高温结晶合成 Mn₂O₃@MoS₂ 复合材料 及其对铀的吸附性能

林育玲¹,吴 凡¹,谢子杰¹,高 博²,唐 梦¹,卢雅宁¹, 王英财¹,张 爽¹,柳玉辉¹,刘云海^{1,*}

东华理工大学,核资源与环境国家重点实验室,江西南昌 330013;
 2.深圳市工勘岩土集团有限公司,广东深圳 518000

摘要:采用高温熔盐电解法合成了 MoS_2 ,为了提高 MoS_2 对铀的吸附性能,以 MoS_2 为基底复合 Mn_2O_3 。 MoS_2 的片层结构有效地分散了 Mn_2O_3 的团聚,同时引进了亲铀氧基团。采用电子扫描显微镜及能谱(SEM & EDS)、X 射线衍射仪(XRD)、Zeta 电位仪等对 Mn_2O_3 @MoS_2 复合材料进行了表征,表征结果表明,高温结 晶合成的 Mn_2O_3 @MoS_2 复合材料具有完整的微观形貌和稳定的晶体结构。通过静态吸附批实验探究了在 不同变量下 Mn_2O_3 (MoS_2 和 Mn_2O_3 @MoS_2 三个材料对溶液中铀的吸附效果,结果表明, Mn_2O_3 @MoS_2 的 吸附性能优于 Mn_2O_3 和 MoS_2 ,在 pH=5.5时,吸附平衡时间为 90 min,吸附动力学遵循准二级动力学模型, 吸附等温线符合 Langmuir 模型。 Mn_2O_3 @MoS_2 的单层饱和吸附容量为 117.5 mg/g,在 293.15~318.15 K 的温度梯度中,升温有利于吸附进行。

关键词:熔盐电解;Mn₂O₃@MoS₂;复合材料;吸附;U(YI) 中图分类号:TL941.13;O615.11 文献标志码:A 文章编号:0253-9950(2022)04-0457-10 doi:10.7538/hhx.2022.YX.2020104

High Temperature Crystallization Synthesis Mn₂O₃@MoS₂ on Composite Materials and Their Adsorption Properties for Uranium

LIN Yu-ling¹, WU Fan¹, XIE Zi-jie¹, GAO Bo², TANG Meng¹, LU Ya-ning¹, WANG Ying-cai¹, ZHANG Shuang¹, LIU Yu-hui¹, LIU Yun-hai^{1.*}

 State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China;
 Shenzhen Geokey Group CO., LTD., Shenzhen 518000, China

Abstract: In this work, MoS_2 was prepared using a high temperature molten salt electrolysis. In order to improve the adsorption performance of MoS_2 for U(VI), Mn_2O_3 was blended on molybdenum disulfide substrate. The laminar structure of MoS_2 effectively dispersed the agglomeration of Mn_2O_3 and introduced uranophilic oxygen group. Scanning electron microscopy, energy dispersive spectroscopy(SEM & EDS), X-ray diffractometer(XRD) and Zeta

收稿日期:2020-11-11;修订日期:2021-01-23

基金项目:国家自然基金科学基金资助项目(22006013,21906019);江西省自然科学基金项目(20212BAB213005);东华理工大 学核资源与环境国家重点实验室自主基金(K20210001)

potentiometers were used for the characterization of $Mn_2O_3 @ MoS_2$. The characterization results show that the high temperature crystallization composite has a complete microstructure and stable crystal structure. By controlling the experimental conditions of variables, the adsorption performance of Mn_2O_3 , MoS_2 and $Mn_2O_3 @ MoS_2$ on U(VI) in solution was studied. The results indicate that the adsorption performance of $Mn_2O_3 @ MoS_2$ is better than those of Mn_2O_3 and MoS_2 , and the adsorption equilibrium time is 90 min at pH=5.5. The adsorption kinetics follows the pseudo-2nd-order kinetic model and the adsorption isotherm curve agrees well with the Langmuir model. The maximum single-layer adsorption capacity of $Mn_2O_3 @ MoS_2$ is 117.5 mg/g. Increasing of the temperature from 293.15 K to 318.15 K is beneficial for the adsorption progress.

Key words: molten salt electrolysis; Mn₂O₃@MoS₂; compound material; adsorption; U(VI)

目前,铀污染主要来源于铀矿的开采、核燃料 的加工利用以及乏燃料后处理等,大量高浓度的 铀不可避免地被释放到环境中,污染土壤、地表 水、地下水。无论是应用还是环境污染,铀的处理 和去除是必要的。铀具有五个氧化态,但U(IV) 和U(VI)是最常见的^[1]。U(IV)不溶于水,通常 会产生沉淀,而U(VI)形成离子溶液^[2]。水溶液 中去除U(VI)的方法有很多,例如化学沉淀^[1]、膜 分离^[3]、生物法^[4]、溶剂萃取^[5]、电化学纯化^[6]、反 渗透^[7]、离子交换^[8]和吸附法。由于吸附法效率 高且操作方便,因此被认为是水环境中污染物处 理的常用方法之一^[9],而且吸附可以降低铀的溶 解浓度和潜在的迁移^[10]。

石墨烯是一种只有一个原子厚的碳层,由 sp² 键合的碳组成。自 2004 年首次报道石墨烯 的电学性质^[11]以来,因为其独特的二维(2D)结构 和优异的物理化学性能,如高电导率、导热率、机 械强度大但质量超轻、比表面积大(2 620 $m^2/$ g^[12])等,它引起了人们的强烈兴趣。石墨烯的化 学修饰为其提供了新的性能和功能,从而带来了 多种多样的技术应用[13]。近年来,石墨烯的快速 发展带动了其他单层二维体系的研究,如二维过 渡金属硫化物、六方氮化硼。它们的特殊结构导 致了很多新奇的物理性质。二维二硫化钼(2D MoS₂)已成为受到广泛研究的材料。MoS₂的晶 格结构是由一层六边形排列的钼原子共价夹在两 层硫原子之间,形成一个整体的三角棱柱单 元^[14]。单层二硫化钼(MoS₂)作为一种二维材 料,具有超轻的质量和巨大的比表面积^[15]。MoS₂ 的表面具有硫官能团,并且具有极好的电荷转移 潜力和极小的二次污染[16]。硫原子的存在对于 MoS₂ 有效去除污染物至关重要,因为硫原子是

MoS₂的主要吸附位。近来,MoS₂与其他功能纳 米材料的复合物由于其大的表面积和强的表面吸 附能力而在吸附重金属离子方面取得了令人满意 的结果。Yang 等^[17] 研究了两种新型磁性核壳 Fe₃O₄@MoS₂和合成了MoS₂@Fe₃O₄复合材 料,并利用其去除 Cr(II),且证实了该材料具有 良好的吸附和可再生性能。Xie 等^[18]通过水热法 一步合成了 MoS₂ 和还原石墨烯的多孔纳米复合 材料(MoS₂-rGO),MoS₂-rGO纳米复合材料对刚 果红的吸附速率较快,pH=3时最大吸附容量可 达 440.9 mg/g。Sun 等^[9] 将磁性 Fe₃O₄ 纳米粒 子用聚乙烯亚胺(PEI)包覆,然后通过水热法对 Fe₃O₄@PEI进行 MoS₂ 改性,制备出三维花状结构 的磁性聚乙烯亚胺@ $MoS_2(MP@MoS_2)$ 复合材料, 该材料在去除水环境中的 Cr(\[)和 Pb([])方面 具有很大的实际应用潜力。Wang 等^[19]采用简单 的水热法制备了涂覆 MoS₂ 的 Mg/Al 双层氢氧 化物复合材料(LDHs@MoS₂),用于从水溶液中 吸附 Cr(M)。在 pH=5.0 时,LDHs@MoS₂ 对 Cr(VI)的去除容量达到 76.3 mg/g。

在吸附铀方面,锰氧化物是金属的强吸附 剂^[20-23]。锰氧化物对重金属的吸附亲和力始终高 于与环境相关的吸附剂^[24-25]。锰氧化物具有重要 的吸附性能,因此可用于从水溶液中清除放射性 核素^[26]。 Mn_2O_3 的价格低廉,且无毒、无害,对环 境友好,选择 Mn_2O_3 来提升 MoS_2 的吸附性能是 个可行的方案,而且以 MoS_2 为基底可以增加 Mn_2O_3 的比表面积,防止 Mn_2O_3 团聚, Mn_2O_3 的 复合活化了 MoS_2 的吸附位点,增强了吸附性能。

本工作拟采用高温电化学法制备 Mn₂O₃ @ MoS₂,通过静态吸附批实验研究不同 pH、接触时间、U(\])初始浓度以及反应温度对 Mn₂O₃ @

MoS₂ 吸附 U(II)的影响,探究其对铀的吸附性能。

1 实验部分

1.1 试剂和仪器

氯化锂、氯化钾和钼酸铵,广东西陇科技有限 公司(中国);硫氰酸钾,上海优试化工有限公司;硝 酸钾、硝酸锂和硝酸钠,北京沃凯生物科技有限公 司;乙酸锰,国药集团化学试剂有限公司;钼丝,上 海金旭合金公司;碳棒,北京京龙特种碳石墨厂;硝 酸铀酰六水合物,金鑫化工实业有限公司。所有药 品和化学试剂均为分析纯,未进一步纯化即可使用。

Nova Nano 450 扫描电子显微镜(SEM-EDS),荷兰FEI公司;FTS-65A 傅立叶变换红外 光谱仪(FTIR),美国 Bio-RAD公司;Stabino-PMX400 Zeta 电位仪,美国 Microtrac 有限公司; Bruker D8-A25 X 射线粉末衍射仪(XRD),德国 Bruker(布鲁克)公司;BSA224S 电子天平,精度 0.1 mg,赛多利斯科学仪器(北京)有限公司;TU-1900 双光束紫外可见分光光度计,北京普析通用 仪器有限责任公司。

1.2 材料的制备

1.2.1 MoS₂的制备 准确称量 4.0 g 钼酸铵、 6.0 g 硫氰酸钾放置于干燥的刚玉坩埚中,加入 一定量的 KCl-LiCl 盐体系,混合均匀后置于 60 ℃的恒温干燥箱中去除水分。将其在850 ℃ 的高温炉中熔解后以钼丝、碳棒为阴阳极,通入 0.5 A 的电流电解 1 h 得到粗产品,取出样品并 待其冷却到室温,用去离子水洗涤、抽滤数次,将 样品置于 60 ℃的干燥箱中持续干燥 24 h,干燥后 即制得 MoS₂。

1.2.2 Mn_2O_3 @ MoS₂ 材料制备 准确称取固体硝酸钠 13.5 g、硝酸锂 7.4 g、硝酸钾 4.1 g,缓慢地加入到研钵中,混合并充分研磨 25 min,把研磨完成的盐转移到刚玉坩埚中,使用马弗炉在 250 ℃恒温加热,等待硝酸盐在其中熔解完全,接着用石英棒慢慢搅拌加入 2 g 乙酸锰和4 g MoS₂,保温 3 h,从马弗炉中取出烧热的刚玉坩埚,马上用去离子水冷却至室温,加水浸泡3 h后将其倒入烧杯中磁力搅拌 1 h,用去离子水多次洗涤、抽滤、除杂后在 60 ℃下干燥 12 h,得到 Mn_2O_3 @MoS₂ 复合材料。

1.2.3 铀标准溶液的制备 准确称取2.1098g 硝酸铀酰六水合物于烧杯中,然后加入适量的浓 硝酸搅拌至硝酸铀酰六水合物溶解,随后转移至 1 L的容量瓶中,即可得到 10 g/L 的铀标准溶液。 将 10 g/L 的铀标准溶液用去离子水稀释,得到相 应实验所需的浓度。

1.3 吸附铀实验

本实验研究溶液的 pH 值、接触时间、铀初始 浓度和温度对吸附剂(Mn₂O₃ @ MoS₂)吸附 U(VI)性能的影响。精确称取 5 mg 吸附剂放入 150 mL 的锥形瓶中,再向锥形瓶中加入 25 mL 一定浓度和 pH 值的 U(VI)溶液,把锥形瓶放入 振荡器中振荡一定时间后,取出一定量的溶液离 心。最后,用双光束紫外可见分光光度计和偶氮 胂Ⅲ法^[16],测定吸附后上层清液的铀浓度,采用 差减法计算出吸附容量。平衡吸附容量 q_e(mg/g) 根据公式(1)计算。

$$q_{\rm e} = \frac{(\rho_0 - \rho_{\rm e})V}{m} \tag{1}$$

式中: ρ_0 和 ρ_e 分别为U(VI)的初始和平衡质量浓度,mg/L;V是溶液体积,L;m是吸附剂的质量,g。

2 结果与讨论

2.1 样品表征

2.1.1 XRD 分析 Mn₂O₃、MoS₂ 和 Mn₂O₃ @ MoS₂ 的 XRD 分析结果示于图 1。由图 1 可以看出,Mn₂O₃ @ MoS₂ 的(003)、(200)、(211)、(222)、(400)、(009)、(107)、(044)、(110)、(113) 面均与 Mn₂O₃ 标准卡片(PDF # 41-1442)、MoS₂ 标准卡片(PDF # 17-0744)相对应,可发现 Mn₂O₃ @MoS₂ 复

合材料晶面衍射峰出现了 Mn_2O_3 、 MoS_2 的特征 衍射峰,且衍射峰较为尖锐,这说明 Mn_2O_3 的掺 杂没有改变 MoS_2 的结构,所制备的 Mn_2O_3 @ MoS_2 晶化度高,结晶度良好。

2.1.2 SEM-EDS 分析 MoS₂ 和 Mn₂O₃@MoS₂
 的 SEM-EDS 图示于图 2。由图 2(a)可以看出,
 MoS₂ 呈现出片层结构,且具有金属一般光泽的

透亮度。从图 2(b)可以看出, Mn_2O_3 球状结构分 散在 MoS_2 的片层上,由此可见, Mn_2O_3 与 MoS_2 复合之后形成的材料没有对原本 MoS_2 的形貌特 征发生改变。从 EDS 图可明显看出,图 2(a)是复 合前的 MoS_2 ,只含 Mo 和 S 元素,而图 2(b)是复 合之后的 MoS_2 ,图中存在 Mn 元素和 O 元素, XRD 图表明成功制备 Mn_2O_3 @ MoS_2 复合材料。

图 2 MoS₂(a)和 Mn₂O₃@MoS₂复合材料(b)的 SEM 以及 Mapping 图 Fig. 2 SEM and Mapping of MoS₂(a) and Mn₂O₃@MoS₂ composites(b)

2.1.3 FTIR 分析 图 3 为 Mn_2O_3 、 MoS_2 和 Mn_2O_3 @MoS₂ 的 FTIR 光谱。由图 3 可以看到, 在 491、560、633 cm⁻¹处出现的特征峰,归因于 Mn-O 伸缩振动^[27]。位于1 602、3 372 cm⁻¹处 的两个振动带分别对应于 Mn_2O_3 纳米颗粒上吸附 的表面水分子的弯曲和伸缩振动^[28]。在图 3 的 Mn_2O_3 @MoS₂ 复合材料的 FTIR 光谱中,可以看 到图中仍然存在 Mn_2O_3 的特征峰。在 Mn_2O_3 @ MoS₂ 的 FTIR 中可以观察到 3 443 cm⁻¹处的宽 吸收带是由于 MoS_2 中物理吸附水的 O—H 拉伸

图 3 Mn₂O₃、MoS₂和 Mn₂O₃@MoS₂的红外光谱图 Fig. 3 Infrared spectra of Mn₂O₃, MoS₂ and Mn₂O₃@MoS₂

和在 1 621 cm⁻¹ 附近的 δ (H—OH)振动^[29]。在 600 cm⁻¹ 附近的弱带是 Mo-S 的伸缩振动^[28,30], 但是 MoS₂ 的特征吸附带与 Mn₂O₃ 的特征峰重 合,因此,FTIR 光谱进一步说明 Mn₂O₃ @ MoS₂ 的成功合成。

2.1.4 Zeta 电位分析 Zeta 电位可以用来指示 颗粒间的作用强度,以及材料表面的带电量。 Mn₂O₃、MoS₂和 Mn₂O₃@MoS₂的 Zeta 电位示 于图 4。由图 4 可知,在 pH=3~8时, Mn₂O₃、

 MoS_2 和 Mn_2O_3 @MoS_2的 Zeta 电位随着 pH 的 升高而降低。其中, Mn_2O_3 等电位点的 pH=5.4, 表面电势由 15.73 mV 降到-4.39 mV; MoS_2 表面 电势由-12.81 mV 降到-26.47 mV; Mn_2O_3 @ MoS_2 表面电势由-3.61 mV 降到-13.52 mV; 其电势皆为负电势,且皆大于-30 mV; Mn_2O_3 @ MpS_2 表面电声击, MoS_2 由于其三明治的结构, 表面由丰富的硫位点包围,因此表面带负电,但是 其表面缺乏激活硫位点的官能团,因此对铀酰离 子吸附作用低。复合材料 Mn_2O_3 @MoS_2表面电 势为负值,但是却没有 MoS_2 的那么低,是因为引 进 Mn_2O_3 使得硫位点所带的电荷被中和,进一步 证明了 Mn_2O_3 @MoS_2复合成功。

2.2 pH 影响

pH 是反映吸附过程的一个主要因素,通过控 制溶液的 pH 值,来探究 pH 对水溶液中吸附材料 对铀的吸附影响有很大意义。本工作的 pH 范围 定为 $3.5 \sim 6.5$,吸附剂的质量为 5 mg,溶液体积为 25 mL, $\rho_0 = 50$ mg/L,吸附时间为 360 min。 Mn₂O₃、MoS₂和 Mn₂O₃@MoS₂在不同 pH 下对铀 的吸附效果示于图 5。由图 5 可以明显看出,三种 材料在 pH= $3.5 \sim 5.5$ 范围内,随着 pH 的增加,吸 附容量逐渐增加。在 pH= $5.5 \sim 6.5$ 时,随着 pH 的增加,Mn₂O₃@MoS₂的吸附容量出现了下降趋 势,从图 5 可以看出,Mn₂O₃@MoS₂在 pH=5.5时,达到最大吸附容量,为 111.7 mg/g,而 Mn₂O₃ 和 MoS₂在 pH=6.0 时,吸附容量达到最大,随后 随着 pH 的增加而下降。在 pH 较低时,溶液中的

 H^+ 、 UO_2^{2+} 会竞争吸附 Mn_2O_3 @ MoS₂ 表面的活性 位点。当 pH 变大时,溶液的碱性也变大,铀酰离子 在溶液中形成的(UO_2)₃(OH)₅⁺ 和(UO_2)₄(OH)₇⁺ 不易被吸附,且 pH 改变了表面电荷的吸附活性, 导致吸附容量降低。

2.3 吸附动力学研究

吸附时间能很好地反映出吸附平衡的速率, 吸附时间的长短也是将吸附材料运用在实际中的 一个重要考量标准。吸附剂的质量为5 mg,溶液 体积为 25 mL, po = 50 mg/L, pH 为 5.5, 探究吸 附时间对材料吸附铀的影响,结果示于图6。由 图 6 可以看出,在开始阶段 Mn_2O_3 、 MoS_2 和 $Mn_2O_3@MoS_2$ 的吸附速率较快,在吸附时间超 过 30 min 后,吸附速率开始变慢,曲线斜率变 缓。因为在吸附一开始,吸附剂上的活性位点 较多,UO2+ 可以快速被其吸附,随着吸附时间 的推进,活性位点被占据,剩余的铀酰离子很难 被吸附,吸附达到平衡,吸附曲线趋于平缓呈水 平直线。其中, MoS2 最早达到吸附平衡, 吸附平 衡时间为 30 min。Mn₂O₃@MoS₂ 对 U(II)的吸附 平衡时间约在 90 min。Mn₂O₃ 大约在150 min 时对 U(N)的吸附容量增加缓慢,再延长吸附 时间,吸附容量几乎无变化,说明吸附已达到平 衡。为了进一步更好地研究吸附剂吸附 U(Ⅱ) 的吸附动力学行为,采用准一级和准二级动力 学模型对实验数据计算拟合,其线性方程表达 式如式(2)和(3)。

$$\ln(q_{\rm e} - q_t) = \ln q_{\rm e} - k_1 t \tag{2}$$

by $Mn_2 O_3$, MoS_2 and $Mn_2 O_3 @MoS_2$

$$\frac{t}{q_{t}} = \frac{1}{k_{2}q_{e}^{2}} + \frac{t}{q_{e}}$$
(3)

式中: q_e 、 q_t 分别为达到吸附平衡时和t时刻的吸 附容量,mg/g; $k_1(min^{-1})$ 、 $k_2(g/(mg \cdot min))$ 为 准一级和准二级动力学方程的吸附速率常数。以 $ln(q_e - q_i)$ 对t和 t/q_t 对t分别作图并线性拟合, 从而得到准一级动力学拟合曲线(图7(a))和准 二级动力学拟合曲线(图7(b))。通过图7(a、b) 拟合直线方程的斜率及截距,按照公式计算不同 吸附材料动力学参数 k_1 、 k_2 及线性相关系数 r^2 。 由图7及线性相关系数可以看出,MoS₂、Mn₂O₃@ $MoS_2 和 Mn_2O_3$ 的实验数据与准二级吸附动力 学模型相关性更好。通过准一级和准二级动力学 方程 拟合计算 得 到 $MoS_2 \ Mn_2O_3$ @ MoS_2 和 Mn_2O_3 的理论吸附容量列入表 1。由表 1 结果可 知, $MoS_2 \ Mn_2O_3$ @ MoS_2 和 Mn_2O_3 的吸附容量 准二级动力学方程 拟合计算值($q_{2.cal}$)分别为 42.55、118.3、110.6 mg/g,与准一级动力学方程 拟合计算值($q_{1.cal}$)相比较, $q_{2.cal}$ 更接近实验得到 的吸附容量($q_{e.exp}$)41.29、114.4、92.95 mg/g,说 明该吸附过程更符合准二级动力学,则该吸附反 应中起主导作用的是化学吸附。

图 7 Mn₂O₃、MoS₂和 Mn₂O₃@MoS₂吸附 U(11)的准一级(a)和准二级(b)动力学拟合模型 Fig. 7 Pseudo-1st-order(a) and pseudo-2nd-order(b) kinetic models of U(11) adsorption by Mn₂O₃, MoS₂ and Mn₂O₃@MoS₂

	表 1 M032、M1203。@M032 和 M1203 极时 0007的幼月子级百	
Table 1	itted kinetic curves of U($V\!\!I$) adsorption by MoS_2 , $Mn_2O_3@MoS_2$ and Mn_2O_3	
		_

Mr O @ Mrs 和 Mr O 照附 U(U)的动力党划合

	$q_{ m e,exp}/$ -(mg • g ⁻¹)	准一级吸附动力学			准二级吸附动力学		
吸附剂		$q_{1, \mathrm{cal}}/$ (mg • g ⁻¹)	k_1/\min^{-1}	r^2	$q_{2,\mathrm{cal}}/$ $(\mathrm{mg}\cdot\mathrm{g}^{-1})$	$k_2/(g \cdot mg^{-1} \cdot min^{-1})$	r^2
MoS_2	41.29	36.56	3.36×10 ⁻²	0.984	42.55	3. 18×10^{-3}	0.997
$Mn_2O_3 @MoS_2$	114.4	90.58	3. 01×10^{-2}	0.922	118.3	1.17×10^{-3}	0.996
Mn_2O_3	92.95	337.7	4.02×10 ⁻²	0.795	110.6	2.03×10 ⁻⁴	0.882

2.4 吸附等温模型

在吸附剂质量为 5 mg、U(Π)溶液体积为 25 mL、pH 值为 5.5、吸附时间为 180 min 条件 下,探究不同的 U(Π)初始浓度下($\rho_0 = 10 \sim$ 80 mg/L), MoS₂、Mn₂O₃ @ MoS₂ 和 Mn₂O₃ 对 U(Π)的吸附影响,结果示于图 8。由图 8 可以看 出:随着 U(Π)初始浓度的增大, MoS₂、Mn₂O₃ @ MoS₂ 和 Mn₂O₃ 对 U(Π)的吸附逐渐增加;在

Mag

 $\rho_0 = 40 \text{ mg/L th MoS}_2 \text{ 对 U(VI)} 的吸附逐渐趋于$ $平衡;在<math>\rho_0 = 50 \text{ mg/L th}, \text{Mn}_2\text{O}_3 @ \text{MoS}_2 和$ Mn₂O₃ 对U(VI)的吸附达到饱和,最后趋于平 衡。这可能是因为溶液中的铀酰离子量随铀浓度 的增加而增加,吸附剂接触铀酰离子发生反应的 机会更多,从而导致吸附容量上升。最终,位于材 料表面上的活性位点近乎被完全占据,吸附趋于 平衡。MoS₂、Mn₂O₃ 和 Mn₂O₃@MoS₂ 对U(VI)的 平衡吸附容量分别为 45.60、94.81、113.4 mg/L。

为了更好地解释 Mn₂O₃、MoS₂ 和 Mn₂O₃@ MoS₂ 对 U(VI)的吸附特性,采用 Langmuir 和 Freundlich这两种模型对所得的实验数据结果进 行计算拟合。Langmuir 等温模型体现的是单层 均一的吸附过程,它假设在吸附材料表面上的吸 附位点是均一分布的,而且每个吸附位点的吸附 力相同。其表达式如式(4)所示:

$$\frac{\rho_{\rm e}}{q_{\rm e}} = \frac{1}{q_{\rm m}K_{\rm L}} + \frac{\rho_{\rm e}}{q_{\rm m}} \tag{4}$$

Freundlich吸附等温模型,假定在不均一的吸附 材料表面上,吸附位点的分布也不均一。其等温 模型表达式如式(5)所示:

$$\ln q_{\rm e} = \ln K_{\rm F} + \frac{1}{n} \ln \rho_{\rm e} \tag{5}$$

式中: ρ_e 为吸附平衡时的 U(Π)质量浓度,mg/L; q_e 为平衡时的吸附容量,mg/g; K_L 为吸附平衡常数,L/mg,其值与吸附亲和力成正比; q_m 为单层 饱和吸附容量,mg/g; K_F 为与吸附容量相关的参数,L/g;n 为与吸附强度相关的参数。

以 ρ_e/q_e 对 ρ_e 、以 ln q_e 对 ln ρ_e 作图并进行线 性拟合,得到 Langmuir 和 Freundlich 等温式的 线性拟合曲线,示于图 9。计算得到的吸附容量 和相关参数列于表 2。由图 9 及表 2 可以知道, MoS₂、Mn₂O₃ 和 Mn₂O₃@MoS₂吸附U(N)的实

Fig. 9 Isothermal adsorption models of U($V\!I$) by MoS_2 , $Mn_2\,O_3$ and $Mn_2\,O_3\,@\,MoS_2$

表 2 Mn₂O₃、MoS₂、Mn₂O₃@MoS₂吸附 U(1)的 Langmuir 和 Freundlich 吸附等温模型拟合参数 Table 2 Fitting parameters of Langmuir and Freundlich isotherm adsorption models for U(1) on Mn₂O₃, MoS₂, Mn₂O₃@MoS₂

미간 마나 것이	Langmuir 吸附等温模型			Freundlich 吸附等温模型		
吸附剂	$K_{\rm L}$	$q_{ m m}/(m mg ullet g^{-1})$	r^2	$K_{ m F}$	п	r^2
M_0S_2	0.05	61.81	0.959	7.20	5.17	0.897
$Mn_2O_3\textcircled{0}MoS_2$	0.46	117.5	0.991	53.92	2.14	0.897
Mn_2O_3	0.14	108.7	0.991	24.25	2.76	0.914

验对 Langmuir 吸附等温模型的相关系数更接近 1,其线性相关性更好。这表明了 Mn_2O_3 、 MoS_2 、 Mn_2O_3 @MoS₂ 吸附 U(VI)是单层吸附占 主导的。计算可得 Mn_2O_3 、 MoS_2 和 Mn_2O_3 @MoS₂ 吸附 U(VI)的单层饱和吸附容量为 108.7、61.81 mg/g 和 117.5 mg/g。

2.5 温度的影响与吸附热力学

在吸附剂质量为 5 mg、U(VI)溶液体积为 25 mL、 ρ_0 = 50 mg/L、pH = 5.5、吸附时间为 180 min条件下,探究温度对 Mn₂O₃、MoS₂、 Mn₂O₃@MoS₂ 吸附 U(VI)的影响,结果示于 图 10。从图 10 可以看出,随着温度逐步地升高, Mn₂O₃、MoS₂、Mn₂O₃@MoS₂ 对 U(VI)的吸附容 量也随之提高,这表明升高温度有利于材料对 U(VI)的吸附。

通过引入吉布斯自由能变(ΔG ,kJ/mol)、焓变 (ΔH ,kJ/mol)和熵变(ΔS ,J/(K•mol))这三个热 力学参数,进一步研究 Mn₂O₃、MoS₂、Mn₂O₃@ MoS₂对U(VI)的吸附热力学。焓变和熵变通过 式(6)计算,吉布斯自由能变通过式(7)计算。

$$\ln K_{\rm d} = \frac{\Delta S}{R} - \frac{\Delta H}{RT} \tag{6}$$

$$\Delta G = \Delta H - T \Delta S \tag{7}$$

式中:K_d 为吸附分配系数,mL/g;R 为气体摩尔 常数,8.314 J/(K•mol);T 为热力学温度,K。

由式(6)作图得到热力学拟合曲线示于 图 11,根据式(6)和式(7)计算曲线斜率和截距, 结果列于表 3 和表 4。由表 3 和表 4 可知, Mn₂O₃、 MoS₂ 和 Mn₂O₃ @ MoS₂ 的 ΔH^{\ominus} 皆大于零,这表 明了吸附剂吸附 U(Π)的过程吸热; ΔS^{\ominus} 皆大于 零,混乱度增加,这表明了吸附 U(Π)的过程为熵 增过程;而吉布斯自由能 $\Delta G < 0$,温度升高, ΔG 绝对值变大,这表明 3 种材料对 U(Π)的吸 附是自发的,升高温度促进了吸附反应。

Fig. 11 Fitting curves of kinetic model for U(VI) adsorption by Mn₂O₃, MoS₂ and Mn₂O₃@MoS₂

表 3 Mn_2O_3 、 MoS_2 和 $Mn_2O_3 @ MoS_2$ 吸附 U(\1)的热力学参数 ΔH^{\ominus} 和 ΔS^{\ominus} Table 3 Thermodynamic parameters ΔH^{\ominus} and ΔS^{\ominus} for adsorption of U(\1) by Mn_2O_3 , MoS_2 and $Mn_2O_3 @ MoS_2$

吸附剂	$\Delta H^{\ominus}/(\mathrm{kJ} \cdot \mathrm{mol}^{-1})$	$\Delta S^{\ominus}/(\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}))$		
MoS_2	9.015	88.14		
Mn_2O_3	19.10	73.48		
$Mn_2O_3@\ MoS_2$	12.13	47.03		

3 结 论

(1) 通过高温熔融法成功制备了 Mn₂O₃ @ MoS₂ 复合材料,SEM&EDS、XRD、Zeta 电位等 表征结果表明制成的 Mn₂O₃ @ MoS₂ 仍呈现片状 结构并没有破坏其晶体结构。

(2) Mn₂O₃@MoS₂ 复合材料吸附 U(VI)的 吸附过程为自发吸热,吸附为单分子层吸附,且化 学吸附占主导。

 (3) Mn₂O₃@MoS₂ 复合材料吸附 U(\[])的 最佳 pH 为 5.5,平衡时间为 90 min,单层饱和吸 附容量为 117.5 mg/g。

Table 4	Table 4 Thermodynamic parameters ΔG for adsorption of U(W) by MoS ₂ , Mn ₂ O ₃ and Mn ₂ O ₃ @ MoS ₂						
吸附刻	$\Delta G/(\mathbf{kJ} \cdot \mathbf{mol}^{-1})$						
吸附剂	293.15 K	298.15 K	303.15 K	308.15 K	313.15 K	318.15 K	
MoS_2	-16.71	-17.15	-17.60	-18.04	-18.48	-18.92	
Mn_2O_3	-2.437	-2.804	-3.171	-3.539	-3.906	-4.274	
$Mn_2O_3 @MoS_2$	-1.655	-1.890	-2.124	-2.360	-2.595	-2.830	

表 4 MoS_2 、 Mn_2O_3 和 Mn_2O_3 @MoS₂ 吸附 U(VI)的热力学参数 ΔG 4 Thermodynamic parameters ΔG for adsorption of U(VI) by MoS_2 , Mn_2O_2 and Mn_2O_3

 (4) Mn₂O₃@MoS₂ 复合材料结合了 Mn₂O₃
 和 MoS₂ 的优异特性,吸附性能优于 MoS₂,对水 溶液中 U(N)的吸附具有一定优势。

参考文献:

- [1] Fan F L, Qin Z, Bai J, et al. Rapid removal of uranium from aqueous solutions using magnetic Fe₃O₄@ SiO₂ composite particles[J]. J Environ Radioact, 2012, 106: 40-46.
- [2] Gerber U, Zirnstein I, Krawczyk-Bärsch E, et al. Combined use of flow cytometry and microscopy to study the interactions between the gram-negative betaproteobacterium acidovorax facilis and uranium(VI)[J]. J Hazard Mater, 2016, 317; 127-134.
- [3] Parab H, Joshi S, Shenoy N, et al. Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies[J]. Bioresource Technology, 2005, 96; 1241-1248.
- [4] Camacho L M, Deng S, Parra R R. Uranium removal from groundwater by natural clinoptilolite zeolite: effects of pH and initial feed concentration[J]. J Hazard Mater, 2010, 175: 393-398.
- [5] Khani M, Keshtkar A, Ghannadi M, et al. Equilibrium, kinetic and thermodynamic study of the biosorption of uranium onto cystoseria indica algae[J]. J Hazard Mater, 2008, 150: 612-618.
- [6] Li X, Li F, Jin Y, et al. The uptake of uranium by tea wastes investigated by batch, spectroscopic and modeling techniques[J]. J Molecul Liquids, 2015, 209: 413-418.
- [7] Zong P, Wu X, Gou J, et al. Immobilization and recovery of uranium (VI) using Na-bentonite from aqueous medium: equilibrium, kinetics and thermodynamics studies[J]. J Molecul Liquids, 2015, 209: 358-366.
- [8] Wei Y, Zhang L, Shen L, et al. Positively charged phosphonate-functionalized mesoporous silica for efficient uranium sorption from aqueous solution[J]. J Molecul Liquids, 2016, 221: 1231-1236.

- [9] Sun C, Song G, Chen L, et al. Three dimensional flower-like magnetic polyethyleneimine@MoS₂ composites for highly efficient removal of Cr (VI) and Pb(II) ions[J]. J Colloid Interf Sci, 2020, 580: 550-560.
- [10] Wang Z, Lee S W, Catalano J G, et al. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling[J]. Envir Sci Technol, 2013, 47: 850-858.
- [11] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.
- [12] Lian P, Zhu X, Liang S, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries[J]. Electrochim Acta, 2010, 55: 3909-3914.
- [13] Xu Y, Shi G. Assembly of chemically modified graphene: methods and applications[J]. J Mater Chem, 2011, 21: 3311-3323.
- [14] Nguyen E P, Carey B J, Ou J Z, et al. Electronic tuning of 2D MoS₂ through surface functionalization [J]. Adv Mater, 2015, 27: 6225-6229.
- [15] Lee C, Yan H, Brus L, et al. Anomalous lattice vibrations of single and few-layer MoS₂[J]. Adv Funct Mater, 2012, 22: 1385.
- [16] Kim J S, Yoo H W, Choi H O, et al. Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS₂[J]. Nano Letters, 2014, 14: 5941-5947.
- [17] Yang S, Li Q, Chen L, et al. Ultrahigh sorption and reduction of Cr (VI) by two novel core-shell composites combined with Fe₃O₄ and MoS₂[J]. J Hazard Mater, 2019, 379: 120797.
- [18] Xie H, Xiong X. A porous molybdenum disulfide and reduced graphene oxide nanocomposite (MoS₂rGO) with high adsorption capacity for fast and preferential adsorption towards Congo red [J]. J Environ Chem Eng, 2017, 5: 1150-1158.
- [19] Wang J, Wang P, Wang H, et al. Preparation of

molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(\[])[J]. ACS Sustain Chem Eng, 2017, 5(8): 7165-7174.

- [20] Appelo C, Postma D. A consistent model for surface complexation on birnessite (-MnO₂) and its application to a column experiment[J]. Geochim Cosmochim Acta, 1999, 63; 3039-3048.
- [21] Pretorius P J, Linder P W. The adsorption characteristics of δ-manganese dioxide: a collection of diffuse double layer constants for the adsorption of H⁺, Cu²⁺, Ni²⁺, Zn²⁺, Cd²⁺ and Pb²⁺ [J]. Appl Geochem, 2001, 16: 1067-1082.
- [22] Tonkin J W, Balistrieri L S, Murray J W. Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model[J]. Appl Geochem, 2004, 19: 29-53.
- [23] Zhu M, Ginder-Vogel M, Sparks D L. Ni ([]) sorption on biogenic Mn-oxides with varying Mn octahedral layer structure[J]. Environ Sci Technol, 2010, 44: 4472-4478.
- [24] McKenzie R. The adsorption of lead and other heavy metals on oxides of manganese and iron[J]. Soil Research, 1980, 18: 61-73.
- [25] O'Reilly S E, Hochella Jr M F. Lead sorption efficiencies of natural and synthetic Mn and Fe-

oxides[J]. Geochim Cosmochim Acta, 2003, 67: 4471-4487.

- [26] Crespo M, Acena M, Garcia-Torano E. Adsorption of some actinide elements on MnO₂ [J]. Sci Total Environ, 1988, 70: 253-263.
- [27] Nassar M Y, Attia A S, Alfallous K A, et al. Synthesis of two novel dinuclear molybdenum(0) complexes of quinoxaline-2, 3-dione: new precursors for preparation of α-MoO₃ nanoplates[J]. Inorg Chim Acta, 2013, 405: 362-367.
- [28] Han Y F, Chen L, Ramesh K, et al. Coral-like nanostructured α-Mn₂O₃ nanaocrystals for catalytic combustion of methane: part I: preparation and characterization[J]. Catalysis Today, 2008, 131: 35-41.
- [29] Zhou K, Jiang S, Bao C, et al. Preparation of poly (vinyl alcohol) nanocomposites with molybdenum disulfide (MoS₂): structural characteristics and markedly enhanced properties[J]. RSC Advances, 2012, 2: 11695-11703.
- [30] Huang K J, Wang L, Zhang J Z, et al. One-step preparation of layered molybdenum disulfide/multiwalled carbon nanotube composites for enhanced performance supercapacitor[J]. Energy, 2014, 67: 234-240.