黄钾铁矾的制备及其对 U(Ⅲ)的吸附

魏红福^{1,2},董发勤^{3,*},刘明学²,张 伟⁴,何 苗²,陈木兰²

中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900;
 西南科技大学 生命科学与工程学院,四川 绵阳 621010;
 固体废物处理与资源化教育部重点实验室,四川 绵阳 621010;
 4.西南科技大学 分析测试中心,四川 绵阳 621010

摘要:为了研究黄钾铁矾对溶液中 U(N)的吸附效果,采用一步水热法制备了黄钾铁矾,并利用 X 射线衍射(XRD)、拉曼光谱(Raman spectrum)、红外光谱(FTIR)和扫描电子显微镜(SEM)等技术表征了材料的理化特性。利用静态吸附实验研究了溶液 pH 值、离子强度、固液比和 U(N)初始浓度对吸附过程的影响。结果表明:溶液 pH 对于 U(N)的吸附产生较大的影响,而离子强度则对吸附过程没有影响,表明黄钾铁矾对 U(N)的吸附机理为内层表面络合。吸附在 100 min 内基本达平衡,且符合准二级动力学模型。吸附等温线符合 Langmuir 等温模型,表明 U(N)的吸附是单层吸附。在溶液的 pH=7.0、298 K 时,黄钾铁矾对U(N)的最大吸附量为 154 mg/g。最佳吸附条件为:固液比 1.0 g/L、U(N)初始浓度为 0.42 mmol/L、298 K、pH=7.0、达到平衡时的吸附量为(76.0±1.4) mg/g(n=3),去除率达到了(88.0±1.3)%(n=3)。以上结果表明,黄钾铁矾可以作为含 U(N)废水处理的潜在吸附材料。

中图分类号:TL941.1 文献标志码:A 文章编号:0253-9950(2021)04-0362-11 doi:10.7538/hhx.2021.YX.2020043

Preparation of Jarosite and Its Adsorption Characteristics for U(M)

WEI Hong-fu^{1, 2}, DONG Fa-qin^{3, *}, LIU Ming-xue², ZHANG Wei⁴, HE Miao², CHEN Mu-lan²

Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
 School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
 Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Mianyang 621010, China;
 Applytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China;

4. Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China

Abstract: In order to investigate the adsorption of $U(V_I)$ on jarosite from solution, jarosite was synthesized using a one-step hydrothermal method, and characterized by X-ray diffraction(XRD), Raman spectrum, infrared spectroscopy(FTIR) and scanning electron microscope(SEM) technologies in detail. The effects of solution pH, ionic strength, solid-to-liquid ratio and initial $U(V_I)$ concentration on the adsorption process were studied using batch adsorption methods. The results show that the removal of $U(V_I)$ is deeply dependent

收稿日期:2020-05-12;修订日期:2020-07-22

基金项目:国家重点基础研究发展计划(973计划)(2014CB846003);国家自然科学基金资助项目(41802037)

*通信联系人:董发勤

on pH but independent of ionic strength, indicating that the adsorption of U(V]) is dominant by inner surface complexation. The adsorption basically reaches equilibrium within 100 min, and is in accordance with the pseudo-second-order kinetic model. The adsorption isotherms are well described by Langmuir isotherm model, indicating that the adsorption of U(V]) is monolayer coverage. The optimal adsorption conditions are as follows: solid-to-liquid ratio 1.0 g/L, initial concentration of U(V]) 0.42 mmol/L, temperature of 298 K, and solution pH of 7.0. The adsorption capacity at equilibrium is (76.0±1.4) mg/g (n=3), and the removal percentage reaches (88.0±1.3)%(n=3). The above results indicate that jarosite can be used as a potential adsorption material for the treatment of wastewater containing U(V]). **Key words**: jarosite; U(V]); adsorption kinetics; adsorption isotherm

铀是一种天然的放射性元素,常被用于各种 民用和军事项目。在铀矿的开采、提炼、加工和偶 发事故中,会对水体和土壤等环境造成铀的放射 性污染^[1]。铀的半衰期非常长,如²³⁵U的半衰期 为 7.04 亿年,²³⁸U的半衰期长达 44.68 亿年,一 旦发生污染就会在环境中长期存在。铀可以通过 口、鼻和皮肤进入人体,对人类健康构成了长期的 潜在风险,包括辐射危害、生物动力学毒性、代谢 毒性和化学毒性等。这些危害对哺乳动物的繁殖 和发育造成严重损害,包括生育能力下降、胚胎发 育异常和癌症等[2-4]。近十年来,开发铀污染环境 的修复技术引起了人们的极大关注和广泛研究, 报道了多种修复方法,包括物理-化学法[5-6](吸 附、沉淀、离子交换和膜分离等)、微生物法^[7]、植 物法[8]等,其中吸附法作为一种简单、高效的分离 方法引起了人们广泛的研究。

黄钾铁矾(KFe₃(SO₄)₂(OH)₆)作为一种含 铁硫酸盐的次生矿物,主要形成于酸性、富含硫的 自然环境中,这些环境包括由含黄铁矿的沉积物 形成的酸性硫酸盐土壤、硫化矿床风化带、酸性高 盐湖泊沉积物、酸矿废水区域、黄铁矿煤矸石的风 化场地等[9]。在冶金工业上,湿法炼锌除铁工艺 也会产生大量黄钾铁矾废弃物[10]。黄钾铁矾这 种次生矿物长时间未得到有效的开发利用,直到 近年来人们发现其具有较高的比表面积和较多的 表面羟基,是一种优良的吸附材料,而且其晶体结 构中多个晶体化学位置都能被其它元素取代,形 成广泛的类质同象。基于这些特性,黄钾铁矾能 够将有毒、有害元素以共沉淀或吸附的方式固定 起来,从而减轻对环境的危害。因此,现在黄钾铁 砚广泛用于含 As(V)、Cr(VI)、Cu(Ⅱ)、Hg(Ⅱ) 和 Tl([)等有毒元素废水的处理[11-18],但是却鲜 有其用于含铀废水处理的报道。

本工作拟选取黄钾铁矾作为吸附剂,研究其 对 U(VI)吸附过程中的影响因素、吸附动力学和 吸附等温线,探讨黄钾铁矾对 U(VI)的吸附机理, 并比较两种制备方式获得的材料在吸附性能上的 差异,以期为铀污染废水的处理提供一种廉价的 吸附材料。

1 材料与方法

1.1 材料和仪器

所用试剂均为市售分析纯,其中硝酸铀酰 (UO₂(NO₃)₂•6H₂O)和偶氮胂Ⅲ(C₂₂ H₁₈ As₂ N₄ O₁₄ S₂) 购买自 Sigma-Aldrich 公司。

Alpha-1500 紫外可见光分光光度计,上海谱 元仪器有限公司;X Pert pro X 射线衍射仪,荷兰 帕纳科;Ultra55 高分辨冷场发射扫描显微镜 (SEM)分析系统,带有 Oxford ie 450x-max 80 能 量色散 X 射线光谱仪(energy-dispersive X-ray spectrometer, EDS),德国 Carl Zeiss 公司;Spectrum One 红外吸收光谱仪,美国 PE 公司;In Via 激光拉曼光谱仪,英国 Renishaw 公司;85-2 控温 磁力搅拌器,江苏金怡仪器科技有限公司。

1.2 实验方法

1.2.1 U(N)储备液的配制 称取 2.11 g 硝酸 铀酰,用少量去离子水溶解后,加入 10 mL 浓 HNO₃,转移至 1 000 mL 容量瓶中,用去离子水 定容,摇匀,即得 4.2 mmol/L 的 U(N)储备液。 使用前,用去离子水稀释至所需浓度即可。 U(N)在不同 pH 值水溶液中的形态分布采用 Visual MINTEQ 软件(3.0 版)计算^[19]。

1.2.2 黄钾铁矾的制备及表征 水热法制备黄钾铁矾:称取 5.60 g KOH、17.20 g Fe₂(SO₄)₃·5H₂O 溶于 100 mL 去离子水中,加入聚四氟乙烯反应器中, 在带有搅拌及螺旋冷凝器的油浴加热器上,于

核化学与放射化学 第43卷

95 ℃下搅拌回流 4 h,然后将溶液在室温下再静 置 20 h,过滤收集沉淀,用去离子水洗涤 3 次,然 后于 60 ℃条件下干燥 24 h 备用^[9,13,20]。黄钾铁 矾的生物制备方法参照文献[21]进行。水热法合 成的黄钾铁矾采用 X 射线衍射(XRD)、扫描电子 显微镜、拉曼光谱和傅里叶变换红外光谱等方法 进行表征。

1.2.3 吸附动力学实验 固液比(*m*/V)为 1.0 g/L, U(Ⅵ)的初始浓度为 0.42 mmol/L,溶液 pH 值 分别为 5.0、6.0 和 7.0,298 K 时,置于磁力搅拌 器上搅拌。吸附过程中定时用注射器取样,样品 液用直径为 0.22 μm 的超滤膜过滤,收集滤液, 用偶氮胂Ⅲ法测定滤液中 U(Ⅵ)的浓度^[19]。每 组实验均做 3 组平行实验。采用准一级动力学和 准二级动力学对实验数据进行拟合分析,研究吸 附过程的机理。准一级和准二级动力学方程分别 如式(1)、(2)^[22-23]。

$$\ln(q_{\rm e} - q_t) = \ln q_{\rm e} - k_1 t \tag{1}$$

$$\frac{t}{q_{t}} = \frac{1}{k_{2}q_{e}^{2}} + \frac{t}{q_{e}}$$
(2)

式中: q_e 和 q_t 分别为吸附达到平衡时和t时刻的吸附量,mg/g; k_1 为准一级动力学速率常数,min⁻¹; k_2 为准二级动力学速率常数,g/(mg•min)。

1.2.4 吸附条件实验 称取一定量的黄钾铁矾加 人石英玻璃槽中,然后加入一定体积 4.2 mmol/L 的硝酸铀酰溶液,用 0.17 mol/L 的 NaCl 溶液定 容至 80 mL,用 0.10 mol/L 的 HCl 或 NaOH 溶 液调节溶液的 pH 值,将配制好的溶液置于磁力 搅拌器上搅拌,考察吸附时间、固液比、U(VI)初 始浓度、溶液 pH 值和离子强度等因素对吸附过 程的影响。取样,过滤,测定滤液中的 U(VI)浓 度。平衡吸附量(q_e,mg/g)的计算方法如式(3)。

$$q_{\rm e} = \frac{(c_0 - c_{\rm e})V}{m} \tag{3}$$

式中: c_0 和 c_e 分别为溶液中U(VI)的初始和平衡 浓度,mmol/L;V为溶液总体积,L;m为吸附剂 质量,g。U(VI)去除率(R)的计算方法如式(4)。

$$R = \frac{c_0 - c_t}{c_0} \times 100\%$$
 (4)

式中: c_0 和 c_t 分别为溶液中U(\mathbb{N})的初始浓度和吸附过程中t时刻的浓度,mmol/L。

1.2.5 等温吸附实验 固液比为 1.0 g/L,溶液 pH 值分别为 5.0、6.0、7.0,298 K 时,配制不同初 始浓度的 U(YI)溶液,搅拌吸附 24 h,过滤,测定滤 液中的 U(YI)浓度。采用 Langmuir 和 Freundlich

两种等温模型对实验数据进行拟合,Langmuir模型如式(5),Freundlich模型如式(6)^[24-25]。

$$\frac{c_{\rm e}}{q_{\rm e}} = \frac{c_{\rm e}}{q_{\rm m}} + \frac{1}{K_{\rm L}q_{\rm m}} \tag{5}$$

$$\ln q_{\rm e} = \ln K_{\rm F} + \frac{1}{n} \ln c_{\rm e} \tag{6}$$

式中: q_m 为最大吸附量, mg/g; K_L 为 Langmuir 模型的平衡吸附常数, L/mg; K_F 为 Freundlich 模型常数, mg/g; n 为吸附强度相关常数。

2 结果与讨论

2.1 黄钾铁矾的表征

采用 XRD、Raman 光谱和等电点滴定等方法 对水热法制备的黄钾铁矾进行表征,结果示于 图 1。从图 1(a)、(b)可知:水热法制备的黄钾铁 矾为致密的赭黄色粉末^[26-27];黄钾铁矾的 XRD 衍射峰尖锐且强烈,表明样品结晶良好,样品的主 要衍射峰与标准品(JCPDS: 22-0827)的5个特征 峰(012)、(021)、(113)、(033)和(220)完全 吻合,而且没有其它杂峰,表明合成的样品为纯的 黄钾铁矾。这些实验结果与文献[16]已报道的结 果一致。由图 1(c)可知:在 100~1 200 cm⁻¹范 围内,样品 Raman 光谱谱峰尖锐而且独立,表明 合成的样品结晶性良好。在 400~1 200 cm⁻¹范 围内产生的强烈谱峰是由硫氧四面体「SO4]的基频 振动产生的,这些峰是黄钾铁矾的特征谱峰;在 $1\ 006\ \mathrm{cm}^{-1}$ 处出现的峰是由 $[SO_4]$ 四面体对称伸缩 振动 v1(SO4-)产生,而在1101、624、434 cm-1处出 现的谱峰分别是由[SO4]四面体反对称伸缩振动 $v_3(SO_4^{2-})$ 、反对称弯曲振动 $v_4(SO_4^{2-})$ 和对称伸缩振 动 $v_2(SO_4^{2-})$ 产生;在 224、300、360 cm⁻¹ 处出现的 峰是由[FeO]伸缩振动引起^[27-29]。等电点滴定 (图 1(d))结果表明,黄钾铁矾的等电点为 6.2。

2.2 吸附动力学

在固液比(*m*/V)为1.0g/L,U(YI)初始浓度为0.42 mmol/L,溶液pH分别为5.0、6.0和7.0的条件下,对黄钾铁矾吸附U(YI)随时间的变化进行了研究,结果示于图2。由图2可知:不同pH条件下,黄钾铁矾对U(YI)的吸附均可分为两个阶段:0~20 min为快速吸附阶段,20 min内的吸附量达到平衡吸附量的76%以上;20 min以后为慢速吸附阶段。在100 min之内,所有的吸附过程基本均能达到平衡。在溶液 pH 值为5.0、6.0和7.0的条件下,达到平衡时的吸附量

图 1 黄钾铁矾的外观(a)、XRD 图(b)、Raman 光谱(c)和 Zeta 电位(d) Fig. 1 Photograph(a), XRD pattern(b), Raman spectrum(c) and Zeta-potential(d) of jarosite

分别为(57.3±1.6)、(76.4±1.5)、(88.8±1.6) mg/g (n=3)。

将图 2 中的实验数据分别采用准一级动力学 方程和准二级动力学方程进行线性拟合,分别以 $\ln(q_e - q_i)$ 和 t/q_i 为纵坐标,时间为横坐标作图, 拟合结果示于图 3,拟合参数列入表 1。准一级动 力学拟合结果表明,除 pH=5.0 外,其它两种 pH

条件下的拟合相关性系数(r²)均较低,并且吸附 量的理论计算值(q_{el})与实验测定值(q_{exp})相差较 大,最大的差值达到 36%,这表明准一级动力学 方程不适合用来拟合该吸附过程。用准二级动力 学方程拟合三种 pH条件下黄钾铁矾吸附 U(VI) 的实验数据,其线性相关系数均在 0.99 以上,而 且吸附量的理论计算值与实验值接近,误差在 5% 以内,拟合程度较好。因此,黄钾铁矾对 U(VI)的吸附更符合准二级动力学模型,表明吸 附过程受化学作用力支配,整个吸附过程中化学 吸附占主导作用^[30-33]。

2.3 黄钾铁矾对 U(\I)的吸附

吸附过程受到体系中很多因素的影响,包括 溶液 pH 值、离子强度、固液比和 U(VI)初始浓度 等,结果示于图 4。

溶液 pH 对黄钾铁矾表面电荷、功能基团离子 化和铀在溶液中赋存状态等方面产生影响,是吸附 过程中的重要影响因素^[34]。由图 4(a)可知:当 pH 值在 4.0~7.0,随着 pH 值增大,平衡吸附量(q_e)和 去除率(R)均同时增大;当 pH=4.0时,平衡吸附 量和去除率均非常低,而当 pH=7.0时,平衡吸附 量和去除率达到最大值,分别为(76.0±1.4) mg/g

表	1	黄钾	铁矾吸附	U(V	[)的动力学	模型拟合	} 参数
Table 1	Ki	netic	parameter	s for	adsorption	of U(VI) on jarosite

	~ /	准一级动力学			准二级动力学			
pН	$(m q \exp / (m q e \pi q^{-1}))$	$q_{ m cal}/$	$k_1/$	2	$q_{ m cal}/$	$k_2/(g \cdot$	2	
	(mg•g)	$(mg \cdot g^{-1})$	\min^{-1}	7-	$(mg \cdot g^{-1})$	mg^{-1} • min^{-1})	7-	
5.0	45.8	39.2	0.051	0.986	46.9	0.006	0.996	
6.0	60.1	42.6	0.044	0.969	61.2	0.005	0.997	
7.0	76.0	48.6	0.045	0.952	77.5	0.005	0.998	

(a) ----c₀(U(叭))=0.42 mmol/L,c₀(NaCl)=0.17 mol/L,固液比为 1.0 g/L;(b) -----c₀(U(叭))=0.42 mmol/L, pH=7.0, 固液比为 1.0 g/L;(c) -----c₀(U(叭))=0.42 mmol/L, pH=7.0, c₀(NaCl)=0.17 mol/L;
 (d) -----pH=7.0, c₀(NaCl)=0.17 mol/L, 固液比为 1.0 g/L

图 4 溶液 pH 值(a)、离子强度(b)、固液比(c)和 U(Y])初始浓度(d)对黄钾铁矾吸附 U(Y])的影响 Fig. 4 Effect of solution pH value(a), ionic strength(b), solid-to-liquid ratio(c), and initial concentration of U(Y])(d) on U(Y]) adsorption 和(88.0±1.3)%(n=3)。溶液 pH 影响吸附过 程的原因是多方面的,在低 pH 值下,H⁺ 与 UO2⁺ 在羟基等功能基团表面会产生竞争性吸 附,当H⁺吸附在功能基团表面后,会阻碍UO²⁺ 的进入,从而降低其吸附量,而随着 pH 值增加, 这种竞争作用会减弱,使U(N)的吸附量增 加^[35]。另外,黄钾铁矾是两性物质,其等电点为 6.2(图1(d)),当pH<6.2时,其表面带正电荷, 静电排斥力会阻碍铀酰离子的吸附,而当 pH> 6.2 时,其表面带负电荷,黄钾铁矾与 UO²⁺ 之间 会产生静电引力,从而引起吸附量的显著增 加^[36]。随着 pH 值的变化, UO₂²⁺ 在溶液中的形 态也会发生变化,当 pH 超过 7.0 以后,部分 U(Ⅱ)以带负电荷的形式存在(图 5),吸附剂与吸 附质之间均带负电荷,相互间的静电排斥力会增 大,从而使吸附量降低^[37-38]。由图 4(b)可知:在 整个实验范围内,U(VI)的吸附过程几乎不受 NaCl浓度变化的影响,这与针铁矿对U(II)的吸 附结果类似[36]。离子强度会影响吸附剂表面双电 层的厚度和电荷密度,从而影响吸附剂的吸附性 能,一般情况下,溶液离子强度对外表层表面络合 影响较大,而对内层表面络合影响较小^[39]。黄钾 铁矾对 U(VI)的吸附受到溶液 pH 的影响,而基本 不受溶液离子强度的影响,这说明黄钾铁矾对于 U(Ⅱ)的吸附过程属于内层表面络合^[40-41]。

c₀(U(Ŋ))=0.21 mmol/L,c₀(NaCl)=0.17 mol/L,T=298 K
 图 5 pH 值对 U(Ŋ)在水溶液中形态分布的影响
 Fig. 5 Effect of pH value on distribution
 of U(Ŋ) species in aqueous solution

固液比对吸附的影响示于图 4(c)。由图 4(c) 可知:随着固液比的增加,吸附量逐渐减小,去除 率逐渐增大;当固液比较低时,吸附位点较少,溶 液中有足够的 U(\l]),能够达到饱和吸附,所以吸

附量较高;而当固液比增大时,吸附位点增加,溶 液中的 U(Ⅱ)不能使吸附剂完全达到饱和吸附, 导致吸附量降低^[35]。当固液比达到 1.0 g/L 时, 平衡吸附量达到(80.0±1.3) mg/g(n=3),去除率 达到(81.0±1.0)%,当固液比超过1.0g/L时,去 除率只有少量增加,因此固液比选择1.0g/L较为适 宜。U(VI)初始浓度对吸附的影响示于图 4(d)。由 图 4(d)可知:当 U(II)浓度从 0.21 mmol/L 增加 到 2.1 mmol/L 时,固液相之间的浓度差增大, U(Ⅱ)与黄钾铁矾之间的相互作用增强,使黄钾 铁矾对 U(VI)的吸附量增大,平衡吸附量从(42.0± 2.5) mg/g 增加到(140±2.3) mg/g。当溶液中 U(II)的初始浓度增大到 2.1 mmol/L 时,平衡 吸附量趋于稳定, 夫除率随着 U(Ⅱ)浓度的增大 而逐渐减小,这是由于溶液中有大量的U(II),吸 附位点都达到饱和吸附所致[34-35]。

通过傅里叶变换红外光谱(FTIR)表征了黄 钾铁矾吸附 U(VI)前后特性的变化,结果示于 图 6。由图 6 可知:主要的吸收峰没有发生变化, 只有部分区域的谱带发生了变化,谱带的变化表 明了黄钾铁矾在吸附 U(VI)之后结构组成发生了 相应的变化。3 399 cm⁻¹处出现的较宽峰是由 OH 的伸缩振动(v_{OH})产生;1 900~2 350 cm⁻¹区 域出现的较弱宽峰被认为是 900~1 200 cm⁻¹范 围振动的倍频^[15]。1 645 cm⁻¹处出现的峰是水 分子的弯曲振动所产生^[42],这是在合成黄钾铁矾 过程中部分 K⁺被 H₃O⁺取代形成黄草铁矾所 致^[15]。1 201、1 093 cm⁻¹处的吸收带是由 SO²⁻ 反对称伸缩振动(v_3 (SO²⁻))所产生,由于黄钾铁 矾存在两种类型的 SO²⁻,一种是分子结构中包含 的 SO²⁻,另一种是分子表面吸附的 SO²⁻,所以其

吸收带分裂为两条^[43]。1 009 cm⁻¹处产生的峰归 属于羟基的面内弯曲振动(δ_{OH})。632 cm⁻¹归属于 SO²⁻ 的反对称弯曲振动(υ_4 (SO²⁻))。508 cm⁻¹归 属于 FeO₆ 八面体的振动。U(VI)的红外特征峰出 现的位置在 1 000 cm⁻¹以下,常见的有三个振动 峰:850~1 000 cm⁻¹的反对称振动(υ_3 (UO²⁺)), 750~900 cm⁻¹的对称振动(υ_1 (UO²⁺))和 200~ 300 cm⁻¹的弯曲振动(υ_2 (UO²⁺))^[44]。比较黄钾 铁矾吸附 U(VI)前后的红外光谱图可以看出,在 870 cm⁻¹处出现了新的谱峰(虚线框所示),证实 了黄钾铁矾表面存在 U(VI)^[45-46]。

黄钾铁矾吸附 U(N)前后的 SEM 图谱及 EDS 图谱示于图 7。由图 7 可知:黄钾铁矾呈花 瓣状簇型,且有晶体团聚现象,表面比较粗糙,颗 粒尺寸在 2~10 μm^[47-48];该矿物主要组成元素为 Fe、K、O和 S;黄钾铁矾与 U(N)作用后表面形 貌没有发生改变,部分物质沉淀在其表面,使表面 变得更为粗糙,能谱分析表明其表面含有 U 元素。 黄钾铁矾吸附 U(N)之后的 XRD 图谱(图 8)也 证实了黄钾铁矾表面存在 U 的物相。

2.4 吸附等温线

在固液比为 1.0 g/L,溶液 pH 分别为 5.0、6.0 和 7.0,U(VI)初始浓度范围为 0.21~1.68 mmol/L,

298 K的条件下,对 U(N)的等温吸附过程进行 了研究,结果示于图 9。从图 9 可以看出,随着 U(N)初始浓度的增大,固液相之间的浓度差随 之增大,导致 U(N)与黄钾铁矾之间相互作用增 强,从而使平衡吸附量不断增大。黄钾铁矾对 U(N)的吸附受到溶液的 pH 值影响,溶液 pH 为 5.0~7.0 时,达到平衡时吸附量分别为(63.3± 2.3)、(123±2.2)和(140±2.4) mg/g。

采用 Langmuir 和 Freundlich 模型对图 9 中 的实验数据进行线性拟合,分别以 c_e/q_e-c_e 、ln q_e ln c_e 作图,拟合曲线示于图 10。根据曲线斜率和 截距计算 等温模型的相关参数,结果列入表 2。 由表 2 可知:Langmuir 模型的相关系数大于 Freundlich 模型的相关系数,并且均在 0.99 以上,通 过 Langmuir 模型计算的平衡吸附量与实验值接 近,而 Freundlich 模型的平衡吸附量计算值与实 验值的差值要大一些,这表明黄钾铁矾对 U(VI) 的吸附更符合 Langmuir 模型,即黄钾铁矾对 U(VI)的吸附是单层吸附^[33]。在溶液 pH 值为 5.0、6.0和7.0的条件下,通过 Langmuir 模型计 算的最大吸附量(q_m)分别为77.7、141、154 mg/g。 表 3 为黄钾铁矾与其它文献报道的相关吸附材料 的对比,表中列出了实验条件和最大吸附量等相 关数据。结果表明,在实验条件下,黄钾铁矾对 U(VI)的最大吸附量高于大多数相关吸附材料的 值,虽然 CTAB-MT 对 U(VI)的最大吸附量高于 黄钾铁矾,但其制备工艺较复杂,成本较高,综合 来看,黄钾铁矾是理想的 U(VI)吸附材料。

图 10 黄钾铁矾吸附 U(N)的 Langmuir(a)和 Freundlich(b)等温线

Fig. 10 Langmuir(a) and Freundlich(b) isotherm plots for U(VI) adsorption on jarosite at different pH values

表 2 黄钾铁矾吸附 U(\1)的 Langmuir 和 Freundlich 等温拟合参数 Table 2 Parameters of Langmuir and Freundlich isotherm models for U(\1) adsorption on jarosite

	Langmuir 模型				Freundlich 模型					
pН	$q_{ m m}/$	$K_{\rm L}/$	$q_{ m exp}/$	$q_{ m cal}/$	2	$K_{ m F}/$		$q_{ m exp}/$	$q_{ m cal}/$	2
	$(mg \cdot g^{-1})$	$(L \cdot mg^{-1})$	$(mg \cdot g^{-1})$	$(mg \cdot g^{-1})$	r	$(mg \cdot g^{-1})$	n	$(mg \cdot g^{-1})$	$(mg \cdot g^{-1})$	r
5.0	77.7	0.013	63.3	63.2	0.999	5.09	2.22	63.3	69.9	0.943
6.0	141	0.025	123	123	0.998	13.8	2.42	123	142	0.887
7.0	154	0.038	140	140	0.998	23.1	2.92	140	156	0.947

表 3 不同吸附材料对 U(VI)吸附能力的对比

Table 3	Comparison of	adsorption	capacity of	different	adsorbents	for	U(M)
---------	---------------	------------	-------------	-----------	------------	-----	-----	---

1176 1844 ままま		实验条件	$a / (ma \cdot a^{-1})$	参考文献	
吸附材料	pH 离子强度		吸附时间/min		
$CB[6]/GO/Fe_3O_4$	5.0	0.01 mol/L NaClO ₄	250	66.8	[49]
$\mathrm{Fe_3O_4/GO}$	5.5	0.01 mol/L KNO_3	1 440	69.5	[50]
MT	7.0	0.01 mol/L NaClO ₄	250	82.2	[51]
CTAB-MT	7.0	0.01 mol/L NaClO ₄	250	213	[51]
Hematite	7.0	蒸馏水	360	3.54	[52]
MnFeAl-LDHs	5.0	0.01 mol/L NaNO ₃	300	158	[53]
黄钾铁矾	7.0	0.17 mol/L NaCl	100	154	本工作

第43卷

2.5 黄钾铁矾制备方式对 U(\I) 吸附的影响

不同合成途径获得的黄钾铁矾的物理和化学 性质存在较大差异,包括表面形貌、溶解速率、比 表面积和结晶度等,这些性质差异对吸附有强烈 的影响[54]。对比了通过生物法和水热法两种方 式获得的黄钾铁矾对 U(VI)的吸附,结果示于 图 11。由图 11 可知,在所有条件下,生物法制备 的黄钾铁矾对 U(II)的去除率均高于水热法制备 的黄钾铁矾,在 pH=7.0 时,去除率达到最大,生 物法与水热法制备的黄钾铁矾对 U(\I) 的去除率 分别为(93.2±1.4)%和(88.0±1.2)%。吸附的 差异主要与黄钾铁矾的表面形貌和比表面积等性 质相关,生物法制备黄钾铁矾的比表面积为 12.6 m²/g,颗粒堆积较为疏松,孔径较大,而水 热法制备的黄钾铁矾的比表面积为 4.8 m²/g,颗 粒堆积致密,孔径较小。该结果与 Ahoranta 等^[54]和 Paikarav 等^[55]报道的结果一致。

c₀(U(VI))=0.42 mmol/L,m/V=1.0 g/L,
 c₀(NaCl)=0.17 mol/L,t=100 min,T=298 K
 图 11 黄钾铁矾制备方式对 U(VI)去除的影响

Fig. 11 Effect of preparation method of jarosite on removal of U(VI)

3 结 论

(1) 采用水热法合成了黄钾铁矾,通过 XRD、Raman光谱等方法证实其为黄钾铁矾。

(2) 黄钾铁矾对 U(\])具有较强的吸附能力,最佳吸附条件为:固液比 1.0 g/L、U(\])初始 浓度为 0.42 mmol/L、298 K、pH=7.0,达到平衡 时的吸附量为(76.0±1.4) mg/g(n=3),去除率 达到了(88.0±1.3)%(n=3)。

(3)动力学分析表明,黄钾铁矾对 U(\])的 吸附符合准二级动力学模型。等温线拟合表明, 黄钾铁矾对 U(\])的吸附过程符合 Langmuir 模 型,说明黄钾铁矾对 U(W)的吸附是单层吸附。

(4) 生物法制备的黄钾铁矾结构较疏松,比 表面积更大,其对 U(N)的去除率优于水热法制 备的黄钾铁矾。

参考文献:

- [1] Ma W, Gao B, Guo Y, et al. Occurrence and distribution of uranium in a hydrological cycle around a uranium mill tailings pond, southern China[J]. Int J Environ Res Public Health, 2020, 17(3): 773.
- [2] Costa M R, Pereira A J S C, Neves L J P F, et al. Potential human health impact of groundwater in non-exploited uranium ores: the case of Horta da Vilariça (NE Portugal) [J]. J Geochem Explor, 2017, 183: 191-196.
- [3] Wang S, Ran Y, Lu B, et al. A review of uraniuminduced reproductive toxicity[J]. Biol Trace Elem Res, 2020, 196(1): 204-213.
- [4] Radespiel-Tröger M, Meyer M. Association between drinking water uranium content and cancer risk in Bavaria, Germany[J]. Int Arch Occ Env Hea, 2013, 86(7): 767-776.
- [5] Su M, Tsang D C W, Ren X, et al. Removal of U(V]) from nuclear mining effluent by porous hydroxyapatite: evaluation on characteristics, mechanisms and performance[J]. Environ Pollut, 2019, 254(Pt A): 112891.
- [6] Karmakar R, Sen K. Role of biomolecules in selective extraction of U(VI) using an aqueous biphasic system[J]. J Radioanal Nucl Chem, 2019, 322(1): 57-66.
- [7] Lakaniemi A, Douglas G B, Kaksonen A H. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments[J]. J Hazard Mater, 2019, 371: 198-212.
- [8] Li R, Dong F, Yang G, et al. Characterization of arsenic and uranium pollutionsurrounding a uranium mine in southwestern China and phytoremediation potential[J]. Pol J Environ Stud, 2020, 29(1): 173-185.
- [9] Baron D, Palmer C D. Solubility of jarosite at 4-35 ℃[J]. Geochim Cosmochim Ac, 1996, 60(2): 185-195.
- [10] 张文琴. 黄钾铁矾法炼锌工艺在青海高海拔地区的 可行性[J]. 中国有色冶金,2011,40(4):28-29,38.
- [11] 王长秋,马生凤,鲁安怀.黄钾铁矾类矿物沉淀去除 Cr(\I)的初步研究[J].矿物岩石地球化学通报,

2006(4):335-338.

- [12] 王红梅,刘烁,刘邓. 硫酸盐还原菌及异化铁还原菌 对黄钾铁矾还原作用的对比[J]. 地球科学(中国地 质大学学报),2015,40(2):305-316.
- [13] Aguilar-Carrillo J, Herrera-García L, Reyes-Domínguez I A, et al. Thallium(I) sequestration by jarosite and birnessite: structural incorporation vs surface adsorption[J]. Environ Pollut, 2020, 257: 113492.
- [14] Jin X, Li X, Guo C, et al. Fate of oxalic-acid-intervened arsenic during Fe([])-induced transformation of As(V)-bearing jarosite[J]. Sci Total Environ, 2020, 719: 137311.
- [15] Flores M, Reyes I, Palacios E, et al. Kinetic analysis of the thermal decomposition of a synthetic mercury jarosite[J]. Minerals, 2019, 9(4): 200.
- [16] Hott R C, Maia L F O, Santos M S, et al. Purification of arsenic-contaminated water with K-jarosite filters[J]. Environ Sci Pollut R, 2018, 25(14): 13857-13867.
- [17] Gräfe M, Beattie D A, Smith E, et al. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite[J]. J Colloid Interf Sci, 2008, 322(2): 399-413.
- [18] Asta M P, Cama J, Martínez M, et al. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications[J]. J Hazard Mater, 2009, 171(1-3): 965-972.
- [19] Liu M, Luo L, Dong F, et al. Characteristics and mechanism of uranium photocatalytic removal enhanced by chelating hole scavenger citric acid in a TiO₂ suspension system[J]. J Radioanal Nucl Chem, 2019, 319(1): 147-158.
- [20] Islas H, Flores M U, Reyes I A, et al. Determination of the dissolution rate of hazardous jarosites in different conditions using the shrinking core kinetic model[J]. J Hazard Mater, 2020, 386: 121664.
- [21] Wei H, Dong F, Chen M, et al. Removal of uranium by biogenetic jarosite coupled with photoinduced reduction in the presence of oxalic acid: a low-cost remediation technology[J]. J Radioanal Nucl Chem, 2020, 324(2): 715-729.
- [22] Tan K L, Hameed B H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions[J]. J Taiwan Inst Chem E, 2017, 74: 25-48.
- [23] Ho Y S, Mckay G. Pseudo-second order model for sorption processes[J]. Process Biochem, 1999,

34(5): 451-465.

- [24] Khanday W A, Marrakchi F, Asif M, et al. Mesoporous zeolite-activated carbon composite from oil palm ash as an effective adsorbent for methylene blue[J]. J Taiwan Inst Chem E, 2017, 70: 32-41.
- [25] Ivanets A I, Srivastava V, Roshchina M Y, et al. Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn²⁺, Co²⁺, Ni²⁺ and Cu²⁺ from aqueous solution[J]. Ceram Int, 2018, 44(8): 9097-9104.
- [26] 曹丽娜,陈炳辉,苟习颖,等.不同条件下形成的黄 钾铁矾微形貌对比研究[J]. 高校地质学报,2019, 25(3):333-340.
- [27] 刘长卿.火星相关黄钾铁矾的实验室模拟与光谱学 研究[D].济南:山东大学,2018.
- [28] 张云霞,王蒙,郭兆清,等.黄钾铁矾固溶物的制备 及拉曼光谱分析[J].光散射学报,2016,28(4):317-323.
- [29] Liu C, Ling Z, Zhang J, et al. Laboratory Raman and VNIR spectroscopic studies of jarosite and other secondary mineral mixtures relevant to Mars[J]. J Raman Spectrosc, 2020, 51(9): 1575-1588.
- [30] Keshtkar A R, Irani M, Moosavian M A. Removal of uranium(VI) from aqueous solutions by adsorption using a novel electrospun PVA/TEOS/APTES hybrid nanofiber membrane: comparison with casting PVA/TEOS/APTES hybrid membrane[J]. J Radioanal Nucl Chem, 2013, 295(1): 563-571.
- [31] 黄彬,陈泉水,罗太安,等.用改性膨润土吸附处理 含铀(\])废水试验研究[J].湿法冶金,2018,37(2): 128-134.
- [32] 张伟,董发勤,杨杰,等. 三种非活性微生物对铀的 吸附行为及其受γ辐照的动力学影响[J].核化学与 放射化学,2018,40(4):258-266.
- [33] 张海永,曹京宜,王泽渊,等. TiO₂/SFP 铀吸附材料 的制备及其吸附性能[J].核化学与放射化学,2019, 41(2):208-216.
- [34] Wei X, Liu Q, Zhang H, et al. Efficient removal of uranium(VI) from simulated seawater using amidoximated polyacrylonitrile/FeOOH composites[J]. Dalton T, 2017, 46(45): 15746-15756.
- [35] Ali M M S, Sami N M, El-Sayed A A. Removal of Cs⁺, Sr²⁺ and Co²⁺ by activated charcoal modified with Prussian blue nanoparticle (PBNP) from aqueous media: kinetics and equilibrium studies [J]. J Radioanal Nucl Chem, 2020, 324(1): 189-201.
- [36] Guo Z, Li Y, Wu W. Sorption of U(VI) on goethite: effects of pH, ionic strength, phosphate,

carbonate and fulvic acid[J]. Appl Radiat Isotopes, 2009, 67(6): 996-1000.

- [37] Regenspurg S, Schild D, Schäfer T, et al. Removal of uranium(\[]) from the aqueous phase by iron(\[]) minerals in presence of bicarbonate[J]. Appl Geochem, 2009, 24(9): 1617-1625.
- [38] Li W, Troyer L D, Lee S S, et al. Engineering nanoscale iron oxides for uranyl sorption and separation: optimization of particle core size and bilayer surface coatings[J]. ACS Appl Mater Inter, 2017, 9(15): 13163-13172.
- [39] 王苏菲,于淑君,吴忆涵,等.聚苯胺@碳纳米纤维 复合材料对放射性核素铀的高效去除[J].中国科 学:化学,2019,49(1):71-79.
- [40] 庞宏伟,唐吴,王佳琦,等.三元水滑石负载的硫化 纳米零价铁对铀的高效去除与机理研究[J].无机材 料学报,2020,35(3):381-389.
- [41] 王佳琦, 庞宏伟, 唐昊, 等. 碳热还原法制备的碳载 零价铁对水中 U(VI)的去除研究[J]. 无机材料学 报, 2020, 35(3): 373-380.
- [42] Zhu J, Gan M, Zhang D, et al. The nature of schwertmannite and jarosite mediated by two strains of acidithiobacillusferrooxidans with different ferrous oxidation ability[J]. Mater Sci Eng C, 2013, 33(5): 2679-2685.
- [43] Bedi A, Singh B R, Deshmukh S K, et al. Development of a novel myconanomining approach for the recovery of agriculturally important elements from jarosite waste[J]. J Environ Sci, 2018, 67: 356-367.
- [44] Wazne M, Korfiatis G P, Meng X. Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide [J]. Environ Sci Technol, 2003, 37(16): 3619-3624.
- [45] Winstanley E H, Morris K, Abrahamsen-Mills L G, et al. U(VI) sorption during ferrihydrite formation: underpinning radioactive effluent treatment[J]. J Hazard Mater, 2019, 366: 98-104.

- [46] Zhang X, Zhang L, Liu Y, et al. Mn-substituted goethite for uranium immobilization: a study of adsorption behavior and mechanisms[J]. Environ Pollut, 2020, 262: 114184.
- [47] 吕波,张鸣,卢爱民,等.响应曲面法优化黄钾铁矾/ 草酸体系光催化降解甲基橙[J].南京农业大学学 报,2015,38(4):676-681.
- [48] 谢越,周立祥. 生物成因次生铁矿物对酸性矿山废 水中三价砷的吸附[J]. 土壤学报,2012,49(3):481-490.
- [49] Shao L, Wang X, Ren Y, et al. Facile fabrication of magnetic cucurbit[6]uril/graphene oxide composite and application for uranium removal[J]. Chem Eng J, 2016, 286: 311-319.
- [50] Zong P, Wang S, Zhao Y, et al. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions [J]. Chem Eng J, 2013, 220: 45-52.
- [51] Hui J, Wang Y, Liu Y, et al. Effects of pH, carbonate, calcium ion and humic acid concentrations, temperature, and uranium concentration on the adsorption of uranium on the CTAB-modified montmorillonite[J]. J Radioanal Nucl Chem, 2019, 319(3): 1251-1259.
- [52] Xie S B, Zhang C, Zhou X H, et al. Removal of uranium(VI) from aqueous solution by adsorption of hematite[J]. J Environ Radioactiv, 2009, 100(2): 162-166.
- [53] 张晨璐,冷然,张一阚,等. 锰铝二元水滑石和锰铁 铝三元水滑石对 U(N)的高效去除及其机理研 究[J]. 中国科学:化学,2019,49(1):133-144.
- [54] Ahoranta S H, Kokko M E, Papirio S, et al. Arsenic removal from acidic solutions with biogenic ferric precipitates[J]. J Hazard Mater, 2016, 306: 124-132.
- [55] Paikaray S, Göttlicher J, Peiffer S. Removal of As(Ⅲ) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway[J]. Chem Geol, 2011, 283(3-4): 134-142.