2002年5月

Journal of Nuclear and Radiochemistry

文章编号:0253-9950(2002)-0122-04

19.1 MeV中子诱发²³⁵U裂变质量分布研究

杰¹.刘永辉¹.杨 毅¹.冯 a^1 .李 a^2 .崔安智². 餉 孙宏清².张生栋²,郭景儒²

1. 中国原子能科学研究院核物理研究所,北京 102413; 2. 中国原子能科学研究院 放射化学研究所,北京 102413

摘要: 用双裂变电离室测量了靶物质碎片的裂变率,由阈探测器测量了中子能谱.用 能谱法测量了 19.1 Mev 中子诱发²³⁵ U 裂变时⁹⁵ Zr,¹⁴⁷ Nd 等 35 种产物核素的产额。并绘制了产额 - 质量分布曲线。

关键词:²³⁵U:裂变产额测定: 能谱法

中图分类号: 0614.62 文献标识码: A

中子诱发重核裂变产物的产额测量工作在核 数据测量和核裂变机制研究中具有重要意义。特 别是近些年来.裂变产物的产额随中子能量变化 规律的研究一直为人们所关注^[1~6]。在热中子 和14 MeV中子能区.热中子和快中子及14 MeV 中子诱发²³⁵U 裂变产额的数据报道较多,而其它 单能点的数据较少,而且数据分歧较大,主要原因 是中子源的强度不够和非主中子的干扰太大。关 于19.1 MeV中子诱发²³⁵U 裂变产物产额测量的 工作,尚未见文献报道。为此,在本院放射性计量 测试部的小串列加速器上进行19.1 MeV中子诱 发²³⁵ U 裂变的产额测量。本文利用核反应³ H (d,n)⁴He产生的19.1 MeV中子,用阈探测器测量 中子能谱,用 能谱法测量从⁸⁴Br 到¹⁵¹Pm 共 35 个质量链的产额,以得到该能点的产额数据。

实验部分 1

1.1 材料和设备

电离室,自制;前置放大器,北京核仪器厂产 品;主放大器 572,四路单道,92X 多道,HPGe 探 测器,均为美国 ORTEC 公司产品:²³⁵U 靶片 2 个,本院放射化学研究所产品:³H-Ti 靶 2 个,本 院同位素所产品。

1.2 实验方法

1.2.1 铀靶的制备和照射 铀靶为直径16 mm 的金属铀片,厚度为 0.4~0.8 g/cm²,同位素成 份为:1.1%²³⁴U,90.2%²³⁵U,0.3%²³⁶U,8.4% ²³⁸U。金属铀片用硝酸洗涤除去氧化层后准确称 重,用厚度为5mg/cm²的纯铝箔封包,以防止裂 变产物丢失。标准靶是用与厚靶来源相同的浓缩 铀(²³⁵U)经分子电沉积在厚度为 0.10~0.15 mm 的铂金底衬上制成。铀斑的直径为16 mm,厚度 为 $0.3 \sim 0.4 \text{ mg/cm}^2$ 。标准靶的比活度为(2.362) ±0.022) Bq/µg^[7]。为了减少中子散射影响,双 裂变室制作得小而轻,电极用直径为54 mm的铝 片制成。电缆接头固定在8 mm厚的黄铜法兰盘 上,距电极为205 mm。

实验在 2X1.7 MeV 小串列加速器上完成, 19.1 MeV中子由³ H(d,n)⁴ He 产生,束流强度平 均为8 µA。样品裂变率通过双裂变室监测,电离

收稿日期: 2001-03-10; 修订日期: 2002-01-04 作者简介: 鲍杰(1975-),男,河北廊坊人,助理研究员,核物理专业。

室贴近靶头,照射时间为30 h。

1.2.2 裂变率的测量 从双裂变室出来的两路 脉冲信号经放大后,每路又分两路同时分别进入 四路单道脉冲幅度分析器,共有四路甄别输出信 号输入四道多路定标单元并用微机实时记录和处 理。多路定标的时间道宽和道数可根据产物核素 的寿命而预置,实验仪器范围时间道宽为 0.1~ 900 s。最大道数为4 096^[8]。

1.2.3 中子能谱的测量 选取若干阈探测器 (Al,Ti,Fe,Ni,In,Au),经中子辐照后测量各产物 核的活度,用 SAND- 程序计算出中子能谱。阈 探测器的反应如下:

Al ${}^{27}Al(n,){}^{24}Na;$

- $Ti \,\, {}^{46}Ti(n,p) \, {}^{46}Sc \, ; {}^{48}Ti(n,p) \, {}^{48}Sc \, ;$
- Fe: 54 Fe(n,) 51 Cr; 54 Fe(n,p) 54 Mn; 56 Fe(n,p) 56 Mn;

Ni 58 Ni(n,p) 58 Co;

- In 115 In (n,n') 115 In;
- Au 197 Au(n,2n) 196 Au; 197 Au(n,) 198 Au_o

1.2.4 探测器效率的测量 用 HPGe 探测器测 量裂变产物核素的 射线能谱。P型同轴 HPGe 探测器的体积为110 cm³,对⁶⁰Co 的 1 332.5 keV 能量的 射线分辨率(FWHM)为 1.85 keV。测 量标准靶时将其放在有机玻璃架上,与探测器的 距离可通过有机玻璃架进行调节。探测器的外盖 上加一个厚为1.4 mm的镉片以屏蔽低能 X 射 线。选取一系列没有级联发射的单能 源⁵⁴Mn, ⁵⁷Co,⁶⁵Zn,¹⁰⁹Cd,¹³⁷Cs 作绝对刻度,效率曲线示于 图 1。图 1 中的曲线由经验公式拟合实验点而成:

$$\ln (E) = {}_{1} \cdot E + {}_{2} + {}_{3} \ln E / E + {}_{4} / E + {}_{5} / E^{2} + {}_{6} / E^{3} \circ$$

式中, (*E*)为随能量变化的探测效率, *E* 为 射线能量, 为拟合系数。但铀靶厚度与刻度源 的厚度不同。改变源与探测器之间的距离测得几 何校正系数为 *g*_c = 1 + 0.032 3(0.2 + /2),其中 为铀靶的厚度。

图1 探测器的效率曲线

Fig. 1 The efficiency curve of HPGe detector

2 结果和讨论

2.1 ²³⁵ U的裂变率对裂变产额测量	的影响
---------------------------------	-----

用双裂变电离室绝对监测裂变率,用来计算 绝对裂变产额值。给出的裂变率精度好于 1.5%。

2.2 中子能谱对裂变产额测量的影响

用阈探测器方法测量中子能谱,结果列入表

Table 1	Neatron spectrum	
$E_{\rm n}/~{\rm MeV}$	计数(N)	$E_{\rm n}$,cen/ MeV
0.1~2.6	2 410	1.05
2.7~4.5	1 152	3.35
4.6~18.4	45	11.16
18.5 ~ 20.0	9 495	19.10

表1 中子能谱

1.

表1结果表明:非主中子与主中子比例约为 0.38 1; 非主中子平均能量为1.91 MeV; 0.1 MeV以下能量的中子有待进一步分析。非主 中子主要来自 D-D 沉积反应和低能本底散射。 以计数百分比作为权重,以评价值作为相应非主 中子的产额,扣除非主中子对主中子裂变产额值 的影响,可以得到19.1 MeV单能中子的裂变产额。

2.3 裂变产额计算

在裂变产物衰变链中 A B C, A 核的累积 产额 Y_f 可按下式计算:

$$Y_{f} = A / \{ m \cdot C \cdot I \quad e^{-t} \quad n_{f i} e^{-(T_{N} - T_{i})} \\ [1 - e^{-(T_{N} - T_{i} - 1)}] \}_{\circ}$$
(1)

式中, A 为 计数率, \min^{-1} ; m 为照射靶的质量, mg; C 为 射线自吸收校正系数; I 为 射线的 绝对活度, s^{-1} ; 为 射线的探测效率; 为核素 的衰变常量 s^{-1} ; t 为冷却时间, $\min; T_i$ 为照射时 间内第 i 时刻(令照射初始时刻 $T_0 = 0$, 而停止时 刻为 T_N); n_{fi} 为 T_i 时刻的裂变率, s^{-1} 。所用的 衰变数据表参见文献[9]。裂变产额质量分布曲 线示于图 2。

图 2 19.1 MeV 中子诱发²³⁵U 裂变的质量分布曲线 Fig. 2 Mass distribution curve of 19.1 MeV neutron induced fission

2.4 裂变产额值

4 块厚铀靶经辐照后,用高纯锗(HPGe) 谱 仪进行裂变产物核素分析并获取 峰面积数 据^[10]。在 谱数据获取过程中,由于辐照的样品 较少,既要尽可能多地得到裂变产物核素的产额, 又要尽量减小 计数的统计误差 测量中根据感 兴趣的核素的特点,如 射线能量,探测效率,核 素间 能量的相互干扰程度以及产物核素的半衰 期等因素都给予了适当考虑。在产物核素鉴别 时,对于每个核素都绘出了 射线强度随时间变 化曲线。以对可能存在的干扰核素可以通过分解 半衰期方法对其进行分解,或者直接剔除干扰和 误差较大部分。为了减少干扰核素对感兴趣核素 引入的误差,测量过程中对感兴趣核素按半衰期 不同而采用不同的冷却时间。为减少偶然误差, 对每一个样品都采用了两套完全独立的高纯锗

谱仪系统进行了数据获取。为了尽可能多的积累 数据,实验中采用了批任务作业数据获取方法,以 较少地损失计数积累的机会。

为减少非主中子引起的裂变对产额测量精度 的影响,实验中采用阈探测器方法对中子能谱进 行测量。选用的探测器材料为铝(Al),钛(Ti),铁 (Fe),镍(Ni),铟(In)和金(Au)等。经中子辐照 后用 探测器测量产物核素的活度,用 SAND-程序计算与合理估计的方法得出中子能谱,进而 得到裂变数谱对每个裂变产物核素进行非主中子 影响的修正,误差最大不超过 2 %。

用直接 能谱法测量中子诱发重核裂变产额 的测量误差主要来自裂变率的绝对测定。本工作 采用了双裂变室记录裂变碎片,并采用¹⁹⁷Au 箔代 替²³⁵U 厚靶,装在双裂变室内两标准靶之间,与 铀样品照射条件相同,通过这种方法对裂变室的 效率进行了检验^[2]。

从图 2 所示的质量产额曲线看出,实验共测 得 35 个裂变产物核素的产额。测得的产额之和 为 114.3%,轻峰和重峰之和分别为 61.1%和 53.2%。用内插法和外推法得到未测定的产额, 轻峰和重峰的总和分别为 100.4%和 98.0%。这 与 100%在误差范围内很好地符合。说明裂变率 和裂变产物的绝对测量是正确的。轻重峰的平均 质量数分别为 97.9 和 133.8,平均裂变中子发射 率 =4.3。

致谢:卢涵林研究员,韩洪银研究员和王屹华 先生以及对本工作给予关心和支持的各位作者一 并表示感谢。

参考文献:

- [1] CHAPMAN T C, ANGELON C A, SPITALS C C, et al. Fission Product Yields From 6~9 MeV Neutron-Induced Fission of ²³⁵U and ²³⁸U[J]. Phys Rev, 1978, C17:1 089.
- [2] CLERC H G, LANG W, MUTTERER M, et al. Cold Fragmentation in Thermal-Neutron-Induced Fission of ²³³U and ²³⁵U[J]. Nucl Phys A, 1986, 452 (2) :277 ~ 295.

- [3] RUDSTAM G, AGAARD P, EKSTROM B, et al. Yields of Products From Thermal Neutron Induced Fission of ²³⁵U[J]. Radiochim Acta, 1990, 49(4): 155~191.
- [4] GLENDEN IN L E, GINDLER J E, HENDERSON D J, et al. Mass Distributions for Monoenergetic-Neutor Induced Fission of ²³⁵ U [J]. Phys Rev, 1981, C24:2 600.
- [5] 原子能研究所裂变产额组.热中子和裂变谱中子诱 发²³⁵U裂变时几个核素累积产额的绝对测量[J]. 核化学与放射化学,1980,2(1):1~8.
- [6] 原子能研究所裂变产额组. 14.9 MeV 中子诱发
 ²³⁵U裂变时几个核素累积产额的绝对测量[J]. 核 化学与放射化学,1984,6(4):229~231.
- [7] 李 泽,王连璧,王维国,等. 裂变率的绝对测量[J]. 原子能科学技术,1980,5:600~605.
- [8] 李 泽,崔安智,刘大鸣,等.⁹⁵ Zr,¹⁴⁰ Ba 和¹⁴⁷ Nd 产额的精确测量[J].核化学与放射化学,1995,17
 (2):65~72.
- [9] RICHARD B F. Table of Isotopes(8th[M]. California:Lawrence Berkeley National Lab, University of California, 1996.
- [10] WANGLiyu. Mutiple Processing in High Resolution Gamma Spectrscopy [J]. Int J Appl Radiat Isot, 1989,40(7):575~579.

MASS DISTRIBUTION IN 19. 1 MeV NEUTRON IND UCED FISSION OF ²³⁵ U

BAO Jie¹ , L IU Yong-hui¹ , YNAG Yi¹ , FEN GJing¹ , L I Ze² , CUI An-zhi² , SUN Hong-Qing² , ZHAN G Sheng-dong² , GUO Jing-ru²

1. China Institute of Atomic Energy, P.O.Box 275(46) ,Beijing 102413, China;

2. China Institute of Atomic Energy, P.O.Box 275(26) ,Beijing 102413 , China

Abstract : 35 chain yields are determined for the fission of 235 U induced by 19.1 MeV neutrons by HPGe - ray spectrometry. Absolute fission rate is monitored with a double-fission chamber. The efficiency of the fission chamber is checked with absolute determination of 198 Au activity from 197 Au(n,) 198 Au reaction for the first time. Fission product activities of irradiated 235 U foils are measured by HPGe - ray spectrometry without chemical separation. Threshold detector method is used to estimate the fission events induced by neutrons of other energies.

Key words : fission yield; ²³⁵U; -ray spectrometry