• 左
  • 右

地下水体系核素化学形态模拟系统软件开发

张积桥, 兰友世, 黄昆, 张飞天, 那平, 陈锦言, 杨素亮, 张生栋

张积桥, 兰友世, 黄昆, 张飞天, 那平, 陈锦言, 杨素亮, 张生栋. 地下水体系核素化学形态模拟系统软件开发[J]. 核化学与放射化学, 2024, 46(2): 177-184. DOI: 10.7538/hhx.2024.YX.2023031
引用本文: 张积桥, 兰友世, 黄昆, 张飞天, 那平, 陈锦言, 杨素亮, 张生栋. 地下水体系核素化学形态模拟系统软件开发[J]. 核化学与放射化学, 2024, 46(2): 177-184. DOI: 10.7538/hhx.2024.YX.2023031
ZHANG Ji-qiao, LAN You-shi, HUANG Kun, ZHANG Fei-tian, NA Ping, CHEN Jin-yan, YANG Su-liang, ZHANG Sheng-dong. Development of Simulation Software on Chemical Species(SSCS) About Nuclide in Groundwater System[J]. Journal of Nuclear and Radiochemistry, 2024, 46(2): 177-184. DOI: 10.7538/hhx.2024.YX.2023031
Citation: ZHANG Ji-qiao, LAN You-shi, HUANG Kun, ZHANG Fei-tian, NA Ping, CHEN Jin-yan, YANG Su-liang, ZHANG Sheng-dong. Development of Simulation Software on Chemical Species(SSCS) About Nuclide in Groundwater System[J]. Journal of Nuclear and Radiochemistry, 2024, 46(2): 177-184. DOI: 10.7538/hhx.2024.YX.2023031

地下水体系核素化学形态模拟系统软件开发

详细信息
  • 中图分类号: TL942.1;TP311.1

Development of Simulation Software on Chemical Species(SSCS) About Nuclide in Groundwater System

  • 摘要: 为评估处置库的安全性,核素化学形态信息是准确预测核素的运移行为研究的前提。鉴于我国核能工业的迅速发展以及建立环境中核素的确认需求,在我国开展处置库周围核素的化学形态研究具有十分重要的意义。针对地下水中元素种态分布的研究需求,以JAVA为开发工具、MySQL作为数据库、Tomcat为容器,开发了一套B/S架构的元素种态分布模拟软件。针对模拟计算中遇到的化学反应平衡非线性方程组求解收敛困难的问题,引入了根据化学反应势能求解的方法和反应因子控制迭代步长,实现了对化学反应非线性方程快速地求解,并可拓展多相平衡计算。以塔木素地下水中镎为考察对象,利用所开发化学形态模拟软件(simulation software on chemical species,SSCS)计算环境中镎的形态和量,并对比PHREEQC的计算结果,相对偏差在10%以内,针对环境中痕量元素的分布,提供了理论计算的解决方案。
    Abstract: It is critical to develop the methods and technologies of studying the species and concentration in the processing of adsorption, and diffusion of some important radionuclides in spent fuel waste processing such as Beishan granites in domestic institutions and universities for the geological disposal of high-level radioactive wastes. Enrich the models used or constructed and the calculation procedures developed in the past two decades in this field. In order to evaluate the safety of the repository, chemical speciation analysis of nuclides is the premise of research to accurately predict the migration behavior of nuclides. In view of the rapid development of China's nuclear energy industry and the need to establish the identification of nuclides in the environment, it is of great significance to carry out the study of the chemical forms of nuclides around the repository in China. Aiming at the research requirements of element speciation distribution in the environment, a set of B/S architecture element speciation distribution simulation software is developed with JAVA as the development tool, MySQL as the database, and Tomcat as the container. In order to solve the convergence problem of chemical reaction equilibrium nonlinear equations encountered in simulation calculation, the method based on chemical reaction potential energy is introduced to solve the chemical reaction nonlinear equations quickly, and the multi-phase equilibrium calculation can be expanded. SSCS was used to study the species of U in groundwater and the effects of Eh, pH, different ions and concentrations. The calculation results indicate that neptunium mainly exists as NpO2CO-3(aq) in groundwater. Under strong acidic conditions, neptunium maily exists as NpO+2(aq), while in weak acidic, neutral or weak alkaline conditions, the main species are NpO+2(aq) and NpO2OH.When the solution is in strong alkaline conditions, the species are complicated most of neptunium exists as NpO2(CO3)-3(aq), with the possible generation of NpO2(CO3)3-2 or NpO2(CO3)5-3. Np(Ⅴ) is stable in the reduction condition, while Np(Ⅳ) and Np(Ⅵ) are the possible generation. Comparing the neptunium calculation results of the software in the environment with the PHREEQC calculation results, the relative error is within 10 %. For the distribution of trace elements in the environment, a theoretical calculation solution is provided.
  • [1]

    Geckeis H,Lutzenkirchen J,Polly R,et al.Mineral-water interface reactions of actinides[J].Chem Rev,2013,113:1016-1062.

    [2] 王祥云,陈涛,刘春立.化学形态分析软件CHEMSPEC及其应用[J].中国科学:化学,2009,39(11):1551-1562.
    [3] 王祥云,陈涛,王春丽,等.若干重要放射性核素在北山花岗岩及高庙子膨润土中的吸附和扩散研究[J].中国科学:化学,2020,50(11):1585-1599.
    [4] 王祥云,陈涛,刘春立.高放废物地质处置中的模型[J].化学进展,2011,23(7):1400-1410.
    [5] 徐雪雯,周万强,董亮,等.CHEMSPEC模拟铀在塔木素地下水中的种态分布[J].中国科学:化学,2019,49(10):1308-1314.
    [6] 杨森,王永利,基于PHREEQC的核素Sr在地下水中的形态分布研究[J],世界核地质科学,2014,31:402-407.
    [7] 曹振,吉宏斌,邢拥国,等.PHREEQC软件在改善低渗透砂岩铀矿含矿层渗透性中的应用[J].铀矿冶,2012,31(1):14-18.
    [8] 高柏,史维浚,孙占学.PHREEQC在研究地浸溶质迁移过程中的应用[J].华东地质学院学报,2002(2):132-135.
    [9]

    He M Z,Addai-Mensah J,Beattie D.Sricite-chalcocite mineral particle interactions and hetero-aggregation (sliming) mechanism in aqueous media[J].Chem Eng Sci,2009,64:3083-3093.

    [10]

    Johnson J W,Oelkers E H,Helgeson H C.SUPCRT92:a software package for calculating the standard molal thermodynamic properties of minerals,gases,aqueous species,and reactions from 1 to 5000 bar and 0 to 1000℃[J].Comput Geosci,1992,18(7):899-947.

    [11]

    Wang Z,Liu L.Weighted correlation approach:an extended version with applications to the hard-sphere fluid[J].Phys Rev E Stat Nonlin Soft Matter Phys,2012,86(3 pt 1):031115.

    [12]

    Liu L.A model for the viscosity of dilute smectite gels[J].Phys Chem Earth Parts A/B/C,2011,36(17-18):1792-1798.

    [13]

    Parkhurst D L,Appelo C A J.User's guide to PHREEQC (version 2),a computer program for speciation,batch-traction,one-dimensional transport,and inverse geochemical calculations:USGS Water-Resources Investigations Report,99-4259[R].USA:US Geological Survey,1999.

    [14]

    Hummel W,Berner U,Curti E,et al.Nagra/PSI chemical thermodynamic data base 01/01[J].Radiochim Acta,2002,90(9-11):805-813.

    [15]

    Thoenen T,Hummel W,Bener U,et al.The PSI/Nagra chemical thermodynamic database 12/07[R].Villigen,Switzerland:Paul Scherrer Institut,2014.

    [16]

    Wieland E,Kosakowski G,Lothenbach B,et al.Geochemical modelling of the effect of waste degradation processes on the long-time performance of waste forms[J].Appl Geochem,2020,115:104539-104554.

    [17]

    Chemical thermodynamics series volume 5:update on the chemical thermodynamics of uranium,neptunium,plutonium,americium and technetium[C].OECD Nuclear Energy Agency Data Bank,Ed.Amsterdam,The Netherlands:North Holland Elsevier Science Publishers B V,2003.

    [18]

    Chemical thermodynamics series volume 9:chemical thermodynamics of complexes and compounds of U,Np,Pu,Am,Tc,Zr,Ni and Se with selected organic ligands[C].OECD Nuclear Energy Agency Data Bank,Ed.Amsterdam,The Netherlands:North Holland Elsevier Science Publishers B V,2005.

    [19] 蒋美玲,陈涛,康明亮,等.地球化学模拟在高放废物地质处置中的应用与发展[J].中国科学:化学,2014,44(10):1508-1520.
    [20] 杜双.地下水中核素镎化学形态模拟研究[D].哈尔滨:哈尔滨工程大学,2016.
    [21] 朱建波,王祥云,陈涛,等.化学种态分析软件CHEMSPEC (C++)及其应用[J].中国科学:化学,2012,42(6):856-864.
    [22] 刘春立,王祥云,周万强.化学种态分析软件CHEMSPEC最新进展[J].核化学与放射化学,2017,39(6):397-402.
    [23] 周万强,蒋京呈,何建刚,等.计算模拟铀在北山地下水的种态分布及在两种不同材料上的吸附[J].核技术,2018,41(7):070301.
    [24] 蒋京呈,王晓丽,蒋美玲,等.利用CHEMSPEC模拟计算Np和Pu在北山地下水中的种态分布及其在水合氧化铁上的吸附[J].中国科学:化学,2016,46(8):816-822.
    [25] 陈涛,王祥云,刘春立,等.镎在北山地下水中的溶解行为分析[J].原子能科学技术,2015,49(6):1005-1011.
    [26] 中国原子能科学研究院.化学形态模拟系统软件:中国,2021SR0059799[P].2021-01-12.
    [27] 孙茂,陈涛,田文宇,等.镎在北山五一井水中的溶解度计算分析[J].核化学与放射化学,2011,33(2):71-76.
    [28] 王驹.中国高放废物地质处置十年进展[M].北京:原子能出版社,2004:81-88.
计量
  • 文章访问数:  58
  • HTML全文浏览量:  1
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-16
  • 修回日期:  2023-04-10
  • 网络出版日期:  2024-04-22

目录

    /

    返回文章
    返回