[1] |
Frank R. Nuclear and radiochemistry, volume 2: modern application[M]. Berlin: Walter de Gruyter GmbH, 2016.
|
[2] |
唐任寰,刘元方,张青莲,等.锕系锕系后元素[M].北京:科学出版社,1998:3-86.
|
[3] |
沈浪涛.放射性药物化学领域中的重要事件和研究前沿[J].核化学与放射化学,2015,37(5):355-365.
|
[4] |
IAEA. Nuclear technology review 2019[M]. Vienna, Austria: International Atomic Energy Agency (IAEA), 2020: 1-39.
|
[5] |
Piro M H A. Advances in nuclear fuel chemistry[M]. Duxford, CB22 4QH, United Kingdom: Woodhead Publishing, 2020: 185-213.
|
[6] |
Bombardieri E, Seregni E, Evangelista L, et al. Clinical applications of nuclear medicine targeted therapy[M]. Cham, Switzerland: Springer, 2018: 365-392.
|
[7] |
昝亮彪,刘宁,杨远友,等.α核素用于肿瘤靶向治疗研究的进展[J].核技术,2006,29:279-285.
|
[8] |
刘宁,马欢,杨远友,等.α核素肿瘤靶向治疗药物研究的进展与挑战[J].核化学与放射化学,2015,37(5):366-375.
|
[9] |
Link W. Principles of cancer treatment and anticancer drug development[M]. Cham, Switzerland: Springer, 2019: 7-76.
|
[10] |
Restifo N P, Smyth M J, Snyder A. Acquired resistance to immunotherapy and future challenges[J]. Nat Rev Cancer, 2016, 16(2): 121-126.
|
[11] |
Poty S, Francesconi L C, McDevitt M R, et al. α-emitters for radiotherapy: from basic radiochemistry to clinical studies: part 1[J]. J Nucl Med, 2018, 59: 878-884.
|
[12] |
Poty S, Francesconi L C, McDevitt M R, et al. α-emitters for radiotherapy: from basic radiochemistry to clinical studies: part Ⅱ[J]. J Nucl Med, 2018, 59: 1020-1027.
|
[13] |
Targeted Alpha Therapy Working Group. Targeted alpha therapy, an emerging class of cancer agents: a review[J]. JAMA Oncol, 2018, 4: 1765-1772.
|
[14] |
Sgouros G, Ballangrud A M, Jurcic J G, et al. Pharmacokinetics and dosimetry of an α-particle emitter antibody: 213Bi-HuM195(anti-CD33) in patients with leukemia[J]. J Nucl Med, 1999, 40: 1935-1946.
|
[15] |
Lewis J S, Windhorst A D, Zeglis B. Radiopharmaceutical chemistry[M]. Cham, Switzerland: Springer, 2019: 409-424.
|
[16] |
Mulford D A, Scheinberg D A, Jurcic J G. The promise of targeted α-particle therapy[J]. J Nucl Med, 2005, 46: 199S-204S.
|
[17] |
Nonnekens J, Chatalic K L S, Molkenboer-kuenen J D M, et al. 213Bi-Labeled prostate-specific membrane antigen-targeting agents induce DNA double-strand breaks in prostate cancer xenografts[J]. Cancer Biother Radiopharm, 2017, 32: 67-73.
|
[18] |
Hall E J, Giaccia A J. Radiobiology for the radiologist[M]. 7th ed. Philadelphia, USA: Lippincott Williams & Wilkins, 2012: 104-113.
|
[19] |
Seidl C. Radioimmunotherapy with α-particle-emitting radionuclides[J]. Immunotherapy, 2014, 6: 431-458.
|
[20] |
Thiele N A, Wilson J J. Actinium-225 for targeted α therapy: coordination chemistry and current chelation approaches[J]. Cancer Biother Radiopharm, 2018, 33: 336-348.
|
[21] |
Kostelnik T, Orvig C. Radioactive main group and rare earth metals for imaging and therapy[J]. Chem Rev, 2019, 119: 902-956.
|
[22] |
Boll R A, Malkemus D, Mirzadeh S. Production of actinium-225 for alpha particle mediated radioimmunotherapy[J]. Appl Radiat Isotop, 2005, 62: 667-679.
|
[23] |
Apostolidis C, Molinet R, Morgenstern A, et al. Production of Ac-225 from Th-229 for targeted alpha therapy[J]. Anal Chem, 2005, 77: 6288-6291.
|
[24] |
Zielinska B, Apostolidis C, Bruchertseifer F, et al. An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy[J]. Solvent Extr Ion Exch, 2007, 25: 339-349.
|
[25] |
Perron R, Causey P, Gendron D. Development of a research-scale thorium/actinium generator at the Canadian nuclear laboratories[J]. J Med Imaging Radiat Sci, 2019, 50: S42.
|
[26] |
Morgenstern A, Abbas K, Bruchertseifer F, et al. Production of alpha emitters for targeted alpha therapy[J]. Curr Radiopharm, 2008, 1: 135-143.
|
[27] |
Weidner J W, Mashnik S G, John K D, et al. Proton-induced cross sections relevant to production of 225Ac and 223Ra in natural thorium targets below 200 MeV[J]. Appl Radiat Isotop, 2012, 70: 2602-2607.
|
[28] |
Weidner J W, Mashnik S G, John K D, et al. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets[J]. Appl Radiat Isot, 2012, 70: 2590-2595.
|
[29] |
John K. US DOE tri-lab research and production effort to provide accelerator-produced 225Ac for radiotherapy: 2019 update[J]. Eur J Nucl Med Mol Imaging, 2019, 46: S722.
|
[30] |
Abergel R, An D, Lakes A, et al. Actinium biokinetics and dosimetry: what is the impact of Ac-227 in accelerator-produced Ac-225[J]. J Med Imaging Radiat Sci, 2019, 50: S23.
|
[31] |
NIDC. Actinium-225 drug master file submitted to food and drug administration[J]. Newsletter: Spring, 2020: 3.
|
[32] |
Salvador J A, Figueiredo S A, Pinto R M, et al. Bismuth compounds in medicinal chemistry[J]. Future Med Chem, 2012, 4: 1495-1453.
|
[33] |
Stavila V, Davidovich R L, Gulea A, et al. Bismuth(Ⅲ) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: chemistry and structure[J]. Coord Chem Rev, 2006, 250: 2782-2810.
|
[34] |
Yang N, Sun H. Biocoordination chemistry of bismuth: recent advances[J]. Coord Chem Rev, 2007, 251: 2354-2366.
|
[35] |
Morgenstern A, Bruchertseifer F, Apostolidis C. Bismuth-213 and actinium-225 generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes[J]. Curr Radiopharm, 2012, 5: 221-227.
|
[36] |
Bruchertseifer F, Christos A, Saed M, et al. Development of a high-activity 225Ac/213Bi radionuclide generator for synthesis of clinical doses of 213Bi-labelled biomolecules[C]∥Proceedings of the 8th International Symposium on Targeted Alpha Therapy. Oak Ridge, USA, June 4-6, 2013.
|
[37] |
Knapp F F, Dash A. Radiopharmaceuticals for therapy[M]. India: Springer, 2016.
|
[38] |
Hassfjell S. 212Pb generator based on a 228Th source[J]. Appl Radiat Isot, 2001, 55: 433-439.
|
[39] |
Atcher R W, Friedman A M, Hines J J. An improved generator for the production of 212Pb and 212Bi from 224Ra[J]. Appl Radiat Isot, 1988, 39: 283-286.
|
[40] |
Su F M, Beaumier P, Axworthy D, et al. Pretargeted radioimmunotherapy in tumored mice using an in vivo 212Pb/212Bi generator[J]. Nucl Med Biol, 2005, 32: 741-747.
|
[41] |
Rotmensch J, Atcher R W, Hines J, et al. Comparison of short-lived high-LET α-emitting radionuclides lead-212 and bismuth-212 to low-LET X-rays on ovarian carcinoma[J]. Gynecol Oncol, 1989, 35: 297-300.
|
[42] |
Casas J S, Sordo J. LEAD: chemistry, analytical aspects, environmental impact and health[M]. Amsterdam, the Netherlands: Elsevier, 2006.
|
[43] |
Farkas E, Buglyo P. Lead(Ⅱ) complexes of amino acids, peptides, and other related ligands of biological interest[J]. Met Ions Life Sci, 2017, 17: 201-240.
|
[44] |
Du A L, Mougin-Degraef M, Botosoa E P, et al. In vivo 212Pb/212Bi generator using indium-DTPA-tagged liposomes[J]. Radiochim Acta, 2011, 99: 743-749.
|
[45] |
Tutson C D, Gorden A E V. Thorium coordination: a comprehensive review based on coordination number[J]. Coordin Chem Rev, 2017, 333: 27-43.
|
[46] |
Natrajan L S, Swinburne A N, Andrews M B, et al. Redox and environmentally relevant aspects of actinide(Ⅳ) coordination chemistry[J]. Coordin Chem Rev, 2014, 266-267: 171-193.
|
[47] |
Guseva L I. Radioisotope generators of short-lived α-emitting radionuclides promising for use in nuclear medicine[J]. Radiochem, 2014, 56: 451-467.
|
[48] |
Weidner J W, Mashnik S G, John K D, et al. 225Ac and 223Ra production via 800 MeV proton irradiation of natural thorium targets[J]. Appl Radiat Isot, 2012, 70: 2590-2595.
|
[49] |
Aaseth J, Crisponi G, Andersen O, et al. Chelation therapy in the treatment of metal intoxication[M]. London: Elsevier, 2016.
|
[50] |
Vaidyanathan G, Zalutsky M R. Applications of 211At and 223Ra in targeted alpha-particle radiotherapy[J]. Curr Radiopharm, 2011, 4: 283-294.
|
[51] |
Henriksen G, Fisher D R, Roeske J C, et al. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice[J]. J Nucl Med, 2003, 44: 252-259.
|
[52] |
Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer[J]. N Engl J Med, 2013, 369: 213-223.
|
[53] |
Koppe M J, Postema E J, Aarts F, et al. Antibody-guided radiation therapy of cancer[J]. Cancer Metastasis Rev, 2005, 24: 539-567.
|
[54] |
Wilbur D S. Chemical and radiochemical considerations in radiolabeling with α-emitting radionuclides[J]. Curr Radiopharm, 2011, 4: 214-247.
|
[55] |
Hassfjell S, Brechbiel M W. The development of the α-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications[J]. Chem Rev, 2001, 101: 2019-2036.
|
[56] |
Coleman R, Aksnes A, Naume B, et al. A phase Ⅱa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease[J]. Breast Cancer Re Treat, 2014, 145: 411-418.
|
[57] |
Subbiah V, Anderson P M, Kairemo K, et al. Alpha particle radium 223 dichloride in high-risk osteosarcoma: a phase Ⅰ dose escalation trial[J]. Clin Cancer Res, 2019, 25: 3802-3810.
|
[58] |
Kratochwil C, Giesel F L, Bruchertseifer F, et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience[J]. Eur J Nucl Med Mol Imaging, 2014, 41: 2106-2119.
|
[59] |
Kratochwil C, Bruchertseifer F, Giesel F L, et al. Ac-225-DOTATOC-dose finding for alpha particle emitter based radionuclide therapy of neuroendocrine tumors[J]. Eur J Nucl Med Mol Imaging, 2015, 42: S36.
|
[60] |
Ballal S, Yadav M P, Bal C, et al. Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety[J]. Eur J Nucl Med Mol Imaging, 2020, 47: 934-946.
|
[61] |
Kratochwil C, Bruchertseifer F, Giesel F L, et al. 225Ac-PSMA-617 for PSMA targeting alpha-radiation therapy of patients with metastatic castration-resistant prostate cancer[J]. J Nucl Med, 2016, 57: 1941-1944.
|
[62] |
Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted alpha therapy of mCRPC with 225Actinium-PSMA-617: dosimetry estimate and empirical dose finding[J]. J Nucl Med, 2017, 58: 1624-1631.
|
[63] |
Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted alpha therapy of mCRPC with 225Actinium-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor-control[J]. J Nucl Med, 2018, 59: 795-802.
|
[64] |
Kelly J M, Amor-Coarasa A, Ponnala S, et al. A single dose of 225Ac-RPS-074 induces a complete tumor response in an LNCaP xenograft model[J]. J Nucl Med, 2019, 60: 649-655.
|
[65] |
Sathekge M, Knoesen O, Meckel M, et al. 213Bi-PSMA-617 targeted alpha-radionuclide therapy in metastatic castration-resistant prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2017, 44: 1099-1100.
|
[66] |
Krolicki L, Bruchertseifer F, Kunikowska J, et al. Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi substance P analogue[J]. Eur J Nucl Med Mol Imaging, 2018, 45: 1636-1644.
|
[67] |
Giesel F L, Kratochwil C, Lindner T, et al. 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers[J]. J Nucl Med, 2019, 60: 386-392.
|
[68] |
Watabe T, Liu Y, Kaneda-Nakashima K, et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu and 225Ac[J]. J Nucl Med, 2020, 61: 563-569.
|
[69] |
Dahle J, Bruland O S, Larsen R H. Relative biologic effects of low-dose-rate alpha-emitting 227Th-rituximab and beta-emitting 90Y-tiuexetan-ibritumomab versus external beam X-radiation[J]. Int J Radiat Oncol Biol Phys, 2008, 72: 186-192.
|
[70] |
Abbas N, Heyerdahl H, Bruland O S, et al. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab[J]. EJNMMI Res, 2011, 1: 18.
|
[71] |
Heyerdahl H, Krogh C, Borrebk J, et al. Treatment of HER2-expressing breast cancer and ovarian cancer cells with alpha particle-emitting 227Th-trastuzumab[J]. Int J Radiat Oncol Biol Phys, 2011, 79: 563-570.
|
[72] |
Hammer S, Hagemann U B, Zitzmann-Kolbe S, et al. Preclinical efficacy of a PSMA-targeted thorium-227 conjugate(PSMA-TTC), a targeted alpha therapy for prostate cancer[J]. Clin Cancer Res, 2020, 26: 1985-1996.
|
[73] |
Hagemann U B, Ellingsen C, Schuhmacher J, et al. Mesothelin-targeted thorium-227 conjugate(MSLNTTC): preclinical evaluation of a new targeted alpha therapy for mesothelin-positive cancers[J]. Clin Cancer Res, 2019, 25: 4723-4734.
|
[74] |
Jurcic J G, Rosenblat T L, McDevitt M R, et al. Phase Ⅰtrial of the targeted alpha-particle nano-generator actinium-225(225Ac-lintuzumab)(anti-CD33; HuM195) in acute myeloid leukemia(AML)[J]. J Clin Oncol, 2011, 29: 6516.
|
[75] |
Jurcic J G, Levy M, Park J, et al. Trial in progress: a phase Ⅰ/Ⅱ study of lintuzumab-Ac-225 in older patients with untreated acute myeloid leukemia[J]. Clin Lymphoma Myeloma Leuk, 2017, 17: S277.
|
[76] |
Dahle J, Borrebaek J, Jonasdottir T J, et al. Targeted cancer therapy with a novel low-dose rate alpha-emitting radioimmunoconjugate[J]. Blood, 2007, 110: 2049-2056.
|
[77] |
Wadas T J, Pandya D N, Sai K K S, et al. Molecular targeted α-particle therapy for oncologic applications[J]. AJR Am J Roentgebol, 2014, 203: 253-260.
|
[78] |
Dekempeneer Y, Keyaerts M, Krasniqi A, et al. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle[J]. Expert Opin Biol Ther, 2016, 16: 1035-1047.
|
[79] |
Meredith R F, Torgue J, Azure M T, et al. Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients[J]. Cancer Biother Radiopharm, 2014, 29: 12-17.
|
[80] |
Rosenblat T L, McDevitt M R, Mulford D A, et al. Sequential cytarabine and α-particle immunotherapy with bismuth-213-lintuzumab(HuM195) for acute myeloid leukemia[J]. Clin Cancer Res, 2010, 16: 5303-5311.
|
[81] |
Autenrieth M E, Seidl C, Bruchertseifer F, et al. Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: a pilot study[J]. Eur J Nucl Med Mol Imaging, 2018, 45: 1364-1371.
|