吸收光谱法直接测定乏燃料溶解液 及1AF料液中 Pu(\)的含量

李定明,张永申,刘联伟,张丽华,李辉波

中国原子能科学研究院 放射化学研究所,北京 102413

摘要:钚是乏燃料后处理过程最重要的产品。乏燃料溶解液和 1AF 料液中 Pu(\1)的含量影响钚的收率,因 而需要准确测量。采用吸收光谱法研究建立了 1AF 料液中 Pu(\1)的分析方法,方法检测下限为 5.8 mg/L, 两次重加回收率分别为 103%和 96%,采用燃耗为45 000 MWd/t(以 U 计)的乏燃料溶解液和 1AF 料液进行了 总钚含量测量方法的验证,测量结果与混合 K 边密度计-X 射线荧光法测量结果吻合,相对偏差不大于 3%。 关键词:Pu(\1);吸收光谱;1AF 料液;定量分析 中图分类号:O657.3 **文献标志码:A 文章编号:**0253-9950(2021)06-0509-08 doi:10.7538/hhx, 2021, YX. 2020081

Determination of Pu(M) in Spent Fuel Solution and 1AF Feed by Absorption Spectrophotometric

LI Ding-ming, ZHANG Yong-shen, LIU Lian-wei, ZHANG Li-hua, LI Hui-bo

China Institute of Atomic Energy, P. O. Box 275(88), Beijing 102413, China

Abstract: Plutonium is the most important product in spent fuel reprocessing. The content of Pu(V_I) in spent fuel solution and 1AF feed affects the recovery of plutonium, so it needs to be measured accurately. In this paper, an analytical method for Pu(V_I) in 1AF was established by absorption spectrometry. The detection limit of the method is 5.8 mg/L, and the recovery are 103% and 96% respectively. Total plutonium content was verified by using the spent fuel solution and 1AF feed with burn-up of 45 000 MWd/tU. The determination results are consistent with those measured by Hybrid K-edge/XRF densitometer method, and the relative deviation is not more than 3%.

Key words: Pu(VI); spectrophotometry; 1AF feed; quantitative analysis

在 PUREX 流程中,为了保证钚在 1A 中能 完全萃取,必须在萃取前将乏燃料溶解液中的钚 调到易被磷酸三丁酯(TBP)萃取的 Pu(Ⅳ),作为 PUREX 流程的 1AF 料液。在动力堆乏燃料元 件溶解液中,钚含量较高的同时,Pu(Ⅵ)的含量 也高。对于快堆 MOX 乏燃料溶液,Pu(\1)的含量甚至高达 30%^[1],因此,在萃取前对料液进行 调价就十分必要,而料液价态是否调整到位,需要 通过对溶液中钚的价态进行测量判定。文献中关 于不同价态钚溶液的分析主要采用萃取分离之 后、再用其他方法进行测定^[2]。对于乏燃料溶解 液和1AF 料液中钚价态的分析,目前无成熟可靠 的分析方法,其原因主要有以下两方面:其一,放 射性活度高,对测量造成很大的困扰,必须在屏蔽 热室内进行测量,如果要转至手套箱内测量,需对 料液进行上千倍稀释,而稀释过程必将造成钚价 态变化,同时也降低钚的浓度,增加测量难度,因 而,测量过程尽量要求不对样品进行预处理,直接 在热室中进行测量;另一方面,1AF 料液组成复 杂,存在大量的干扰基体,现有的大部分分析方法 都要求对样品进行预先分离,难以直接测量,一旦 进行分离, 钚的价态组成必然发生变化, 在钚的价 态分析方法中,萃取分离、离子交换、沉淀载带等 化学分析方法操作比较繁琐,在调节反应条件(尤 其是调节酸度)以及操作过程中,往往会导致钚的 价态改变而影响准确测定。钚价态及含量分析是 保证钚回收的重要手段,因此,对于大型后处理 厂,必须建立钚价态及含量的控制分析技术,以保 证工艺按照设计参数运行。钚特殊的 5f 电子结 构使得其水溶液中不同的氧化态在可见-近红外 区均有着独特的吸收光谱,从而可以采用光谱法 对钚价态和含量进行测量。

在乏燃料溶解液和1AF工艺点,U(VI)浓度是 Pu(Ⅳ)浓度的上百倍,因而方法的选择性要求非 常高,应避开干扰区。根据已有的工作^[3]:在 700~1 100 nm区间, UO²⁺ 没有吸收峰, Pu(Ⅳ) 在该区域的吸收位置分别是:854、1 070 nm; Pu(II)的吸收位置分别是:831、953、983 nm。因此 采用 800~850 nm区间可以很好地实现 Pu(Ⅱ) 的价态及含量的分析,可以有效避免 U(VI)、 Pu(Ⅳ)对Pu(Ⅵ)测定的干扰。研究不同酸度下、 不同时间内 Pu(Ⅵ)和Pu(Ⅳ)的稳定性,以确定最 佳的测量条件。已有研究工作表明,在 0.62~ 5.55 mol/L 硝酸浓度范围内, Pu(N)位于 831 nm 处的摩尔消光系数(ε)变化不大^[4],但各个文 献给出的摩尔消光系数却差别很大,从114 L/ (mol • cm) 到 158^[5]、287.9^[6]、(313±9)^[7]、473.5 L/ (mol • cm)^[8],再到 550 L/(mol • cm)^[9]都有, Pu(Ⅳ)在1 070 nm处的摩尔消光系数在 6 mol/L 硝酸以下几乎不变。因此,在光谱测量时需要考 虑摩尔消光系数变化带来的影响,为实现强放射 性条件下 Pu(VI)和钚浓度的定量分析,本工作拟 采用光纤光谱技术结合远程取样方法,通过化学 计量学手段实现Pu(VI)浓度的测量。

1 实验部分

1.1 试剂和仪器

铀、钚、镎储备液:400 g/L 硝酸铀酰溶液、 42 g/L硝酸钚溶液、1 g/L 钚溶液、1 g/L NpO₂(NO₃), 自制。14 mol/L 硝酸溶液、10 mol/L 高氯酸,分 析纯,国药集团北京化学试剂公司,硝酸和高氯酸 的浓度采用氢氧化钠标准溶液滴定。裂片及杂质 元素标准物质,钢铁研究总院;除特殊说明以外, 所有化学试剂来源于国药集团北京化学试剂公 司,用水为超纯水。

硝酸铈铵,分析纯,配制成铈浓度为 0.4 mol/L、 硝酸浓度为 1 mol/L 的溶液。

Antariss-Ⅱ傅里叶变换近红外光谱仪,美国 热电,600 μm 石英光纤,2、10 mm 石英比色皿, 稀释配液仪,汉密尔顿公司;TQ Analyst 化学计 量学软件,用于定量校正模型建立;封闭式石墨晶 体预衍射 X 射线荧光仪、封闭式 L 边密度计、封 闭式混合 K 边密度计,自制。

1.2 实验方法

(1) Pu(Ⅳ)、Pu(Ⅵ)溶液的制备

取 10 mL 硝酸浓度为 1.5 mol/L 的钚储备 液(42 g/L)于小烧杯中,加入 1 mL 3 mol/L 的亚 硝酸钠调节钚价态至四价,作为 Pu(N)储备液, 钚浓度采用 L 边密度计测定。取 2 mL 上一步制 备的Pu(N)储备液于烧杯中,加入 20 mg 硝酸铈 铵,调节 Pu 价态至六价,作为 Pu(N)的储备液, 浓度采用 X 射线荧光法测定。

(2) 标准样品制备

根据 1AF 料液基本组成,制备一系列含有不 同浓度裂片及杂质元素的含钚标准溶液,组成列 入表 1,其中 2 ♯-1−4、3 ♯-1−10 中加入裂片及 元素组成列入表 2。Pu(Ⅳ)质量浓度范围在 0~ 2.82 g/L,硝酸浓度为 1.50~6.00 mol/L,Pu(Ⅵ)质 量浓度为 0.023 8~0.318 g/L,铀质量浓度为 0~ 252 g/L,Np(Ⅴ)质量浓度为 0~0.10 g/L,共存裂 片及杂质元素铝、钡、铬、铁、钾、钠、镧、锰、钼、镍、 锶、磷、硫、钛等的质量浓度为 0.05~5.00 g/L。

(3) 光谱采集

应用近红外光谱仪采集标准样品的近红外吸 收光谱,10 mm 光程比色皿,空气参比,分辨率为 0.15、0.27、0.50、1.1、2.2、4.4 nm,累计次数 64 次。模拟样品测量在手套箱内完成,真实样品在 屏蔽小室内完成。

No.	$ ho(\operatorname{Pu}(\operatorname{W}))/(\operatorname{g} \cdot \operatorname{L}^{-1})$	$\rho(\operatorname{Pu}(\mathbb{W}))/(g \cdot L^{-1})$	$ ho(\mathrm{U})/(\mathrm{g}\cdot\mathrm{L}^{-1})$	$ ho(\mathrm{Np}(\mathrm{V}))/(\mathrm{g}\cdot\mathrm{L}^{-1})$	$c(\text{HNO}_3)/(\text{mol} \cdot L^{-1})$
1#	0.318				3.00
1 # -1	0.265				4.83
1 # -2	0.227				4.14
1 # -3	0.199				4.50
1 # -4	0.177				4.78
1 # -5	0.159				5.00
1 # -6	0.144				5.18
1 # -7	0.132				5.33
1 # -8	0.122				5.46
1 # -9	0.113				5.57
1 # -10	0.106				5.67
1 # -11	0.099 4				5.75
1 # -12	0.093 5				5.82
1 # -13	0.088 3				5.88
1 # -14	0.0837				5.95
1 # -15	0.079 5				6.00
2 #	0.047 7		252	0.095	3.44
2 # -1	0.038 2		202	0.076	1.64
2 # -2	0.031 8		168	0.063	1.58
2 # -3	0.027 2		144	0.054	2.52
2 # -4	0.023 8		126	0.048	2.37
3 #	0.125	2.820	221	0.095	2.99
3 # -1	0.114	2.564	200	0.086	2.84
3 # -2	0.104	2.350	184	0.079	2.71
3 # -3	0.096 2	2.169	170	0.073	2.60
3 # -4	0.089 3	2.014	116	0.068	2.51
3 # -5	0.083 3	1.880	147	0.063	2.43
3 # -6	0.078 1	1.762	138	0.059	2.36
3 # -7	0.073 5	1.659	130	0.056	2.29
3 # -8	0.069 4	1.567	123	0.053	2.24
3 # -9	0.065 8	1.484	116	0.050	2.19
3 ± -10	0 062 5	1 410	110	0.048	2 14

表1 1AF 料液中 Pu(VI)定量校正模型标准样品集

Table 1 Standard sample sets of Pu(VI) quantitative calibration model in 1AF feed

2 结果与讨论

2.1 钚储备液中价态的确认

每日本的调节进度采用吸收光谱法进行确认,Pu(\[])在硝酸溶液中的近红外吸收光谱示于图 1。当溶液中 854 nm 和 1 070 nm 附近的Pu(\[])特征峰消失,只出现 831 nm 附近的 Pu(\[])的特征峰时,表明 Pu 已完全转化为 Pu(\[])。

2.2 Pu(\[]) 吸光度的影响因素

2.2.1 仪器分辨率对 Pu(\1)摩尔消光系数的影 响 文献[5-9]表明,Pu(\1)在硝酸溶液中的摩尔

消光系数各不相同,差别较大,主要原因是由于仪器分辨率的不同,吸光度测量有误差,因而需要对 不同分辨率下的摩尔消光系数进行研究。图2是 不同分辨率下的 Pu(VI)的吸收光谱。从图2可 以看出:当仪器分辨率小于1 nm 时,所获得的摩 尔消光系数均在500 L/(mol•cm)左右;仪器分 辨率大于1 nm 时,摩尔消光系数减小;仪器分辨 率达到 4.4 nm 时,其摩尔消光系数减小;仪器分辨 率达到 4.4 nm 时,其摩尔消光系数降至 300 L/ (mol•cm)以下。因而,实际应用中需要确保一 定的分辨率,才可以达到最佳的检测效果,以下实 验过程选用的仪器分辨率为 0.27 nm。

斗液中共存元素的组成
料流
$1 \mathrm{AF}$
表 2

Table 2 Composition of coexisting elements in 1AF feed

							7	$_{o}/(\mathrm{g} \cdot \mathrm{L}^{-1})$							
00	Al	Ba	Cr	Fe	K	La	Mn	Mo	Na	Ni	Ъ	s	Sr	Ti	Y
2 # -1	0.649	0.0129	0.185	2.02	1.66	2.52	0.00780	0.133	3.30	0.386	0.0410	0.373	0.0290	0.0884	0,009 80
2 # -2	1.08	0.0215	0.308	3.36	2.77	4.20	0.013 1	0.222	5.49	0.645	0.0683	0.622	0.0480	0.147	0.0164
2 # -3	1.39	0.0277	0.395	4.32	3.56	5.40	0.0169	0.285	7.06	0.829	0.0879	0.799	0.0621	0.189	0.0211
2 # -4	1.62	0.0323	0.461	5.05	4.16	6.31	0.0197	0.333	8.24	0.967	0.103	0.932	0.0725	0.221	0.0246
3 # -1	0.295	0.005 88	0.0839	0.917	0.76	1.15	0.00358	0.0604	1.50	0.176	0.0186	0.170	0.0132	0.0402	0.00447
3 # -2	0.540	0.0108	0.154	1.68	1.39	2.10	0.00657	0.111	2.75	0.322	0.0342	0.311	0.0241	0.0737	0.008 20
3 # -3	0.748	0.0149	0.213	2.33	1.92	2.91	0,009.09	0.153	3.80	0.446	0.0473	0.430	0.0335	0.102	0.0113
3 # -4	0.926	0.0185	0.264	2.88	2.37	3.60	0.0112	0.190	4.71	0.553	0.0586	0.533	0.0414	0.126	0.014 0
3 # -5	1.08	0.0215	0.308	3.36	2.77	4.20	0.013 1	0.222	5.49	0.645	0.0683	0.622	0.0483	0.147	0.0164
3 # -6	1.22	0.0243	0.346	3.78	3.12	4.73	0.0148	0.249	6.18	0.725	0.0769	0.699	0.0541	0.160	0.0184
3 # -7	1.34	0.0266	0.380	4.16	3.42	5.19	0.0162	0.274	6.79	0.796	0.0844	0.768	0.0597	0.182	0.0202
3 # -8	1.44	0.0287	0.410	4.48	3.69	5.60	0.0175	0.296	7.32	0.859	0.0911	0.829	0.0644	0.196	0.0219
3 # -9	1.54	0.0310	0.437	4.78	3.94	5.97	0.0187	0.315	7.81	0.916	0.0971	0.883	0.0686	0.209	0.023 3
3 # -10	1.62	0.0323	0.462	5.05	4.16	6.31	0.0197	0.332	8.24	0.967	0.103	0.932	0.0725	0.221	0.0246

 钚质量浓度为 0.318 g/L,c(HNO₃)=3.00 mol/L

 图 2 不同分辨率下硝酸溶液中 Pu(\1)的近红外吸收光谱

 Fig. 2 Near infrared absorption spectra of Pu(\1) at different resolution

2.2.2 硝酸浓度对 Pu(VI)的吸收光谱的影响 在 后处理料液中,硝酸是最为重要的介质,需要对不同 硝酸浓度下 Pu(II)的吸收光谱进行研究。图 3 是 Pu(VI)在不同浓度硝酸溶液中的吸收光谱。从图 3 可以看出:随着硝酸浓度从 1.00 mol/L 增加到 10.00 mol/L,830.60 nm 处的吸光度(A)逐渐降 低,以1.00 mol/L 硝酸时 Pu(VI)的吸光度为基 准,硝酸浓度每增加1 mol/L,吸光度下降约3%, 当硝酸浓度增大至 10.00 mol/L 时,吸光度下降 至 0.295,比 1.00 mol/L 时的 0.924,下降了 68%;另一方面,随着硝酸浓度的增加,815 nm的 吸收带不断增强,有人认为此峰是[PuO2(NO3)3]-的特征峰,说明随着硝酸浓度的增加,形成的 Pu(\[) 的三硝酸根配合物 $[PuO_2(NO_3)_3]^-$ 浓度增大^[5], 但也有研究者认为,815 nm 的吸收为 $[PuO_2(NO_3)]^+$,

而不是三硝酸根配合物,在晶体结构中才存在 [PuO₂(NO₃)₂],因此,更可信的是形成了单硝酸 根配合物^[10]。

图 3 不同硝酸浓度下 Pu(YI)的近红外吸收光谱 Fig. 3 Near infrared absorption spectra of Pu(YI) in different HNO₃ concentration

2.2.3 离子强度对 Pu(\I)吸收光谱的影响 溶 液的离子强度在后处理体系中变化较大,因而其 对Pu(\I)的吸收光谱的影响需要研究。图 4 是 不同浓度高氯酸溶液(不同离子强度)中 Pu(\I)的吸收光谱。由图 4可知:随着离子强度的增大, 溶液中 Pu(\I)位于 830 nm 附近的吸收峰逐渐降 低且朝短波方向蓝移。高氯酸浓度 1 mol/L 时最 大吸收峰是 830.74 nm, A=0.968; 2 mol/L 时最 大吸收峰是 830.55 nm, A=0.903; 3 mol/L 时最 大吸收峰是 830.42 nm, A=0.886; 4 mol/L 时最

高氯酸浓度从右到左依次增加,为1,2,3,4,5,6,7 mol/L 图 4 不同离子强度下 Pu(YI)的近红外吸收光谱 Fig. 4 Near infrared absorption spectra

of Pu(VI) in different ionic strength

大吸收峰是 830.20 nm,A=0.883;5 mol/L 时最 大吸收峰是 829.94 nm,A=0.874;6 mol/L 时最 大吸收峰是 829.67 nm,A=0.853;7 mol/L 时最 大吸收峰是 829.14 nm,A=0.852。

2.3 Pu(Ⅵ)定量校正模型建立

2.3.1 模拟 1AF 样品配制 从 2.2 节可以看 出,Pu(II)在硝酸溶液中的吸光度容易受到硝酸 浓度的影响,此外,由于后处理料液中的组成较为 复杂,对光谱测量影响较大,直接采用工作曲线回 归方法无法满足数据处理要求,采用偏最小二乘回 归法建立数学模型,可以实现数学分离代替化学分 离的功能,在标准样品组成的铀、钚、酸范围内满 足复杂体系下光谱定量需求。根据 1AF 工艺点 样品的理论组成,配制成分为 0.125 g/L Pu(Ⅱ)-2. 82 g/L Pu(NO₃)₄-220. 5 g/L UO₂ (NO₃)₂-0. 095 g/L NpO₂(NO₃)-3.00 mol/L HNO₃ 的模拟 1AF 料 液。获得的模拟 1AF 料液光谱与真实乏燃料溶 解液的吸收光谱进行比较,如图 5。由图 5 可知: 830.60 nm 处的峰为 Pu(II)的吸收峰,位于 854 nm 和1 070 nm附近的吸收属于 Pu(Ⅳ), Np(V)位 于 980 nm 附近的吸收峰明显,同时铀酰与镎酰 形成的阳-阳络合离子峰位于 992 nm 处;模拟 1AF 料液与真实乏燃料溶解液的区别在于 Pu(Ⅵ)

模拟 1AF 料液:0.125 g/L Pu(叭)-2.82 g/L Pu(NO₃)₄-220.5 g/L
UO₂(NO₃)₂-0.095 g/L NpO₂(NO₃)-3.00 mol/L HNO₃;
样品 I:溶解完毕后的真实乏燃料溶解液,组成为 4.18 g/L
Pu(NO₃)₄-368.7 g/L UO₂(NO₃)₂-3.15 mol/L HNO₃;
样品 I:样品 I 初步调料后的样品,组成为 3.619 g/L
Pu(NO₃)₄-348.12 g/L UO₂(NO₃)₂-3.8 mol/L HNO₃;
样品 II:样品 I 进一步调料后的样品,组成为 2.975 g/L
Pu(NO₃)₄-289.22 g/L UO₂(NO₃)₂-3.15 mol/L HNO₃
图 5 模拟 1AF 料液和真实乏燃料

溶解液的近红外吸收光谱

Fig. 5 Near infrared absorption spectra of simulation 1AF feed and spent nuclear fuel solution 的吸收峰,在真实的溶解液及调料过程中没有出现 Pu(Ⅱ)的吸收峰,其余光谱位置一致。

2.3.2 定量校正模型建立与验证 将采集得到 的标准样品吸收光谱与 Pu(\II)浓度进行关联,选 择最佳的建模波长和预处理方式,应用偏最小二 乘回归法(PLS)建立 Pu(\II)浓度的测量数学模 型,获得模型的参数示于图 6。由图 6 可知:校正模 型的校正标准偏差(σ_R)为 1.95 mg/L,按照 3 倍 σ_R 计算检测下限,方法的检测下限为 5.8 mg/L。

2.3.3 模拟 1AF 料液中 Pu(VI)测量精密度及 重加回收率 配制 1AF 料液模拟样品,测量方法 的精密度和重加回收率,测量结果列入表 3。取 2.5 mL表 3 中 4 # 样品,往其中加入 0.318 g/L 的标准样品(表 1 中 1 # 样品)0.25 mL,记为重加 1, 取 2.75 mL表 3 中 5 # 样品,往其中加入 0.25 mL标 准样品(表 1 中 1 # 样品),记为重加 2,并计算回收 率。经测试,重加 1 的模型测量值为 0.051 0 g/L, 重加 2 的模型测量值为 0.074 2 g/L,重加回收率 分别为 96%和 103%。

2.4 真实样品测量

应用建立的数学模型,对某燃料溶解过程溶 解液中的 Pu(VI)进行测量,获得的谱图和分析结 果示于图 7。由图 7 可知:溶解液中吸收光谱的 基线较高,分析原因为溶解液中有不溶颗粒,影响 光谱吸收信号,Pu(VI)的质量浓度测量结果为 0.02 g/L,分离铀后采用 X 荧光法测量结果为 0.019 g/L,两者结果一致。

2.5 钚总量的测定

根据以上的研究结果,考虑将本方法用于溶 液中钚总量的测量,实现大量铀中微量钚的分光 光度测量。

		Table	3 Determ	nination acc	curacy of F	Pu(Ⅵ) in sin	nulation 1AF sampl	es		
No			$\rho(\operatorname{Pu}(\mathbb{M}))$	$/(g \cdot L^{-1})$			<i>ρ</i> (Pu(₩))/	标准偏差/	s / %	
110.	1	2	3	4	5	6	$(g \bullet L^{-1})$	$(g \cdot L^{-1})$	3 ₁ / /0	
1 #	0.071 5	0.070 8	0.072 9	0.073 1	0.071 5	0.070 9	0.071 8	0.000 99	1	
2 #	0.046 4	0.046 0	0.046 8	0.046 7	0.047 8	0.046 7	0.046 7	0.000 60	1	
3 #	0.033 4	0.034 0	0.033 8	0.034 6	0.034 0	0.032 5	0.0337	0.000 71	2	
4 #	0.025 3	0.026 0	0.025 9	0.025 3	0.025 6	0.026 0	0.025 7	0.000 33	1	
5 #	0.0510	0.052 0	0.0510	0.051 1	0.0518	0.050 4	0.051 2	0.000 59	1	

Fig. 7 Near infrared absorption spectra of Pu(VI) in spent nuclear fuel solution

氧化剂用量对测量结果的影响 2.5.1 将本方 法用于总钚测量时,需要确保样品中的钚能全部 氧化,因而需要研究氧化剂的用量。在4只样品 管中分别加入相同体积钚储备液(42 g/L),使每 一个样品的钚总质量为 0.5 mg,之后向每一只样 品管中分别加入 0.5、1.0、1.5、2.0 mL 0.4 mol/L 硝酸铈铵,并定容至相同的体积,采集样品的光谱 信号,应用建立的模型进行预测,以确定氧化剂的 量。图 8 是不同氧化剂用量时的钚总量测量结 果。由图 8 可知:对于不含还原剂的钚溶液样品, 当钚总质量为 0.5 mg、加入 0.4 mmol 的硝酸铈 铵时,测量得到的结果最接近参考值(0.5 mg); 随着氧化剂的量增加,钚总量测量结果减小。 因而氧化剂的量并不是越多越好,需要合适的 比例,推荐硝酸铈铵与钚的摩尔比为200:1最 为合适。

2.5.2 氧化时间对测量结果的影响 为保证氧 化完全,因而需要对硝酸铈铵氧化钚的时间进行 研究,取 0.5 mL 1 g/L 钚储备液,加入 1 mL 硝 酸铈铵溶液,定容至 2 mL,在 1 cm 比色池中测定 不同时刻的吸收光谱,采用建立的模型预测浓度, 计算钚样品中钚总质量。不同氧化时间获得的测 量结果示于图 9。由图 9 可知:加入氧化剂后,钚 的总质量随着时间增加而逐渐增加,在 3 min 后 达到最大值,因此在实际样品测量时,氧化 3 min 即可开始进行光谱测量。

2.5.3 真实乏燃料溶解液中钚总量的测定 取 2.4 mL 硝酸铈铵于离心管中,加入 0.1 mL 的真

昆匀后,测量吸光度,并采用建
 预测,换算稀释倍数后得到样
 [1] 侯小琳,张绍琦,胡景炘,等. Purex 流程 1AF 料液
 中调节钚价态的研究 I:二步法调价[J]. 原子能科
 学技术,1994,28(2):143-149.

- [2] 隗秀芳,张清轩. PMBP 萃取法分析硝酸介质中钚 的价态[J].原子能科学技术,1991,25(3):62-66.
- [3] Choppin G R. Evaluating the performance of a stopped-flow near-infrared spectrophotometer for studying fast kinetics of actinide reactions[J]. J Radioanal Nucl Chem, 2001, 250: 21-26.
- [4] 罗文宗. 钚的分析化学[M]. 北京:中国原子能出版 社,1991.
- [5] Lee M H, Park Y J, Kim W H. Absorption spectroscopic properties for Pu(Ⅲ, Ⅳ and Ⅵ) in nitric and hydrochloric acid media[J]. J Radioanal Nucl Chem, 2007, 273 (2): 375-382.
- [6] Wilson R E, Hu Y J, Nitsche H. Low-level detection and quantification of plutonium(Ⅲ, Ⅳ, V, and Ⅵ) using a liquid core wave guide[C] // Plutonium Futures, Albuquerque, USA, July 6-10, 2003.
- [7] Yi X W, Dang H J, Zeng B, et al. Spectrophotometric investigation of plutonium(Ⅳ) oxidation by cerium(Ⅳ)[J]. J Radioanal Nucl Chem, 2016, 310: 201-205.
- [8] Mahildoss D J, Ravi T N. Spectrophotometric determination of plutonium III, IV, and VI concentrations in nitric acid solution[J]. J Radioanal Nucl Chem, 2012, 294: 87-91.
- [9] 武藤博,吉岡善行,青柳寿夫,等.Pu(Ⅵ)-吸光光度 法による硝酸溶液中プルトニウムの定量(株)東 芝・受託調査結果報告,JAERI-M 86-032[R].日本 原子力研究所東海研究所化学部,1986.
- [10] Gaunt A J, May I, Neu M P, et al. Structural and spectroscopic characterization of plutonyl(VI) nitrate under acidic conditions[J]. Inorg Chem, 2011, 50: 4244-4246.

实乏燃料溶解液,混匀后,测量吸光度,并采用建 立的数学模型进行预测,换算稀释倍数后得到样 品中总钚最终的实际浓度(ρ_{tot}),将光谱法获得的 结果与混合 K 边密度计-X 射线荧光法的结果 ($\rho_{i\!\!R合 Kij},tot$)进行比较,所得结果列入表 4。由表 4 可知:将样品用硝酸铈铵氧化后,采集样品的近红 外吸收光谱,代入测量模型进行预测,测量精度 $s_r \leq 2\%$;得到的分析结果与参考方法吻合较好, 两方法的相对偏差不大于 3%。

表 4 乏燃料溶解液及 1AF 料液中钚的光谱测量结果 与混合 K 边密度计-X 射线荧光法比较 Table 4 Comparison of two methods

for determination of plutonium concentration in spent fuel solution and 1AF feed

	I	吸收光谱法	/	方法的	
No.	$ar{ ho}_{ ext{tot}}/$ (g • L ⁻¹)	标准偏差/ (g・L ⁻¹)	$s_{\rm r}/\%$	ρ 混合K边,tot/ (g・L ⁻¹)	相对 偏差/%
1#	3.24	0.034	1	3.34	-3
$2 \ \#$	2.63	0.016	1	2.60	1
3#	2.54	0.040	2	2.54	0

注:1) n=6

2)1#样品为乏燃料溶解液,2#和3#样品为调料过程 中取的不同时间的1AF料液样品

3) 燃耗为 45 000 MWd/t(以U计)

3 结 论

应用光纤光谱技术在屏蔽小室内建立了乏燃 料溶解液及1AF料液中Pu(VI)的分析方法,同 时对方法进行扩展,采用硝酸铈铵作为氧化剂,建 立了溶解液样品中总钚浓度的分析方法,并与混 合K边密度计-X射线荧光法进行了对比,两者具 有较好的吻合性,该方法准确度好,具有实用性。