稀土氧化物 Gd₂O₃、Nd₂O₃、Sm₂O₃ 和 Dy₂O₃ 在 KCl-LiCl-Li₂O 熔盐中的电解

季 男¹,彭 浩¹,蒋 锋^{1,2},黄 卫^{1,2,*}, 朱铁建¹,佘长锋¹,龚 昱^{1,2}

1. 中国科学院 上海应用物理研究所,上海 201800; 2. 中国科学院大学,北京 100049

摘要:采用循环伏安法和计时电位法研究了 Li₂O 在 KCl-LiCl 熔盐中的电化学行为,并利用卷积伏安法计算 了 923 K下 O²⁻在 KCl-LiCl 熔盐中的扩散系数(D),得到 $D=0.5\times10^{-5}$ cm²/s。以 Gd₂O₃、Nd₂O₃、Sm₂O₃和 Dy₂O₃为阴极,在 KCl-LiCl-Li₂O(w=1%)熔盐中进行电解(恒电压 3.40 V、电解温度 923 K、电解时间 25 h)。 通过 X 射线衍射分析(XRD),证实稀土氧化物被部分还原为金属,并分析了电解过程中可能发生的反应。同 时利用 *PRS*模型(该模型可将固态阴极内离子的极限扩散速率与固态氧化物孔隙 *P*、金属/氧化物摩尔体积 *R*、阴极还原后的体积收缩率 *S*等参数关联)分析了这些稀土氧化物的电解还原模型,得到 Gd₂O₃、Nd₂O₃、 Sm₂O₃和 Dy₂O₃的最优孔隙率分别为 18.7%、24.2%、30.6%、16.7%,最短电解时间分别为 133、157、143、 119 h,将这些结果与电解实验结果进行对比,发现阴极的孔隙率和电解时间均不满足金属氧化物完全被还原 的要求,并给出了相应的解释。

关键词:Li₂O;KCl-LiCl 熔盐;电化学行为;稀土氧化物;电解还原
中图分类号:TL241.2 文献标志码:A 文章编号:0253-9950(2022)05-0524-09
doi:10.7538/hhx.2022.44.05.0524

Electrolysis of Rare Earth $Oxides(Gd_2O_3, Nd_2O_3, Sm_2O_3)$ and Dy_2O_3) in KCl-LiCl-Li₂O Molten Salt

JI Nan¹, PENG Hao¹, JIANG Feng^{1, 2}, HUANG Wei^{1, 2, *}, ZHU Tie-jian¹, SHE Chang-feng¹, GONG Yu^{1, 2}

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: The electrochemical behavior of Li_2O in KCl-LiCl molten salt has been studied by cyclic voltammetry and chronopotentiometry. The diffusion coefficient $D=0.5\times10^{-5}$ cm²/s of O^{2-} in KCl-LiCl molten salt at 923 K has been calculated by convolutional voltammetry. Gd_2O_3 , Nd_2O_3 , Sm_2O_3 and Dy_2O_3 were used as cathodes to conduct electrolysis in KCl-LiCl-Li₂O(w=1%) molten salt(constant voltage 3.40 V, electrolysis temperature 923 K, electrolysis time 25 h). By XRD analysis, it was confirmed that the rare earth oxides are partially

收稿日期:2021-05-10;修订日期:2021-07-22

基金项目:国家自然科学基金面上项目(NSFC 21771188);中国科学院战略性科技先导专项(XDA02030000) * 通信联系人:黄 卫 reduced to metals, and the possible reactions during the electrolysis process were analyzed. At the same time, the *PRS* model was used to analyze the electrolytic reduction models of these rare earth oxides, and the optimal porosity(P_{opt}) of Gd₂O₃, Nd₂O₃, Sm₂O₃ and Dy₂O₃ are 18.7%, 24.2%, 30.6%, 16.7%, respectively. The minimum electrolysis time of them are 133, 157, 143, and 119 h, respectively, which are compared with the results of the electrolytic experiment, it is found that the porosity and electrolysis time of the cathode do not meet the requirements for complete reduction of metal oxides, and the corresponding explanation is given.

Key words: Li₂O; KCl-LiCl molten salt; electrochemical behavior; rare earth oxide; electrolytic reduction

随着世界范围内核能产业的发展,近年来乏 燃料的处理问题已经成为影响核电可持续发展的 关键因素。我国核电发展相对于其他发达国家起 步较晚,导致我国核燃料循环技术还较为落后,所 以乏燃料后处理就成为我国核电发展中面临的重 要问题之一。目前为止对乏燃料的管理主要有 3 种燃料循环的方式:(1)一次性通过方式;(2)后 处理热堆循环;(3) 先进核燃料循环[1]。前者完 全不处理,后两者则可以通过对乏燃料的处理来 实现核燃料的可持续性。常规的燃料处理有两种 方式,即水法和干法处理技术。相对采用水溶液 和有机溶剂的水法处理技术,基于高温冶金的干 法后处理技术(pyroprocessing technology)的优 势在于:耐高温和耐辐照;工艺操作流程较易;低 临界的风险、放射性废物大大减少和避免了核扩 散等。其中,熔盐电解法是目前发展最为广泛的 干法技术,它已经成为乏燃料后处理研究中最常 见的分离技术方法。然而,熔盐电解法也存在一 些尚未解决的问题:(1) 所产生的气体对环境存 在一定的污染;(2) 原料一般为金属的卤化物或 一些易于溶解在熔盐中的金属化合物,这些原料 获得途径困难且价格昂贵;(3)目前的处理对象 主要为金属型乏燃料,而对绝大部分的氧化物乏 燃料尚无有效方法^[2]。

2000 年剑桥大学的 Zheng 等在 CaCl₂ 熔盐 中成功实现了直接将 TiO₂ 电解还原为金属 Ti, 这种电解方法被称为 FFC 剑桥法(FFC-Cambridge)^[3-4]。FFC 剑桥工艺以 CaCl₂ 作为电解 液,石墨为阳极,在电解温度和电压分别低于金属 熔点和熔盐分解电压条件下电解,最终金属氧化 物被还原成金属或合金,而 O²⁻进入熔盐进而迁 移至阳极放电,生成氧气和碳氧化合物。这种工 艺方法将金属氧化物在熔盐中直接电解还原为金

属单质,并且阳极只产生氧气或者气态的碳氧化 合物,可以很好解决上述问题。目前 FFC 剑桥工 艺法研究对象所选用的电解液,CaCl₂熔盐体系 最为普遍,也有选择 CaCl₂-CaO^[5]、CaCl₂-NaCl 等^[6]体系的。但该类熔盐存在熔点和电解温度过 高的问题,过高的使用温度不仅提高了能源和材 料成本,且会使得阴极更加紧密,阻碍了氧化物阴 极中氧离子的迁移。现在对铀的氧化物电化学还 原的研究,选择的电解液大多数为低熔点的 LiCl-Li₂O,而不是CaCl₂-CaO。因此,选择具有较低熔 点的 LiCl 体系熔盐, 如 LiCl-KCl 和 LiCl-KCl- $CaCl_2$ 等,同样具有良好的 O^2 溶解度。Hur 等^[7] 在 793 K 下的 LiCl-KCl 熔盐中通过添加 Li₂O 成功 将 UO2 还原为金属铀,还原率高达 98%。在 LiCl- $KCl-Li_2O$ 电解液中,阴极(氧化物, M_xO_y)可能发 生反应(式(1)-(5))[8-9]。

$$\mathbf{M}_{x}\mathbf{O}_{y}(\mathbf{s}) + z\mathbf{Li}_{2}\mathbf{O}(\mathbf{s}) \longrightarrow \mathbf{Li}_{2z}\mathbf{M}_{x}\mathbf{O}_{y+z}(\mathbf{s}) \quad (1)$$

$$Li^+ + e^- \longrightarrow Li(l)$$
 (2)

$$Li_{2z}M_xO_{y+z}(s)+2yLi(1) \longrightarrow$$

$$xM(s)+2(y+z)Li^{+}+(y+z)O^{2-}$$
 (3)

$$M_xO_y(s) + 2yLi(1) \longrightarrow xM(s) + 2yLi^+ + yO^{2-}$$

(4)

$$M_x O_y(s) + 2ye^- \longrightarrow x M(s) + yO^{2-}$$
(5)

阳极(石墨电极)可能发生的反应如下(式 (6)--(8))^[10]。

$$2O^{2-} \longrightarrow O_2(g) + 4e^- \tag{6}$$

$$C(s) + 2O^{2-} \longrightarrow CO_2(g) + 4e^- \qquad (7)$$

$$C(s) + O^{2-} \longrightarrow CO(g) + 2e^{-}$$
(8)

近年来,人们对氧化物乏燃料的电化学还原 进行了广泛的研究。氧化物乏燃料中不仅含有需 要回收的锕系氧化物,还有待分离的裂变产物,如 镧系等氧化物,包括钇、镧、铈、镨、钕、钷、钐、铕、 钆、铽十多种稀土元素^[10-13]。在电解还原过程中, 需要将锕系氧化物还原为金属,而镧系裂变产物 氧化物的还原行为会直接影响电解还原产物的组 成,进而也影响后续的电解精炼过程和精炼产物 的去污效果。因此,需要关注镧系裂变产物氧化 物在电解还原过程中的电化学行为。目前在 FFC工艺中以低熔点的LiCl-KCl为电解液,将稀 土氧化物电解还原为金属单质的方法尚没有开展 较多的研究。

本工作拟首先研究 LiCl-KCl 熔盐中 Li₂O 的 电化学行为,并选取 Gd₂O₃、Nd₂O₃、Sm₂O₃、Dy₂O₃ 作为阴极,验证它们在 LiCl-KCl-Li₂O 熔盐中电 解还原的可能性。结合 X 射线衍射分析(XRD) 表征手段,分析氧化物电极和电解产物的物相组 成及电解过程的反应原理,并利用氧分析仪测试 电解产物的氧含量,计算得到相应的电解还原率。 最后利用氧化物电解还原的理论模型,计算稀土 氧化物电极的最优孔隙率和最短电解时间,并与 实验结果进行比较和分析。

1 实验部分

1.1 试剂和仪器

稀土氧化物 Gd₂O₃、Nd₂O₃、Sm₂O₃、Dy₂O₃, 纯度 \geq 99.9%;粘结剂聚乙二醇,化学纯;LiCl,纯 度 \geq 97.0%;KCl,纯度 \geq 99.5%;Li₂O,纯度 \geq 99.99%。以上药品均采购于国药集团化学试剂 有限公司。Mo 丝,直径 d=1 mm,纯度 \geq 99.99%, 哈尔滨碘钨丝厂;石墨棒,d=5.0 mm,纯度 \geq 99.99%,烟台美尔森石墨有限公司。

BJ-15 压片机,天津博君科技有限公司;Autolab PGSTAT 302N 电化学工作站,瑞士 Metrohm 有 限公司;IT6302 直流稳压电源,艾德克斯;Pore-Master33GT 压汞仪,Quantachrome;X'Pert Pro MPD XRD,荷兰帕纳科公司;O836 氧成分分析 仪,美国 LECO 公司。

1.2 熔盐的制备和净化

实验所用熔盐由 33.6 g 的 LiCl 和 46.4 g 的 KCl 混合而成。首先,将 80 g 低共熔点 LiCl-KCl 混合物置于马弗炉中升温至 773 K,保温 2 h,再 将温度降至 473 K 保温 72 h。实验前,将干燥后 的 LiCl-KCl 熔盐放于刚玉坩埚中,在 773 K 下,通过恒电位-2.0 V(vs Ag/AgCl)预电解 3 h,除 去熔盐中的杂质离子和残留水分。

1.3 电化学测试

电化学行为测量时采用三电极测量体系,由

参比电极、工作电极、辅助电极(对电极)组成。参 比电极为 Ag/AgCl(w=1%,摩尔分数为 0. 39%), 内参比盐是 LiCl-KCl。工作电极为惰性 Mo 电 极。辅助电极为石墨棒。实验开始前,采用 SiC 砂纸对惰性 Mo 电极进行打磨抛光,然后置于稀 盐酸中浸泡,再用丙酮进行超声清洗,烘干备用。 而石墨棒则需经过稀盐酸煮沸和去离子水清洗处 理,并烘干后备用。

电解过程中采用两电极体系,由工作电极和 辅助电极(对电极)组成。辅助电极依然是石墨 棒,工作电极则为稀土氧化物电极。工作电极的 制作方法为:分别称取 1.2 g 的稀土氧化物(Gd₂O₃、 Nd₂O₃、Sm₂O₃、Dy₂O₃)置于烧杯中,添加适量的 聚乙二醇和去离子水,混合均匀。烘干后将干料 放入玛瑙研钵中充分研磨后置于模具中,并于压 片机 15 MPa下保压 5 min,脱模取出生坯。将生 坯置于马弗炉中,高温烧结 7 h。整个升温过程如 下:(1)将温度缓慢升至 573 K 保温 3 h,目的是将 添加剂聚乙二醇分解完全;(2) 从 573 K 缓慢升温 至 973 K 保温 7 h;(3) 从 973 K 缓慢降温至室温。 将烧结好的胚体用钼丝捆绑固定制成阴极待用,电 极的直径d=15 mm,厚度 l=2 mm。

使用 Autolab PGSTAT 302N 电化学工作站 和 Nova 2.1 软件进行电化学行为测试,包括循环 伏安法和计时电位法。使用直流稳压电源进行稀 土氧化物电解,采用恒槽电压法,电解示意图示于 图 1。所有实验均在手套箱内进行(O₂ 和 H₂O 体积分数均小于 1×10⁻⁶)。

图 1 电肼小息图 Fig.1 Schematic diagram of electrolysis

1.4 表征

烧结的氧化物片体采用压汞仪分析孔隙率, 采用 XRD,在 40 kV 和 40 mA 下使用 Cu Kα 辐 射分析物相组成。电解产物用蒸馏水洗涤,真空 干燥后同样使用 XRD 分析物相组成。采用氧成 分分析仪测定电解前后的阴极氧含量。

2 结果与讨论

2.1 KCI-LiCI-Li₂O 熔盐的循环伏安和计时电位 曲线

923 K、KCl-LiCl 熔盐体系中添加 Li₂O(w= 1%)前后在惰性 Mo 电极上的循环伏安曲线(三 电极体系:工作电极、参比电极、对电极)示于 图 2(a)。其中,虚线是未添加 Li₂O 的空白熔盐, 由图 2(a)可知:曲线存在一对氧化还原峰 A/A', 峰 A 对应熔盐中 Li([)的还原(Li⁺ + e⁻→Li), 还原电位 -2.40 V(vs Ag/AgCl):峰 A' 对应金 属 Li 的氧化(Li→Li⁺+e⁻),氧化电位-2.03 V (vs Ag/AgCl);实线是添加了 1% Li₂O 的 KCl-LiCl 熔盐,除了氧化还原峰 A/A'外,又出现了峰 B/B' 和 C'。而 Li₂O 在熔盐中是以溶解离子的形 态存在,在KCl-LiCl熔盐体系中可以提供Li+和 O^{2-[14]},所以,氧化峰 C'峰电位为-0.55 V(vs Ag/AgCl),发生的反应为 2O^{2−}→O₂+4e⁻。因 为阴极 Mo 与生成的 O₂ 反应形成 MoO₂,所以在 -1.71 V(vs Ag/AgCl)处的还原峰 B 和-1.49 V (vs Ag/AgCl)处的氧化峰 B'可能对应着 Mo 电极 的氧化还原,所发生的反应分别如式(9)和(10)。

$$MoO_2 + 4e^- \longrightarrow Mo + 2O^{2-}$$
 (9)

$$M_0 + 2O^{2-} \longrightarrow M_0O_2 + 4e^-$$
 (10)

Gonzalez 等^[15]提到在 923 K下,LiCl 熔盐体系中 以W作为阴极添加Li₂O,在循环伏安曲线中阴极 和阳极分别发生的电化学反应为 $WO_2 + 4e^- \rightarrow W + 2O^{2-}$ 和 $W + 2O^{2-} \rightarrow WO_2 + 4e^-$ 。这与本实验的结果相似。

相应熔盐体系的计时电位曲线(三电极体系) 示于图 2(b)。由图 2(b)可以观察到两个明显的 电位平台 A 和 B,它们分别对应 Li(I)还原为 Li 和 MoO₂ 还原为 Mo 的过程。平台 A 和 B 的沉 积电位分别为-2.24 V 和-1.67 V(vs Ag/ AgCl),与对应的循环伏安还原峰电位相吻合。

对阳极 O^{2^-} 的扩散过程展开进一步研究。 图 3(a)所示为 923 K 下在 LiCl-KCl-Li₂O 熔盐中 0.0—-1.0 V 的循环伏安曲线,发现 C'所对应 的反应是不可逆的。由于图 3(a)的循环伏安曲 线具有比较大的背景电流,所以直接使用循环 伏安法计算 O^{2^-} 扩散系数 D 会带来比较大的误 差,因此对循环伏安曲线进行卷积处理。循环 伏安数据的半积分结合式(11)可以获得卷积伏 安法曲线^[16-18]。

$$m(t) = \frac{1}{\pi^{1/2}} \int_{0}^{t} \frac{I(u)}{(t-u)^{1/2}} du \qquad (11)$$

显然根据卷积的定义^[19],电流的半积分值, 就是电流 I(t)与时间函数 $(\pi t)^{-1/2}$ 的卷积,所以, 可以将 m(t)定义为:

$$m(t) = I(t) * (\pi t)^{-1/2} = \frac{1}{\pi^{1/2}} \int_{0}^{t} \frac{I(u)}{(t-u)^{1/2}} du$$
(12)

式中:*为卷积运算符号;*i*(*t*)为循环伏安的电流;*m*(*t*)为半积分电流。通过O²⁻氧化过程中的循环伏安曲线(图 3(a))可以获得卷积伏安曲线,示于图 3(b)。据卷积分理论可知^[16],*m*(*t*)达到

923 K,电极面积 S_{M0}=0.31 cm²,扫描速率为 0.1 V/s
 图 2 LiCl-KCl 熔盐中添加 Li₂O(w=1%)前后的循环伏安曲线(a)
 以及 LiCl-KCl 熔盐中添加 Li₂O(1%)的计时电位曲线(b)

Fig. 2 Cyclic voltammograms attained in LiCl-KCl molten salt before and after adding $\text{Li}_2 O(w=1\%)(a)$, and chronopotentiograms obtained in LiCl-KCl molten salt added $\text{Li}_2 O(w=1\%)(b)$

923 K,S_{Mo}=0.31 cm²,扫描速率为 0.1 V/s
 图 3 LiCl-KCl-Li₂O 熔盐的循环伏安曲线(a)和循环伏安曲线的卷积曲线(b)
 Fig. 3 Cyclic voltammograms attained in LiCl-KCl-Li₂O molten salt(a) and convolution curve of cyclic voltammetry curve(b)

极限值 m* 时,m* 可以表示为:

$$n^* = -nFSc_0^* D^{1/2}$$
 (13)

其中:n,转移电子数;F,法拉第常数,96 500 C/mol;S,电极面积, cm²;D,扩散系数, cm²/s; c_0^* , O的原始浓度, mol/cm³。

通过图 3(b)可以获得极限电流 m^* ,并结合 式(13)求得扩散系数 D。经计算 O²⁻在 LiCl-KCl 中的扩散系数为 0.5×10⁻⁵ cm²/s。Sakamura^[20] 提到在 923 K下,LiCl-KCl 熔盐中 O²⁻的扩散系 数值要小于 O²⁻在 LiCl 熔盐体系中的扩散系数 $(4\times10^{-5} cm^2/s)$,这与本实验中通过卷积伏安法 求得的结果一致。

2.2 Gd₂O₃、Nd₂O₃、Sm₂O₃、Dy₂O₃的电解

采用恒电压法、两电极体系(工作电极、对电极),在 923 K的 LiCl-KCl-Li₂O 熔盐中电解稀土 氧化物 Gd₂O₃、Nd₂O₃、Sm₂O₃、Dy₂O₃,且电解过 程中熔盐处于静态。通过 HSC5.0 化学软件结 合式(14)分别计算出 Gd₂O₃、Nd₂O₃、Sm₂O₃、 Dy_2O_3 、 Li_2O 、KCl、LiCl在 923 K下的吉布斯自 由能(ΔG_f)和相应的分解电位(ΔE),结果列入 表 1。从表 1 中各物质的分解电位分析,将电解 实验的槽电压设置为 3.40 V 较为合适。

$$\Delta G_{\rm f} = nF\Delta E \tag{14}$$

(1) 电解前的 Gd₂O₃ 电极片分析

将 Gd₂O₃ 片烧结前后的样品进行 XRD 分 析,结果示于图 4。由图 4 可知:Gd₂O₃ 烧结前后 成分并没有发生改变,说明烧结温度并不影响稀 土氧化物的化学形态。孔隙率测试结果表明,烧 结后的 Gd₂O₃ 电极片孔隙率可以达到 49.9%。

(2) Gd₂O₃ 电解

以 Gd₂O₃ 片为阴极,3.40 V 槽电压下电解 25 h 所得到的时间与电流关系曲线示于图 5(a)。 由图 5(a)可知:电解开始时电流较大,随后降低, 这是因为在电解初期,主要反应发生在阴极的表 面,离子传输速率较快。当阴极表面的反应完成 后,内部的传质速率较慢,电解反应会受物质扩散

表 1 Gd₂O₃、Nd₂O₃、Sm₂O₃、Dy₂O₃、Li₂O、KCl和LiCl在923K下的吉布斯自由能和相应的分解电位 Table 1 Gibbs enthalpy of formation and decomposition voltages

反应式	$\Delta G_{\rm f}/({f k}{f J}\cdot{f mol}^{-1})$	分解电位/V	
$Gd_2O_3(s) \longrightarrow 2Gd(s) + 3/2O_2(g)$	1 573. 587	2.72	
$Nd_2O_3(s) \longrightarrow 2Nd(s) + 3/2O_2(g)$	1 546.304	2.67	
$Sm_2O_3(s) \longrightarrow 2Sm(s) + 3/2O_2(g)$	1 553.865	2.68	
$Dy_2O_3(s) \longrightarrow 2Dy(s) + 3/2O_2(g)$	1 588.456	2.74	
$Li_2O(s) \longrightarrow 2Li(l) + 1/2O_2(g)$	475.730	2.46	
$\operatorname{KCl}(s) \longrightarrow \operatorname{K}(s) + 1/2\operatorname{Cl}_2(g)$	348.630	3.61	
$LiCl(s) \longrightarrow Li(l) + 1/2Cl_2(g)$	333.710	3.46	

of chemical compounds $\rm Gd_2\,O_3$, $\rm Nd_2\,O_3$, $\rm Sm_2\,O_3$, $\rm Dy_2\,O_3$, $\rm Li_2\,O$, KCl and LiCl at 923 K

图 4 Gd₂O₃ 烧结前(a)后(b)的产物 XRD 图谱 Fig. 4 XRD patterns of Gd₂O₃ products before(a) and after(b) sintering

控制影响,导致反应速率变慢,相应的电流也会降低。在反应初期,O²⁻浓度足够大,所以电流较大。随着反应的进行O²⁻的浓度逐渐降低,O²⁻的传输受到阻碍导致反应速率变慢,也导致相应的电流降低,曲线呈现下降趋势。Xu等^[6]在CaCl₂-NaCl体系中电解Nb₂O₃实验中发现添加CaO后的电流值明显大于未添加CaO的,且曲线

较陡峭,说明当有足够的 O^{2-} 时反应进行很快, O^{2-} 含量逐渐减少时电流明显下降,最终达到一 个平衡状态。这一现象与本实验的结论相似。 图 5(a)中的插图是电解前后阴极照片,阴极片颜 色由白色变成灰黑色,显示有新物质生成,但是电 解前后阴极的体积几乎没有变化。电解产物的 XRD 图谱示于图 5(b)。由图 5(b)可知:有金属 Gd 的生成,说明 Gd₂O₃ 在 LiCl-KCl-Li₂O 熔盐中 可以被还原为金属单质。除了金属 Gd 相和少 量的盐(KCl 和 Li₂O)外,阴极中还有中间产物 LiGdO₂ 的生成。

(3) Nd₂O₃、Sm₂O₃、Dy₂O₃的电解

对其他镧系元素 Nd、Sm、Dy 的氧化物,采用 与 Gd₂O₃ 相同的电极制作方式和电解条件,在 LiCl-KCl-Li₂O(w=1%)熔盐中进行电解。Nd₂O₃、 Sm₂O₃、Dy₂O₃在923K电解25h得到的电流曲 线示于图 6(a)、(c)、(e)。从图 6(a)、(c)、(e)可 以发现:和 Gd₂O₃ 的电解过程相似,均是开始时 电流较大,随后降低;与Gd2O3相比,Dy2O3电极 的电流变化较为频繁,可能是电极的导电性或者 离子扩散性能随着电解过程发生较大变化。造成 这一现象的可能原因是:(1)由表1的数据可知, Dy2O3 的理论分解电压较高,电解难度较大,表现 为还原电流的绝对值最小;(2) Dy2O3 的最终还 原率较低,说明电解中产生的金属量较少,使得电 极的导电性较差,也可能导致了电流的变化频繁。 与Gd₂O₃相比,Nd₂O₃和Sm₂O₃的电流曲线变 化相对平缓,这可能是由于 Nd_2O_3 和 Sm_2O_3 阴 极的电解反应速率相对Gd2O3较慢造成的。从

分图(a)中的插图为电解前后的阴极照片 图 5 Gd₂O₃ 阴极在 KCl-LiCl-Li₂O(w=1%)熔盐中的电流-时间曲线(a)和电解产物的 XRD 分析图谱(b) Fig. 5 Plot of *i* vs *t* of Gd₂O₃ cathode(a) and XRD patterns of electrolytic products(b) in KCl-LiCl-Li₂O(w=1%) molten salt

图 6 Nd₂O₃、Sm₂O₃、Dy₂O₃ 在 KCl-LiCl-Li₂O 熔盐中的 电流-时间关系曲线(a、c、e)和相应电解产物的 XRD 分析图谱(b、d、f) Fig. 6 Plot of *i* vs *t*(a, c, e) of Nd₂O₃, Sm₂O₃ and Dy₂O₃ and XRD patterns(b, d, f) of electrolytic products in KCl-LiCl-Li₂O molten salt of cathode

电解电流数值来看,Nd₂O₃和 Sm₂O₃ 阴极的初始 还原电流远低于 Gd₂O₃ 阴极, 而它们的最终还原 率相差不大(见下文)。电解反应速率较快导致 O^{2-} 的消耗加大, mO^{2-} 向电极表面扩散是决定反 应速率的关键步骤,所以 Gd₂O₃ 阴极的电流值变 化幅度较大, 而 Nd_2O_3 和 Sm_2O_3 阴极的电流相 对平缓。Xu 等^[6]的研究中也发现类似现象,在 CaCl₂-NaCl 体系中电解 Nb₂O₃ 时,当提供足够浓 度的 O²⁻ 时其电解电流值较大,且能够在较长的 时间内保持高位稳定。图 6(b)、(d)、(f)分别为 相应电解产物的 XRD 图谱。从产物的 XRD 谱 图中可以发现,除了夹杂的盐和中间产物外,均有 很明显的金属单质相生成。而 Dy₂O₃ 的 XRD 谱 图中没有中间产物,但存在着较多的未电解的 Dy₂O₃本体,可能因为 Dy₂O₃的分解电压相对其 它氧化物较高,所以较难被电解还原。

综合以上分析,可以推测稀土氧化物 RE_2O_3 (Gd_2O_3 、 Nd_2O_3 、 Sm_2O_3 、 Dy_2O_3)在电解过程中可 能发生如下反应(式(15)—(20))。 阴极反应:

$$Li^{+} + e^{-} \longrightarrow Li(1)$$
(15)
RE₂O₃(s) + 6Li(1) \longrightarrow 2RE(s) + 6Li^{+} + 3O^{2-}(16)

$$Li_2O(s) + RE_2O_3(s) \longrightarrow 2LiREO_2(s)$$
 (17)

$$LiREO_{2}(s) + 3Li(l) \longrightarrow RE(s) + 4Li^{+} + 2O^{2-}$$
(18)
$$LiREO_{2}(s) + 3e^{-} \longrightarrow RE(s) + Li^{+} + 2O^{2-}$$
(19)

阳极反应:

$$C(s) + 2O^{2-} \longrightarrow CO_2(g) + 4e^- \qquad (20)$$

将这几种稀土氧化物(Gd₂O₃、Nd₂O₃、Sm₂O₃、 Dy₂O₃)的电解产物进行氧含量分析,根据氧化物 电极在电解前后的氧含量变化,计算相应的还原 率分别为 43.7%、40.2%、45.6%、30.5%,所得 到产物的还原率较低。根据陈华林等^[21]的 PRS 模型,在理想条件下氧化物阴极的最优孔隙率和 最短电解时间计算公式如式(21)、(22)。

最优孔隙率
$$P_{\text{opt}} = \frac{3R + S - 1}{3R} \times 100\%$$
 (21)

最短电解时间
$$t' = \frac{27 zm'^2 R}{8 M D \rho c (1-S)^{2/3}}$$
 (22)

其中:R为金属/氧化物的摩尔体积比即 $R = \frac{V_m^*}{V_0^*}$; V_m^* ,金属的摩尔体积; V_0^* ,金属氧化物的摩尔体 积,对于指定金属/氧化物,R为常数;S为阴极体 积的收缩率,从图 5(a)插图发现 Gd₂O₃ 电解前后 体积几乎没有变化,而 Nd₂O₃、Sm₂O₃、Dy₂O₃ 电 解前后的体积也没有变化,所以 S=0;M,氧化物 的相对分子质量; ρ ,氧化物的密度;D, O^2 在 KClLiCl 中的扩散系数; c, Li₂O 在 KCl-LiCl 中的平 衡浓度,在本次实验中可以假设 c 为 Li₂O 完全溶 解在熔盐中的浓度, $c=5.12\times10^{-4}$ mol/cm³; m', 单位表观面积负载的氧化物的质量,本实验中稀 土氧化物阴极质量为 1.2 g, 直径 d=15 mm, 厚 度 l=2 mm, 所以 m'=0.88 g/cm²; z,稀土离子 的转移电子数,本实验中 z=3。根据以上信息, 最终可以得到 Gd₂O₃、Nd₂O₃、Sm₂O₃、Dy₂O₃ 的 最优孔隙率及其最短电解时间,结果列入表 2。

表 2 稀土氧化物的摩尔体积比、 最优孔隙率和最短电解时间

Table 2	Molar volume ratio, optimum porosity and
minin	um electrolysis time of rare earth oxides

RE_2O_3	R	$P_{ m opt}/\%$	t'/h^{1}
$\mathrm{Gd}_2\mathrm{O}_3$	0.41	18.7	133
Nd_2O_3	0.44	24.2	157
$\rm Sm_2O_3$	0.48	30.6	143
Dy_2O_3	0.40	16.7	119

注:1) $m'=0.88 \text{ g/cm}^2$

据式(22)可以得到当电解反应时间为 25 h, Gd₂O₃、Nd₂O₃、Sm₂O₃、Dy₂O₃最优孔隙率分别为 18.7%、24.2%、30.6%、16.7%时对应的 m'值, 进而获得稀土氧化物(Gd2O3、Nd2O3、Sm2O3、 Dy₂O₃)还原为金属单质的理论还原率分别为 55.7%、55.7%、59.1%、54.5%,可以看出本工作 的还原率实验值(43.7%、40.2%、45.6%、 30.5%)明显低于理论还原率。以 Gd₂O₃ 为例, Gd₂O₃ 阴极片的孔隙率(49.9%)远高于最优孔 隙率(18.7%),最后得到的还原率实验值低于理 论值,这说明并不是阴极的孔隙率越高,相对应的 氧化物还原率就越高。而且本实验中各稀土氧化 物的电解时间也远低于其完全电解还原所需的理 论最短电解时间(119~157 h)。基于以上原因, 所得到的稀土氧化物还原率较低。因此,在后续 研究中将采取调节氧化物阴极的孔隙率以及延长 电解时间等措施对稀土氧化物的电解还原进行深 入研究。

3 结 论

通过电化学循环伏安法和计时电位法研究了 923 K下 Li₂O(w=1%)在 KCl-LiCl 熔盐中的电 化学行为,并计算了 O²⁻的扩散系数(D),得到 D= 0.5×10^{-5} cm²/s;随后,在 923 K下的 KCl-LiCl-Li₂O(w=1%)熔盐中,采用 3.40 V的恒电压电 解 25 h,可以将稀土氧化物 Gd₂O₃、Nd₂O₃、 Sm₂O₃、Dy₂O₃ 部分还原为相应的金属单质,并计 算了相应还原产物的还原率;同时引入 *PRS* 模型 分析稀土氧化物 Gd₂O₃、Nd₂O₃、Sm₂O₃、Dy₂O₃ 电解还原的最优孔隙率分别为 18.7%、24.2%、 30.6%、16.7%,最短电解时间分别为 133、157、 143、119 h。

以上研究结果为熔盐体系中稀土氧化物直接 电解还原的进一步研究提供了理论指导和实验 基础。

参考文献:

- [1] 刘学刚.乏燃料干法后处理技术研究进展[J].核化学与放射化学,2009,31(增):35-44.
- [2] 杜云峰,唐浩,廖俊生.熔盐电脱氧法还原 UO₂ 的研 究进展[J].稀有金属,2019,44:352-362.
- [3] Zheng C, Derek J F, Tom W F. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000, 407 (6802): 361-364.
- [4] Yang F, Liu Y, Ye J W, et al. Preparation of titanium through the electrochemical reducing Ti₄O₇ in molten calcium chloride[J]. Mater Lett, 2018, 233: 28-30.
- [5] Descallar-Arriesgado R F, Kobayashi N, Kikuchi T, et al. Calciothermic reduction of NiO by molten salt electrolysis of CaO in CaCl₂ melt[J]. Electrochim Acta, 2011, 56 (24): 8422-8429.
- [6] Xu Q, Deng L Q, Wu Y, et al. A study of cathode improvement for electro-deoxidation of Nb₂O₅ in a eutectic CaCl₂-NaCl melt at 1 073 K[J]. J Alloys Compd, 2005, 396 (1-2): 288-294.
- [7] Hur J M, Hong S S, Lee H. Electrochemical reduction of UO₂ to U in a LiCl-KCl-Li₂O molten salt[J]. J Radioanal Nucl Chem, 2013, 295 (2): 851-854.
- [8] Jeong S M, Jung J Y, Seo C S, et al. Characteristics of an electrochemical reduction of Ta₂O₅ for the preparation of metallic tantalum in a LiCl-Li₂O molten salt[J]. J Alloys Compd, 2007, 440(1-2): 210-215.
- [9] Yoshiharu S, Masaki K, Tadashi I. Electrochemical reduction of UO₂ in molten CaCl₂ or LiCl[J]. J Electrochem Soc, 2006, 153 (3): D31-D39.
- [10] 张生栋,丁有钱,杨志红.我国核化学基础研究现状

和展望[J]. 核化学与放射化学,2009,31(增刊): 16-24.

- [11] 施玉全,郭景儒,黄浩新.裂变产物分析[M].北京: 原子能出版社,1985:341-345.
- [12] 林灿生.裂变产物元素过程化学[M].北京:中国原 子能出版社,2012:1-16.
- [13] 林灿生. Purex 流程裂变产物元素化学研究[J]. 核 科学与工程,1990,10(4):250-261.
- [14] Albert M, Olga T, Vladimir S, et al. Properties of the LiCl-KCl-Li₂O system as operating medium for pyrochemical reprocessing of spent nuclear fuel[J]. J Nucl Mater, 2018, 500: 235-241.
- [15] Gonzalez M, Burak A, Guo S Q, et al. Identification, measurement, and mitigation of key impurities in LiCl-Li₂O used for direct electrolytic reduction of UO₂[J]. J Nucl Mater, 2018, 510: 513-523.
- [16] Grenness M, Oldham K B. Semiintegral electroa-

nalysis-theory and verification[J]. Anal Chem, 1972, 44 (7): 1121-1129.

- [17] Oldham K B. Signal-independent electroanalytical method[J]. Anal Chem, 1972, 44 (1): 196-198.
- [18] Imbeaux J, Savéant J. Convolutive potential sweep voltammetry I: introduction[J]. J Electroanal Chem Interfac, 1973, 44 (2): 169-187.
- [19] 南京工学院数学教研组编. 积分变换[M]. 北京:人 民教育出版社,1979:58.
- [20] Sakamura Y. Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO₂ in LiCl salt bath[J]. J Nucl Mater, 2011, 412: 177-183.
- [21] 陈华林,王志勇,金先波,等. 固态氧化物阴极过程 的离子扩散模型及其 Ta₂O₅ 熔盐电解验证[J]. 电 化学,2014,20(3):266-271.