laboratory, INL)^[40]和 日本电力工业中央研究所(Central Research Institute of Electric Power Industry, CRIEPI)^[27,31-32,34] 相继发展高温熔盐电化学还原过程,并应用于氧 化物乏燃料干法后处理首端过程。韩国原子能研 究院(Korea Atomic Energy Research Institute, KAERI)对 U₃O₈ 电化学还原过程进行广泛研 究^[25,28-30,33],并应用于韩国先进乏燃料试验工程 (Advanced Spent Fuel Conditioning Process, ACP)。印度也开始研究铀氧化物电化学还原过 程,并作为发展乏燃料干法后处理的一部分^[41]。

FFC 剑桥工艺原理是在 CaCl₂ 熔盐中以固 态氧化物为阴极,以石墨(或惰性材料)为阳极,在 电解温度低于金属熔点且电解电压低于熔盐分解 电压的条件下电解,金属氧化物被还原成金属或 合金,而氧以离子形态进入熔盐进而迁移至阳极 放电,生成气体(CO,CO2 或 O2)。该过程适用范 围广,可根据金属氧化物及熔盐电解质的性质加 以改进。对于锕系氧化物,尤其是乏燃料而言,它 们具有放射性,操作必须在惰性气氛的手套箱中 进行。CaCl₂熔点高(789℃)使得操作困难,且高 温对设备腐蚀严重。石墨阳极会污染熔盐及金属 产物,且产生 CO 有毒气体。由于存在上述问题, 所以氧化物乏燃料(主要是铀氧化物)电化学还原 过程选择低熔点 LiCl(603 ℃)作为熔盐电解质, 惰性 Pt 电极作为阳极。具体工艺过程如下:首先 将U_xO_y粉末压片成型,高温烧结后放置于多孔 不锈钢网篮作为阴极,以 Pt 作为阳极,在 650 ℃ LiCl-Li₂O熔盐体系中电解。电解过程中,固态 $U_x O_y$ 阴极中的氧离子化后迁出氧化物,通过 LiCl-Li₂O熔盐到达阳极放电产生O₂,阴极则形 成金属 U。图 1 为 U_xO_y 电化学还原示意图,其

基本反应如下:

阴极:
$$U_xO_y + 2ye^- \longrightarrow xU + yO^{2-}$$
(熔盐) (1)

$$Li^{+} (\underline{\beta} \pm) + e^{-} \longrightarrow Li(\underline{\beta} \pm)$$
 (2)

$$U_x O_y + 2y Li(熔盐) \longrightarrow$$

$$xU+2yLi^++yO^{2-}$$
(熔盐) (3)

阳极:
$$2O^{2-}(熔盐) = O_2 + 4e^{-}$$
 (4)

该过程具有如下优点:1)工艺过程简单; 2)反应温度低,能耗小;3)原料易得,电解质价 廉;4)绿色环保^[42]。但是,也存在氧化物阴极导 电性差、氧离子在固相氧化物中扩散慢及阳极腐 蚀等问题。

2 研究现状

目前,开展电化学还原氧化铀研究的机构主 要有欧盟联合研究中心的超铀元素研究所(Joint Research Centre-Institue for TransUranium Elements, JRC-ITU)、INL、CRIEPI和 KAREI等。 INL 在实验规模(60 g)轻水堆乏燃料的电化学还 原实验^[40]中,氧化物燃料成功地还原为金属,还 原产物中 U、Pu 和 Np 氧化物的还原率均高于 97%。CRIEPI使用未照射的燃料开展了 100 g 氧化物电化学还原和电解精炼实验^[43],10 h 内的 电流效率高于 62%,UO₂ 还原率高于 99%。后 期将着重研究 PuO₂、Am₂O₃、NpO₂和 MOX 燃 料的还原。KAERI 已开展了每批次 20 kg U₃O₈ 电化学还原研究^[44],U₃O₈ 还原率高于 99.0%。

随着不断发展,人们对电化学还原过程中实 验条件进行拓展研究^[24,29,33,35,44-45],涉及到阴阳极 选择、电化学还原速率影响因素及电化学还原机 理等方面,以下进行详细阐述。

2.1 阴极

在电化学还原过程中,氧化物本身作为阴极。 考虑到氧化物导电性差,需要寻求良好导电材料 与之结合成一体化阴极。研究报道一体化阴极制 备方法多样,大致可分为两类:一类是氧化物片体 加金属载体,如镍、钽等金属丝缠绕或阴极篮负载 氧化物片体;另一类是多孔容器负载氧化物粉末, 中间插一导电棒。如 KAERI 使用多孔氧化镁坩 埚负载 U₃O₈ 粉末,不锈钢棒置于粉末中间用于 导电^[33,44-45]。Herrmann^[46]设计了一种新型带 孔、烧结的不锈钢坩埚负载氧化物乏燃料作为阴 极,中间放置不锈钢棒用于导电。一些用于氧化 物电化学还原实验的阴极如图2所示[37,43,45-51]。 然而上述一体化阴极存在一些问题,如金属丝缠 绕氧化物片体不适合大规模实验、阴极篮与氧化 物片体接触面积小不利于电子良好导通、粉末与 金属棒接触面的导电性难以保证等问题。

在使用暂态电化学技术进行电化学行为分析 时,人们也报道过不同种类的氧化物阴极作为工 作电极^[46,52-54]。一种是通过氧化物压片或容器载 带粉末方式,如 Sakamura 等^[52]使用金属钽线缠 绕 UO₂ 片体作为阴极进行电化学行为测试。 Herrmann^[46]使用不锈钢坩埚负载铀氧化物粉末 (约 15 g)中间插一金属棒进行大电流循环伏安分 析。但是这种方法存在诸多缺陷,如难以保证金 属棒与氧化物片体接触面的良好导电性、大多氧 化物导电性差,难以保证所有活性物质均一参与 反应、反应电流过大,欧姆降严重等。另一种是使

(a) ——文献[47],(b) ——文献[48],(c) ——文献[43],(d) ——文献[49],(e) ——文献[37],(f) ——文献[43],(g) ——文献[50-51]
 图 2 多种氧化物阴极示意图^[37,43,47-51]
 Fig. 2 Schematic diagram of many oxide cathodes^[37,43,47-51]

用粉末微电极^[53]。该电极具有如下优点:1)粉 末载量小,电流小,引起的液相浓度极化和欧姆极 化可忽略不计;2)熔盐电压降可忽略;3)双层电 容充电电流影响小;4)粉末微电极粉层部分具有 多孔性质,表观电流密度显著提高。Peng 等^[54] 报道了一种新型金属通腔电极,该电极可用于微 量氧化物的电化学行为研究。

2.2 阳极

在电化学还原过程中,O²⁻经由氧化物扩散 至熔盐中,最终在阳极上放电释放出 O₂。因此, 选择合适的阳极材料成为关键问题之一。该阳 极材料需要满足以下要求^[55]:1)抵抗 Cl₂及 O^{2-} 的腐蚀;2) 具有高电流密度以致 O^{2-} 放电; 3) 具有良好的机械及热稳定性;4) 成本低、无 污染。据文献^[41,52,56]报道, Pt 作为一种惰性电 极,广泛应用于 LiCl-Li₂O 熔盐体系中铀氧化物 的电解还原。然而,使用 Pt 作阳极也存在一些 问题。除了价格昂贵外, Pt 阳极在反应过程中 会逐渐消耗,因其表面会生成 Li₂ PtO₃。该物质 不能作为 Pt 阳极表面的保护层,反而会随着反 应的进行逐渐脱落。近来,研究者们报道了多 种 Pt 阳极替代材料应用于 LiCl-Li₂O 熔盐体系 中。其一是导电陶瓷材料[57],包括金属氧化物 (如 La_{0,33} Sr_{0,67} MnO₃、NiFe₂O₄)和氮化物(如 TiN)。该类材料作为阳极在小规模电解还原实 验中展现了一定潜力,但在大规模实验中存在导 电差、机械稳定性及化学稳定性差等问题。其二 是碳材料包括石墨和玻碳等^[58],在该电极上 O²⁻ 与C反应形成 CO/CO₂ 气体。缺陷是会生成 Li₂CO₃及碳渣,污染熔盐。其三是金属材料,包 括W、液态Sb及贵金属Rh、Pd、Ir及Au等。该 类材料具有很好的机械稳定性、便于操作,但耐腐 蚀性差。综上所述,目前所报道适用于 LiCl-Li₂O 熔盐体系的阳极材料均存在一定缺陷,良好的惰 性阳极还需继续探索。

2.3 电化学还原速率影响因素

图 3 所示为电化学还原实验装置示意图^[30]。 电解槽由坩埚、熔盐和三电极体系(阴极、阳极和 参比电极)构成。LiCl-Li₂O 熔盐置于刚玉坩埚在 650 ℃下熔解后,氧化物乏燃料片体置于阴极篮 插入熔盐中,Pt 阳极常用阳极套管包裹以提供 O₂ 释放通道。氧化物乏燃料电解还原时,还原速 率快慢很大程度上取决于 O²⁻经由氧化物内部扩 散至熔盐进而扩散至阳极这一过程。该扩散可能 受到以下因素影响:1)氧化物形状;2)阴极容纳 材料;3)阳极套管;4)电极面积及阴阳极间距。

图 3 电化学还原实验装置示意图^[30] Fig. 3 Schematic diagram of electrochemical reduction experiment devices^[30]

2.3.1 氧化物片体形状 文献[59-60]报道, O²⁻在固态氧化物扩散远比在 LiCl-Li₂O 熔盐慢 的多,故固态氧化物 O²⁻扩散速率对电化学还原 速率有很大影响。扩散速率由氧化物本身特点决 定,如氧化物片体直径、密度及孔隙率等。Choi 课题组^[61]系统研究了八种不同直径和密度 UO₂ 在 LiCl-1.0% Li₂O 熔盐中的电解,如表 1 所示。 研究发现直径及密度小的 UO₂ 电化学还原速率 更快,而且 UO₂ 直径比密度影响大。其他课题 组^[60,62-63]也发现了类似的情况。该发现为设计小 体积阴极篮提供了帮助。

表1 バ	.种不同密度和直径	的 UO2	片体形状[61]
------	-----------	-------	----------

Table 1 Eight UO_2 pellets of different density and diameter^[61]

形状	密度/(g•cm ⁻³)	直径(高度)/mm	
圆柱形	6.02	6(8)	
	6.57	9(8)	
	7.67	8(8)	
	8.76	8(7)	
	>10.40	10(12)	
块状	>10.40	4~9(2~3)	
大颗粒	>10.40	1~4(2~3)	
小颗粒	4.38	1~3(1)	

2.3.2 阴极容纳材料 多孔阴极容纳材料可允 许O²⁻从氧化物扩散至熔盐,但是其孔径应小于 氧化物颗粒尺寸,防止氧化物掉落至熔盐中。 Jeong 课题组^[44]使用多孔 MgO 坩埚作为阴极篮 负载 U₃O₈ 粉末进行电解还原实验,可成功获得 金属 U,但缺陷在于多孔 MgO 坩埚机械稳定性 差。Herrmann 等^[64] 研究了不锈钢(stainless steel, SS)和烧结 SS 网篮作为阴极容纳材料负载 氧化物,在LiCl-Li₂O熔盐中进行电化学还原氧 化物实验,发现 SS 和烧结 SS 网篮负载氧化物的 还原率分别为 43%~70% 和 8%~33%。另外, Choi 等^[65]也测试了四种不同类型的 SS 网篮负 载氧化物进行电化学还原(图4),结果显示不同 的 SS 网篮孔径和层数没有显著提高氧化物还原 速率,原因在于这四种网篮有相同的孔面积(30%~ 34%),足以使氧离子扩散。

图 4 四种不同类型的 SS 网篮^[65] Fig. 4 Schematic diagram of four SS containers^[65]

2.3.3 阳极套管 在使用 Pt 作阳极时,O²⁻在 阳极上放电形成 O₂,可能会腐蚀阳极及还原装 置。因此,需使用套管保护 Pt 阳极,减小阳极腐 蚀程度(图 5)。传统阳极使用无孔陶瓷套管包裹 时(图 5(a)),O²⁻只能从套管底部扩散至阳极表

for electrochemical reduction process^[66]

面,这将导致电流密度下降并增加了还原时间。 而使用多孔套管时(图 5(b)),O²⁻可从侧壁或底 部扩散至阳极表面从而提高了电流密度并缩短了 还原时间^[66]。Choi等^[66]测试了六种不同类型阳 极套管(图 6)对电解还原的影响,结果发现使用 多孔阳极套管电解的电流密度(0.76~0.79 A/ cm²)明显大于无孔阳极套管(0.34~0.40 A/ cm²),而使用不同尺寸的 SS 多孔阳极套管电解 的电流密度相似。

图 6 六种不同类型的阳极套管示意图^[66] Fig. 6 Schematic diagram of six anode shrouds^[66]

2.3.4 电极面积及阴阳极间距 众所周知,电化 学还原过程电流密度也受电极面积控制^[67-68]。电 极面积越大,可施加电流越大。Choi 等^[69]研究了 阴/阳极表面积比值对 LiCl-Li₂O 熔盐电解还原电 流密度的影响,发现低阴/阳极表面积比值可能会 增加电流密度。该课题组使用阴/阳极表面积比值 为 2.6 的装置成功地进行了 17 kg UO₂ 电解还原。 另外,据报道^[70]氧化物电化学还原也受到阴阳极 间距的影响。Choi 课题组^[70]测试了不同阴阳极间 距(1.3、2.3、3.2、3.7、5.8 cm)进行恒电压电解实 验,结果表明电流随着阴阳极间距的减小而增大。

综上分析,直径及密度小的氧化物片体、具有足 够孔面积 SS 网篮、多孔阳极套管、低阴阳极比表面 及小阴阳极间距均能提高氧化物电化学还原速率。

2.4 电化学还原机理

常见的 U_xO_y 电化学还原过程包括氧离子 化^[52]和金属 Li 电催化还原^[45]两种机理。氧离子 化机理反应式如式(5)所示:

阴极反应: U_xO_y + 2ye⁻ → xU + yO²⁻ (5) 在该机理中,所施加的阴极电势能够将 U—O 键 断裂,O 被离子化形成 O²⁻ 溶于熔盐中,然后迁移 至 Pt 阳极氧化析出 O₂。熔盐中由 Li₂O 引入的 溶解 O 会促进 O²⁻ 的迁移。Sakamura 等^[52]分别 研究了钽和 UO₂ 电极在 650 ℃的 LiCl 熔盐中的 循环伏安曲线(CV)和极化曲线,如图 7 所示。结 果表明电位在0~0.15 V(vs. Li⁺/Li)内,UO₂可

Fig. 7 In LiCl at 650 $^\circ\!\!C$, CV of tantalum(a) and UO_2 electrode(b) and

polarization curves of UO_2 and tantalum electrodes(c)^[52]

直接电脱氧还原成金属 U 而无金属 Li 沉积。故 推测该还原过程机理为氧离子化机理。

金属 Li 电催化还原机理反应式示于式(6)-(9):

$$yLi_2O \longrightarrow 2yLi^+ + yO^{2-}$$
(6)

$$2yLi^{+} + 2ye^{-} \longrightarrow 2yLi \tag{7}$$

$$U_x O_y + 2y Li \longrightarrow x U + y Li_2 O$$
 (8)

阴极反应: $U_xO_y + 2ye^- \longrightarrow xU + yO^{2-}(9)$ 在该机理中,熔盐中熔解的 Li₂O 在 U_xO_y 阴极上 电解沉积出金属 Li,金属 Li 再与 U_xO_y 反应生成 金属 U 和 Li₂O。Jeong 等^[56]分别进行了 U₃O₈ 还原产物的 XRD 分析、空白 Ni 电极在 LiCl-1.0%Li₂O 熔盐中 CV 测试及 U₃O₈ 电解过程中 阴极电位随时间的变化,如图 8 所示。由图 8 可 知,电解 U₃O₈ 成功得到金属 U,而且电解过程中 阴极电位稳定在 - 0.8 V(vs. LiPb),比金属 Li 析出电位 - 0.63 V(vs. LiPb)更负。故推断在电 解 U₃O₈ 过程中,金属 Li 先析出然后再与 U₃O₈ 发生氧化还原反应生成金属 U。

然而,有些人^[45]不赞同上述两种机理。一方 面,他们认为金属 Li 电催化还原机理中,强还原 剂金属 Li 以纯金属形式沉积在金属氧化物电极 上,这在热力学上是受阻的。其次,许多研究阴极 极化的学者们发现氧化物还原电位比金属 Li 沉 积电位更正[44,71]。另一方面,他们认为氧离子化 机理中,O²⁻的形成是一个热力学上有利而动力 学上受阻的反应。这是因为由 M-O 键断裂形 成 O²⁻ 的过程取决于氧化物电极的导电性、施加 于电极上的电位、反应界面电解质、氧在固态电极 上扩散难易程度等诸多因素。氧离子在固态氧化 物中的扩散比在熔融电解质中的扩散缓慢的多, 故前者在电化学还原中是一个决速步骤。这意味 着通过氧离子化机理去除氧的速率非常缓慢,这 样的过程仅仅只在低电流密度下发生。因此,Seo 等^[45]提出了一种新型机理,即金属 Li 离子先插 入U_xO_y形成铀酸锂Li_zU_xO_y,继而电还原得到 金属 U(见图 9)。在该机理中,金属氧化物阴极 是一种活性电极,可以与熔盐中的Li⁺反应,不需

图 8 U₃O₈还原产物 XRD 图(a)、Ni 电极在 LiCl-1.0%Li₂O 熔盐中 CV 图(b)和 U₃O₈ 电解过程中阴极电位随时间的变化(c)^[56] Fig. 8 X-ray diffraction patterns of reduced U₃O₈(a), CV of nickel wire electrode in LiCl-1.0%Li₂O molten salts(b) and cathode potential-time plots obtained during electrolysis of U₃O₈(c)^[56]

图 9 LiCl 熔盐中 Li₂O 浓度及槽压随时间的变化(a)和 0.4 A、反应 25 h 后产物的 XRD 图(b)^[45] Fig. 9 Changes of Li₂O concentration and cell voltage in LiCl molten salt with time(a) and XRD patterns of product after 25 h reaction time in 0.4 A(b)^[45]

要考虑上述电流密度局限的因素。早先,也有 人^[47,63,72-73]报道在 FFC 工艺过程中会形成中间 产物钙二元复合物(Ca_xM_xO_y)。这种新型机理可 用下式表示:

$$y \text{Li}_2 \text{O} \longrightarrow 2y \text{Li}^+ + y \text{O}^{2-}$$
(10)

$$U_x O_y + ze^- + zLi^+ \longrightarrow Li_z U_x O_y$$
 (11)

$$\operatorname{Li}_{z} \operatorname{U}_{x} \operatorname{O}_{y} + (2y - z) \operatorname{e}^{-} + (2y - z) \operatorname{Li}^{+} \longrightarrow$$
$$x \operatorname{U} + y \operatorname{Li}_{2} \operatorname{O}$$
(12)

阴极反应: $U_x O_y + 2ye^- \longrightarrow xU + yO^{2-}$ (13)

该机理也可称为氧离子化机理,但不同于反 应式(5)所描述的氧离子化机理,因为这种新型的 氧离子化机理考虑了金属氧化物电极在熔盐中的 反应活性。

3 结论与展望

通过高温熔盐电化学还原过程可将氧化物 乏燃料转化为金属或金属合金,进而采用熔盐 电解精炼后处理技术分离纯化,这对实现先进 闭式核燃料循环具有重要意义。国外对氧化物 乏燃料的电化学还原实验方面进行了一系列报 道,并提出了基于氧化物直接电还原及金属 Li 催化还原的动力学机理。但是目前的研究结果 表明,该氧化物电化学还原过程的工业化实施 仍有很长的路要走,诸多关键的科学和技术问 题亟待解决。实验方面,具有良好导电能力的 一体化阴极制备、耐腐蚀的惰性阳极、大规模生 产所需装置设计等均需要继续深入研究;理论 方面,电子在金属与金属氧化物间转移的化学 和电化学过程、氧的离子化及其在金属氧化物 相、孔隙内以及氧化物/熔盐界面的迁移、金属/ 金属氧化物/熔盐三相界域的发展变化及其特 殊的传质等仍需不断探索。

参考文献:

- [1] 徐銤. 第四代核能系统和快堆[C]//中国核学会 2007 年学术年会. 武汉:中国核学会, 2007.
- [2] 胡赟,徐銤.快堆金属燃料的发展[J].原子能科学技术,2008,42(9):810-815.
- [3] 徐銤.我国快堆技术发展的现状和前景[J].中国工 程科学,2008,10(1):70-76.
- [4] 徐銤.发展快堆技术,保证核能可持续发展[J].中国 核电,2012,5(2):98-101.
- [5] Nash K L, Lumetta G J. Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment[M]. UK: Woodhead Pub, 2011.
- [6] Yoo J H, Seo C S, Kim E H, et al. A conceptual study of pyroprocessing for recovering actinides from spent oxide fuels[J]. Nucl Eng Technol, 2008, 40(7): 581-592.
- [7] Chamelot P, Massot L, Hamel C, et al. Feasibility of the electrochemical way in molten fluorides for separating thorium and lanthanides and extracting lanthanides from the solvent[J]. J Nucl Mater, 2007, 360(1): 64-74.
- [8] 刘学刚.乏燃料干法后处理技术研究进展[J].核化 学与放射化学,2009,31(S0):35-44.
- [9] Bodansky D. Reprocessing spent nuclear fuel[J].Physics Today, 2006, 59(12): 80-81.
- [10] Grantham L F, Clark R G, Hoyt R C, et al. AIROX dry pyrochemical processing of oxide fuels[C] // ACS Symposium Series. 2009: 219-232.
- [11] Hoyt R C, Rhee B W. Review of the literature for dry reprocessing oxide, metal, and carbide fuel: the AIROX, RAHYD, and CARBOX pyrochemical processes[R]. Argonne National Lab, IL (United States), Rockwell International Corp, Canoga Park, CA (United States), Energy Systems Group, 1979: 1-226.
- [12] 欧阳应根. 干法后处理技术典型流程综述[R]. 北

京:中国原子能科学研究院,2002.

- [13] Uhlir J, Marecek M. R&D of pyrochemical reprocessing technologies dedicated to MSR fuel cycle[C]. Tokyo(Japan): Atomic Energy Society of Japan, 2005; 9-13.
- [14] Yamashita J, Fukasawa T, Hoshino K, et al. Development of advanced nuclear fuel cycle system "flexible fuel cycle initiative" for LWR and FBR[J].
 Energy Conversion and Management, 2006, 47 (17): 2801-2809.
- [15] Kani Y, Sasahira A, Hoshino K, et al. New reprocessing system for spent nuclear reactor fuel using fluoride volatility method[J]. J Fluorine Chem, 2009, 130(1): 74-82.
- [16] Hittner D, Carré F, Roualt J. Current status of hightemperature engineering research in France[C]. Nuclear Science Basic Studies in the Field of Hightemperature Engineering Second Information Exchange Meeting. Pairs France, 10-12 October, 2001.
- [17] Vavilov S, Kobayashi T, Myochin M. Principle and test experience of the RIAR's oxide pyro-process[J]. J Nucl Sci Technol (Tokyo, Jpn), 2004, 41(10): 1018-1025.
- [18] Skiba O V. Technology of pyroelectrochemical reprocessing and production of nuclear fuel[C] // Proc Int Conf on Future Nuclear Systems GLOBAL 93, Seattle, America, Sep. 2-17, 1993.
- [19] Ackerman J P, Johnson T R, Chow L S H, et al. Treatment of wastes in the IFR fuel cycle[J]. Progress in Nuclear Energy, 1997, 31(1-2): 141-154.
- [20] Willit J L, Miller W E, Battles J E. Electrorefining of uranium and plutonium: a literature review[J]. J Nucl Mater, 1992, 195(3): 229-249.
- [21] Atmore M G M, Macpherson R D. Electrowinning process: US Patent 4,030,989[P]. 1977-6-21.
- [22] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium molten calcium chloride[J]. Nature, 2000, 407: 361-364.
- [23] Gourishankar K, Redey L, Williamson M. Electrolytic reduction of metal oxides in molten salts[J]. Light Metals, 2002: 1075-1082.
- [24] Li S X, Hermann S D, Simpson M F, et al. Electrochemical reduction of uranium oxide fuel in a molten LiCl/Li₂O system[C]//Global 2003: Atoms for Prosperity: Updating Eisenhower's Global Vision for Nuclear Energy. US: Argonne National

Laboratory, 2003: 986-993.

- [25] Hur J M, Seo C S, Kim I S, et al. Development of electrochemical reduction technology for spent oxide fuels[R]. Yuseong-gu, Daejeon: Korea Atomic Energy Research Institute, 2003.
- [26] Park B H, Choi I K, Hur J M. Study on the reduction of rare earth oxides by lithium metal in a molten LiCl salt for a pyrochemical processing of spent fuels[J]. J Chem Eng Jpn, 2012, 45(11): 888-892.
- [27] Usami T, Inoue T. Development of an electrochemical reduction process of oxide fuels[C] // AIP Conference Proceedings. US: AIP, 2003, 673(1): 329-331.
- [28] Jeong S M, Park B H, Hur J M, et al. An experimental study on an electrochemical reduction of an oxide mixture in the advanced spent-fuel conditioning process[J]. Nuclear Engineering & Technology, 2010, 42(2): 183-192.
- [29] Sang M J, Hur J M, Hong S S, et al. An electrochemical reduction of uranium oxide in the advanced spent-fuel conditioning process[J]. Nucl Technol, 2010, 162(2): 184-191.
- [30] Choi E Y, Sang M J. Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology[J]. Progress in Natural Science, 2015, 25(6): 572-582.
- [31] Ohta H, Inoue T, Sakamura Y, et al. Pyroprocessing of light water reactor spent fuels based on an electrochemical reduction technology[J]. Nucl Technol, 2005, 150(2): 153-161.
- [32] Sakamura Y, Omori T, Inoue T. Application of electrochemical reduction to produce metal fuel material from actinide oxides[J]. Nucl Technol, 2008, 162(2): 169-178.
- [33] Hur J M, Seo C S, Hong S S, et al. Metallization of U₃O₈ via catalytic electrochemical reduction with Li₂O in LiCl molten salt[J]. React Kinet Catal Lett, 2003, 80(2): 217-222.
- [34] Kurata M, Inoue T, Serp J, et al. Electro-chemical reduction of MOX in LiCl[J]. J Nucl Mater, 2004, 328(2-3): 97-102.
- [35] Heung P B, Woo L I, Chung S S. Reduction of U₃O₈ in a high temperature molten LiCl-Li₂O salt[J]. J Chem Eng Jpn, 2008, 41(4): 294-297.
- [36] Barnett R, Kilby K T, Fray D J. Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge process[J]. Metall

Mater Trans B, 2009, 40(2): 150-157.

- [37] Schwandt C, Doughty G R, Fray D J. The FFC-Cambridge process for titanium metal winning[C]//
 Key Engineering Materials. Switzerland: Trans Tech Publications, 2010, 436: 13-25.
- [38] 汤胜博,李珍,彭晖,等. FFC 法制备海绵钛的 TiO₂ 电极行为研究[J]. 材料开发与应用,2009,24(4): 18-20.
- [39] Chen C. Contrastive studies on chromium metal preparation using FFC and SOM process[J]. Acta Metallurgica Sinica, 2008, 44(2): 145-149.
- [40] Herrmann S D, Li S X. Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining[J]. Nucl Technol, 2010, 171(3): 247-265.
- [41] Nagarajan K, Subramanian T, Reddy B P, et al. Current status of pyrochemical reprocessing research in India[J]. Nucl Technol, 2008, 162(2): 259-263.
- [42] 李伟,王英,唐仁衡,等. FFC 法制备金属钛研究进 展[J]. 材料研究与应用,2010,4(4):555-560.
- [43] Sakamura Y, Omori T. Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels[J]. Nucl Technol, 2010, 171(3): 266-275.
- [44] Jeong S M, Park S B, Hong S S, et al. Electrolytic production of metallic uranium from U₃O₈, in a 20 kg batch scale reactor[J]. J Radioanal Nucl Chem, 2006, 268(2): 349-356.
- [45] Seo C S, Park S B, Park B H, et al. Electrochemical study on the reduction mechanism of uranium oxide in a LiCl-Li₂O molten salt[J]. J Nucl Sci Technol (Tokyo, Jpn), 2006, 43(5): 587-595.
- [46] Herrmann S D. Electrolytic reduction of spent nuclear oxide fuel: effects of fuel form and cathode containment materials on bench-scale operations, INL/CON-07-12182[R]. US: Idaho National Laboratory, 2007: 758-762.
- [47] Schwandt C, Fray D J. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride[J]. Electrochim Acta, 2005, 51(1): 66-76.
- [48] Herrmann S D, Li S X, Simpson M F, et al. Electrolytic reduction of spent nuclear oxide fuel as part of an integral process to separate and recover actinides from fission products [J]. Sep Sci Technol, 2006, 41(10): 1965-1983.
- [49] Barnes L A, Williamson M A. Developments in

electrolytic reduction: effect of rare earth oxides[C]. International Pyroprocessing Research Conference 2008, Jeju Island, Republic of Korea, 2008.

- [50] Park S B, Park B H, Sang M J, et al. Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl-Li₂O molten salt[J]. J Radioanal Nucl Chem, 2006, 268 (3): 489-495.
- [51] Park B H, Lee H H, Choung W M, et al. Development of an electrochemical reduction process in ACPF[C]. International Pyroprocessing Research Conference 2008, Jeju Island, Republic of Korea, 2008.
- [52] Sakamura Y, Kurata M, Inoue T. Electrochemical reduction of UO₂ in molten CaCl₂ or LiCl[J]. Journal of the Electrochemical Society, 2006, 153(3): D31-D39.
- [53] 高佩. 熔盐电解固态化合物研究中的若干探索[D]. 武汉:武汉大学,2004.
- [54] Peng J, Li G, Chen H, et al. Cyclic voltammetry of ZrO₂ powder in the metallic cavity electrode in molten CaCl₂[J]. Journal of the Electrochemical Society, 2010, 157(1): F1-F9.
- [55] Sakamura Y, Iizuka M. Applicability of nickel ferrite anode to electrolytic reduction of metal oxides in LiCl-Li₂O melt at 923 K[J]. Electrochim Acta, 2016, 189: 74-82.
- [56] Jeong S M, Shin H S, Hong S S, et al. Electrochemical reduction behavior of U₃O₈ powder in a LiCl molten salt[J]. Electrochim Acta, 2010, 55 (5): 1749-1755.
- [57] Kim S W, Choi E Y, Park W, et al. A conductive oxide as an O₂ evolution anode for the electrolytic reduction of metal oxides[J]. Electrochem Commun, 2015, 55: 14-17.
- [58] Hur J M, Cha J S, Choi E Y. Can carbon be an anode for electrochemical reduction in a LiCl-Li₂O molten salt? [J]. Ecs Electrochemistry Letters, 2014, 3(10): E5-E7.
- [59] Gordo E, Chen G Z, Fray D J. Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts [J]. Electrochim Acta, 2004, 49(13): 2195-2208.
- [60] Phongikaroon S, Herrmann S D, Simpson M F. Diffusion model for electrolytic reduction of uranium oxides in a molten LiCl-Li₂O salt[J]. Nucl Technol, 2011, 174(1): 85-93.
- [61] Choi E Y, Kim J K, Im H S, et al. Effect of the

UO₂ form on the electrochemical reduction rate in a LiCl-Li₂O molten salt[J]. J Nucl Mater, 2013, 437 (1-3): 178-187.

- [62] Kar P, Evans J W. A model for the electrochemical reduction of metal oxides in molten salt electrolytes[J]. Electrochim Acta, 2008, 54(2): 835-843.
- [63] Mohandas K S, Fray D J. Electrochemical deoxidation of solid zirconium dioxide in molten calcium chloride[J]. Metall Mater Trans B, 2009, 40(5): 685-699.
- [64] Herrmann S D, Li S X, Serrano-Rodriguez B E. Observations of oxygen ion behavior in the lithiumbased electrolytic reduction of uranium oxide[R]. US: Idaho National Laboratory, 2009.
- [65] Choi E Y, Chan Y W, Kang D S, et al. Production of uranium metal via electrolytic reduction of uranium oxide in molten LiCl and salt distillation[J]. J Radioanal Nucl Chem, 2015, 304(2); 1-12.
- [66] Choi E Y, Chan Y W, Cha J S, et al. Electrochemical reduction of UO₂ in LiCl-Li₂O molten salt using porous and nonporous anode shrouds[J]. J Nucl Mater, 2014, 444(1-3): 261-269.
- [67] Park W, Kim J K, Hur J M, et al. Application of a boron doped diamond (BDD) electrode as an anode for the electrolytic reduction of UO₂ in Li₂O-LiCl-

KCl molten salt[J]. J Nucl Mater, 2013, 432(1-3): 175-181.

- [68] Chen H, Jin X, Yu L, et al. Influences of graphite anode area on electrolysis of solid metal oxides in molten salts[J]. J Solid State Electrochem, 2014, 18(12): 3317-3325.
- [69] Choi E Y, Hur J M, Choi I K, et al. Electrochemical reduction of porous 17 kg uranium oxide pellets by selection of an optimal cathode/anode surface area ratio[J]. J Nucl Mater, 2011, 418(1-3): 87-92.
- [70] Choi E Y, Im H S, Hur J M. Effect of the anodeto-cathode distance on the electrochemical reduction in a LiCl-Li₂O molten salt[J]. Journal of the Korean Electrochemical Society, 2013, 16(3): 138-144.
- [71] Herrmann S, Li S, Simpson M. Electrolytic reduction of spent light water reactor fuel bench-scale experiment results[J]. J Nucl Sci Technol (Tokyo, Jpn), 2007, 44(3): 361-367.
- [72] Chen G Z, Gordo E, Fray D J. Direct electrolytic preparation of chromium powder[J]. Metall Mater Trans B, 2004, 35(2): 223-233.
- [73] Yan X Y, Fray D J. Production of niobium powder by direct electrochemical reduction of solid Nb₂O₅, in a eutectic CaCl₂-NaCl melt[J]. Metall Mater Trans B, 2002, 33(5): 685-693.